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A nonlocal critical-state model, which takes into account in a unified manner the effects 
associated with the nonlocal relationship between the magnetic induction and the vortex density, 
as well as the Bean-Livingston surface barrier, is presented. When the surface effects are 
considered in a nonlocal critical-state model, the presence of vortex-free regions near the boundary, 
whose thickness depends on the magnitude of the bulk critical current and the history of the 
sample, must be taken into account. It is shown that vortex-free regions, whose dimensions are 
comparable to the London penetration depth, naturally appear in the nonlocal critical-state 
model not only near the boundary, but also at sites of abrupt variation of the critical current density 
(for example, in layered superconductors) and should thus produce features on plots of the 
magnetization, susceptibility, etc. Experimental measurements of the remanent magnetization in 
superconducting particles having diameters comparable to the effective penetration depth 
are discussed. The experimental results cannot be described within the local critical-state model. 
The theoretical plots of the remanent magnetization calculated within the nonlocal model 
reproduce all the characteristic features of the experimental curves. Physically this is because a 
considerable part of the magnetic moment in small superconducting particles is created 
by Meissner magnetic fields, which do not contribute to the remanent magnetization. O 1996 
American Institute of Physics. [ S  1063-776 1 (96)02404-31 

1. INTRODUCTION 

The electrodynamics of hard superconductors in external 
magnetic fields are usually described using the critical-state 
model (see, for example, Refs. 1-3). In this model it is as- 
sumed that shielding currents with a density equal to the 
critical current + J ,  are induced in a superconductor near the 
boundary in response to any variation of the external field. 
This is because the magnetic field penetrates a hard super- 
conductor in the form of Abrikosov vortices, which are gen- 
erated on the surface of the sample and move into it until the 
force created by the vortex gradient is equilibrated by the 
pinning force. 

The traditional formulation of the critical-state model'-3 
does not take into account several phenomena. First, this 
model is local, i.e., it neglects the nonlocal relationship be- 
tween the magnetic induction B and the density of the Abri- 
kosov vortices n.  This is justifiable only when spatial scales 
of the order of the London penetration depth h are not con- 
sidered. Thus, this model is unsuitable for describing super- 
conducting samples with dimensions of the order of X. In 
addition, it is not applicable to the description of the surface 
effects, which require consideration of the interaction of the 
vortices with their images and the Meissner currents, whose 
spatial scale is also of the order of X. Second, the critical- 
state model usually does not consider the nonlocal effects 
associated with "reversible vortex displacement" in the bulk 
pinning potential, i.e., it does not take into account the fact 
that a vortex is displaced from its equilibrium position when 
there is a small change in the field. In this case the vortex 
moves reversibly in the pinning potential, and the current 
density is less than the critical value. When the displacement 

of a vortex becomes equal to the interaction distance d o ,  the 
vortex is depinned. 

The effects associated with the finite value of A were 
first taken into account self-consistently in the nonlocal 
critical-state model introduced in Ref. 4. This model was 
described in detail in Ref. 5, in which reversible vortex mo- 
tion in a pinning potential was also considered. The nonlocal 
critical-state model has not only a single equation relating 
the field to the bulk current density, but also a system of 
equations which relates the field induction to the vortex den- 
sity and to the reversible vortex displacements. It was found 
that consideration of these effects leads to several features in 
the distributions of the magnetic field and the vortex density, 
which are not related to one another by the simple linear 
relation B = nao in the nonlocal model. When the external 
field is varied, a superconductor splits into two regions in the 
general case: a region where irreversible dissipative displace- 
ment of the vortices (detachment of the vortices from the 
pinning centers) takes place and a region where the displace- 
ment of the vortices has a reversible character. We shall refer 
to the former region (as in Ref. 5) as the critical region and 
the latter region as the subcritical region. The vortex density 
has a discontinuity on the boundary between these regions5 
If the external field H o  reaches a certain value H,,  and then 
begins to decrease, no irreversible vortex displacement oc- 
curs in the range of fields Hm,-AH<H<Hm,. If the am- 
plitude of the variable field is less than A H ,  the hysteretic 
losses in the superconductor are equal to zero. In addition, if 
the superconductor has the form of a plate, there is always a 
region in the center of the plate where the vortex density 
satisfies n = 0 for any value of H,, . (Of course, the vortex 
density can be nonzero in the center of the plate, if, for 
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example, the magnetic field is frozen in the plate when the 
transition to the superconducting state occurs.) This result 
disagrees qualitatively with the predictions of the traditional 
critical-state model, in which a region with n = 0 exists only 
in a field weaker than the penetration field 
H,= (2?~lc)J,d. We stress that all these features of the non- 
local model vanish when we go to the local limit, in which 
the model becomes the familiar Bean critical-state model.' 

We also note that some of the features enumerated (par- 
ticularly, the field interval AH) are shared by the model in 
Ref. 6, but it is a totally different model from the physical 
standpoint. The model in Ref. 6, which is local, takes into 
account the granular structure of a high-T, superconducting 
ceramic and the finite value of the granule-depairing field. In 
the present work (as in Refs. 4 and 5) a homogeneous hard 
superconductor is considered. 

The nonlocal critical-state model in Refs. 4 and 5 ne- 
glects the presence of the Bean-Livingston surface barrier? 
which is associated with the interaction of vortices with an 
ideally flat surface of a superconductor. Therefore, the results 
in Refs. 4 and 5 are rigorously valid only for superconduct- 
ors in which the Bean-Livingston barrier is suppressed (for 
example, due to the roughness of the surface or in strong 
magnetic fields). 

The effects due to the existence of the Bean-Livingston 
barrier have been thoroughly studied for soft superconduct- 
ors, in which bulk pinning can be neglected.89 A micro- 
scopic description which considers individual Abrikosov 
vorticesg is generally needed. However, a simple macro- 
scopic model for describing soft superconductors in the 
mixed state was proposed in Ref. 9. In this model (for the 
case of an increasing external field) there is a vortex-free 
boundary region with a thickness 1, which is specified by the 
relation 

where Ho is the external field and B is the magnetic induc- 
tion. Here the magnetic induction is given by the expression 
B= \I-, where H,= He= (@,,/47r)A6 is the critical 
thermodynamic field, 6 is the coherence length, and @o is 
the magnetic flux quantum. We note that H, is equal to the 
critical thermodynamic field H, only in the case of an ideally 
smooth surface. The presence of roughness results in sup- 
pression of the Bean-Livingston barrier; therefore, in the 
general case H, S H, . 

In recent years there has been a lively discussion of the 
appearance of the Bean-Livingston barrier in high-T, super- 
conductors (see, for example, Refs. 10-18). The relationship 
between the Bean-Livingston barrier and the features of 
magnetization curves was discussed in Ref. 10-12. In Ref. 
13 it was shown that the presence of the Bean-Livingston 
barrier results in hysteresis of the critical current of a high- 
T, superconducting ceramic. The features of the magnetic 
flux creep and relaxation through a surface barrier were in- 
vestigated in Refs. 14 and 15. The surface impedance of a 

soft superconductor with a Bean-Livingston barrier in par- 
allel and perpendicular magnetic fields was studied in Ref. 
16. 

The critical state in a superconducting plate with a 
Bean-Livingston barrier in a perpendicular magnetic field 
was studied in Refs. 17 and 18. In this case the surface bar- 
rier is renormalized due to the geometric factor. In addition, 
the interaction of the vortices has a power-function, rather 
than an exponential character. The latter creates a situation in 
which the vortex-free region near the surface is of the order 
of the thickness of the plate and not of the order of A ,  as in 
the parallel geometry. Such a vortex-free region can be ob- 
served e~perimentall~.'~ 

In this paper we consider a superconductor in a parallel 
magnetic field. In this case the thickness of the vortex-free 
region is 1 S A; therefore, correct consideration of the Bean- 
Livingston barrier for a hard superconductor requires consid- 
eration of the nonlocal effects, i.e., these effects cannot be 
taken into account self-consistently within the local Bean 
model in the general case. A model which self-consistently 
takes into account the nonlocal effects and the Bean- 
Livingston surface barrier is introduced below. Vortex-free 
regions appear in a natural manner in this model both near 
the surface and at sites of sharp variation of the critical cur- 
rent density. The thickness of these regions depends on the 
value of the bulk critical current and the history of the 
sample. It is shown that the magnitude of the interval AH, in 
which no irreversible vortex displacements occur as the ex- 
ternal field varies, depends on the thickness of the vortex- 
free region. 

The measurements of the remanent magnetization in ce- 
ramic particles having diameters comparable to the effective 
penetration depth in Ref. 20 are discussed next. These ex- 
perimental results cannot be described within the traditional 
critical-state model. An anomalous decrease in the remanent 
magnetization is observed for superconducting particles with 
small diameters. The possibility of the presence of a vortex- 
free region, which appears when the external field is re- 
moved, was taken into account in Ref. 20 to explain this 
anomaly. Since the thickness of this region is xf< A, a rig- 
orously correct treatment must consider the nonlocal effects. 
The theoretical plots of the remanent magnetization calcu- 
lated within the nonlocal critical-state model reproduce all 
the characteristic features of the experimental curves. The 
principal physical cause of this anomaly is that in small su- 
perconducting particles a considerable part of the magnetic 
moment is created by Meissner magnetic fields, which do not 
contribute to the remanent magnetization. 

2. MODEL 

We use the nonlocal critical-state to investigate 
the surface effects. We consider a hard type-I1 superconduc- 
tor in the form of an arbitrary cylinder in an external field 
Ho parallel to its generatrix (the z axis). We assume 
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where He, and HC2 are the lower and upper critical fields. 
For a macroscopic description the characteristic scale 

d, on which the averaging of the microscopic equations is 
performed, must be much greater than the characteristic dis- 
tance between vortices a. Another characteristic scale is the 
London penetration depth A. When d 3 A holds, we obtain 
the local model, for which the relation B=nGo is valid. If 
the microscopic equations are averaged on scales d e h ,  we 
arrive at the nonlocal critical-state model. As was noted in 
the Introduction, an additional spatial scale, viz., the thick- 
ness of the vortex-free region 1, appears when the surface 
effects are investigated; therefore, the condition 1 % ~  must 
also hold. 

Hence we obtain the following conditions for applicabil- 
ity of a macroscopic description of the surface effects in the 
nonlocal model: 

where hl is the magnetic field of a single vortex located at 
the point p' . The function hl satisfies the equation 

hleZ+A2 curl curl hlez=@oez(p-p') (9) 

with the boundary condition hl(pSd,p1) =0, where p s d  is 
the coordinate of the superconductor surface. The magnetic 
flux of a single vortex located at the point p is defined by the 
expression 

Near the superconductor surface @(p) is related to the 
Meissner component B, of the field by the expression2' 

If these conditions do not hold, a microscopic approach must 
be used in the general case. We shall show that a macro- 
scopic approach is applicable when (2) holds. In fact, both 
relations (3) and (4) are valid in this case. The validity of (3) 
is obvious, since in the fields (2) the mean distance between 
vortices a satisfies the relation @ a 4  A. Let us prove the 
validity of (4). In fields Ho-H, from (1) we have 1-1, i.e., 
the condition (4) is satisfied. In fields HoS-H, we obtain 
I -  AH, l ~ ~ - a  d m * a .  Thus, the condition (4) breaks 
down only in fields Ho-Hc2. 

The derivation of the equations of the nonlocal critical- 

(4) which takes the form @ = a o ( l  -exp(-xlA)) for a half- 
soace. 

state model was given in Ref. 5. The magnetic induction 

The second equation of the model is obtained from the 
variation of the Gibbs free energy G, which can be repre- 
sented as the sum of the electromagnetic energy Gel, and the 
work of the pinning forces G? . In this paper, in contrast to 
Ref. 5, the effects associated with reversible vortex displace- 
ment in the pinning potential are disregarded for simplicity. 
All the results in Ref. 5 pertaining to these effects remain 
valid even when the Bean-Livingston barrier is taken into 
account. 

After averaging the free energy on scales dS-a, we ob- 
tain (the averaging procedure was presented in Ref. 5) 

B, which reflects the averaged microscopic field, is deter- 1 
d2p(Oon~,-  ~ H ~ B , ) .  mined by the equation 

B ~ , + A ~  curl curl Bez=@one, (5) The latter expression is not exact. As was shown in Ref. 
5, it is calculated with a relative accuracy -He' IHQ 1, 
which corresponds in fields H%Hel to neglect of the differ- 

with the boundary condition B=Ho, where e, is a unit vet- ence between the magnetic induction B and the field strength 
tor parallel to the Z axis. The soluti~n of this equation Can be Hq(B). All the calculations below are performed with this 
represented in the form of the sum of the vortex (B,) and accuracy. 
Meissner (B,) components, which satisfy the equations The work of the pinning forces G? has the form 

~ , e , +  h2 curl curl B,ez=@onez, 

B,ez+ A 2  curl curl B,e,= 0 (7) Here the integration is carried out over the critical region. 
The notation for the pinning potential pp was introduced in 

with the boundary conditions B,= Ho and B,=O. The physi- Eq. (12). It is defined so that the variation of pp associated 
cal meaning of the latter boundary condition is that the mag- with a vortex displacement u is equal to the force fp acting 
netic flux of a vortex tends to zero as it approaches the su- on the vortex. In the critical region fp= -C P C ,  where P C  is 
perconductor boundary. The solution (6) can be represented the maximum pinning force, and in the subcritical region the 
in the form inequality -PC< fp< PC holds. 
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To obtain the material equation describing the balance 
between the forces acting on a vortex, the free energy 
G= Gel,+ G, must be varied with respect to vortex dis- 
placements u. (We note that in Ref. 5 the free energy was 
varied with respect to the vortex density n. As will be seen 
from the following, variation with respect to u is more con- 
venient.) The variation of the vortex density has the form 

Sn = - div(n Su) . 

Varying the electromagnetic part of the free energy G,,, 
(see Appendix 2 in Ref. 5), we obtain 

Adding the contribution from the variation of G, to (13) 
and using the expression (10) for the flux of a single vortex 
a ,  for the variation of the total free energy we obtain 

Setting SG equal to zero, we find that wherever the vor- 
tex density n is nonzero, the following balance equation of 
the forces must be satisfied: 

The magnetic induction need not obey this equation in re- 
gions where n = 0, since the condition 6G= 0 is satisfied 
identically in that case. 

The expression (15) is the usual expression of the critical 
state (this becomes obvious, if it is taken into account that 
B = (B), and I V B  I = lcurl~l). We stress, however, that in 
deriving it (as in Ref. 5) we explicitly took into account the 
Meissner currents and the boundary conditions for the mag- 
netic field; therefore, (15) is valid in the immediate vicinity 
of the boundary. 

Let us consider the boundary conditions when the Bean- 
Livingston barrier is taken into account and the external 
magnetic field H o  increases. Two alternatives are possible. 
First, the barrier can prevent the entry of vortices into the 
superconductor. In this case the total number of vortices in 
the superconductor does not vary: 

I d2p n(p) = const. (16) 

Second, vortices can penetrate into the superconductor. The 
condition for the penetration of a vortex into a superconduc- 
tor is equality of the total electromagnetic force acting on it 
to zero. Ultimately, in analogy to Ref. 9, we obtain 

where d / d l  is the derivative in the direction of the internal 

normal to the superconductor surface. In deriving (17) we 
disregarded the bulk pinning, since we assumed that the bulk 
critical current density satisfies Jc9cH, /4?rA.  This is justi- 
fied, since cH,M?rh coincides in order of magnitude with the 
depairing current, and all real critical currents are usually 
much smaller. 

It follows from the conditions (16) and (17) that a 
vortex-free region appears near the surface as the external 
field increases. In fact, if there is no vortex-free region, the 
following condition holds on the boundary: 

As H o  increases, the vortices move deeper into the supercon- 
ductor, but new vortices cannot enter the superconductor in 
this case, since the condition (17) does not hold. A vortex- 
free region appears near the surface. At a certain value of the 
external field the condition (17) begins to hold, and new 
vortices enter the superconductor. The subsequent entry of 
vortices does not result in filling of the vortex-free region, 
since the current near the surface exceeds the critical value, 
and vortices cannot remain in this region. The new vortices 
are "blown" deeper into the superconductor by the large 
Meissner surface currents. From the mathematical stand- 
point, such a region must exist, because the solution of the 
balance equation (15) of the forces (which is a first-order 
equation) cannot simultaneously satisfy the two boundary 
conditions B = H o  and (17). Equation (5) with n =0, which 
defines the field in the vortex-free region, is a second-order 
equation, and its solution can satisfy the two boundary con- 
ditions. 

When the external field decreases, the boundary condi- 
tions change. Strictly speaking, to derive them we must in- 
vestigate the stability of the vortices nearest the surface with 
respect to small displacements from their equilibrium posi- 
tions. However, in the macroscopic approach these condi- 
tions can be derived from simple arguments. When the ex- 
ternal field decreases, the vortex-free region near the surface 
begins to shrink. As long as the thickness of the vortex-free 
region is nonzero, vortices do not exit the superconductor, 
and the condition (16) holds. In a certain external field 
Hait the thickness of the vortex-free region becomes equal to 
zero. When the field diminishes further, there is no vortex- 
free region, vortices exit the superconductor, and the balance 
equation (15) of the forces is valid right on the boundary. In 
this case the boundary condition B = Ho alone is sufficient. 

Now we can formulate the basic assumptians of the non- 
local critical-state model with consideration of the Bean- 
Livingston surface barrier. For simplicity we restrict our- 
selves to the one-dimensional case, which alone will be 
considered below. 

The basic equations of the model can be written in the 
form 
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To construct the solutions of the nonlocal model, we must 
also formulate an algorithm to take into account the magnetic 
history. Let the distributions of the magnetic induction BoM 
and the vortex density n , ~  corresponding to a certain value 
of the external field Ho be known to us. Let the external field 
vary. Then a critical region appears near the surface in the 
general case. In this region the vortex density n differs from 
n but the current density J, whose absolute value equals 
the critical current density J,=(41rl@~)P,, is a known 
quantity. This enables us to find the magnetic induction in 
this region, using Eq. (18) with J= ? J, . Now there can be 
different boundary conditions, depending on whether or not 
the vortex-free boundary region exists. Knowing the mag- 
netic induction, we can find the new vortex density in the 
critical region from (19). In the subcritical region the varia- 
tion of the electromagnetic forces is insufficient for &pin- 
ning of the vortices, and with neglect of the reversible dis- 
placements the vortex density remains the same as before the 
external field was varied, i.e., n= nold. The distribution of 
the magnetic induction is found from (19), and the current 
density must be determined from (18). We only know a pri- 
orithatl~l 6 J,. 

The matching conditions on the boundary between the 
critical and subcritical regions were discussed in Ref. 5. 
They are continuity of the magnetic induction and the current 
density. Moreover, these conditions are valid, even if the 
vortex density n has a discontinuity at the matching point. 
This is not so in the case of a 8-function feature on n (an 
example in which this possibility is realized is presented be- 
low). 

3. SURFACE EFFECTS 

In this paper we shall not discuss the features of the 
distribution of the magnetic induction B and the vortex den- 
sity n in the interior of a homogeneous superconductor. They 
were discussed in detail in Refs. 4 and 5. Here we shall focus 
our main attention on the boundary effects. We shall exam- 
ine these effects in the case of a semi-infinite superconduct- 
ing space x> 0. 

Let the external field Ho be equal to zero initially, and 
let there be no frozen magnetic flux within the superconduc- 
tor. As Ho increases, there is only a Meissner state at first. 
Vortices do not penetrate the superconductor until the con- 
dition (17) is satisfied. It is satisfied only when Ho= H, . As 
the field increases further, there appears a vortex-free region 
of thickness 1, beyond which (for 1 <x< b) there is a critical 
region, where dBldx= - (41rlc)J~. For x>b the density 
n equals zero (as in Ref. 5, we shall call the point x= b the 
penetration depth). The expressions for the field B(x) and 
the density n(x) have the form (Fig. la) 

X X ( Ho cosh *-H, sinh - 
A 

for O<x<l, 

1 1 497 
Ho cosh --H, sinh -- -J,(x-1) 

B(x) = I A c (20) 
I for l<x<b, 

[ v J c A  e x p ( - y )  for x>b, 

( 0, for O<x<l, 

1 1 4m I &(Ho cosh *-H8 sinh -- -Jc(x-1) 
n(x) = A c I for f<x<b, 

( 0 ,  for x>b, 

where 1 and b are defined implicitly by the equations 

Let us discuss the features of the solution obtained. 
When we go to the soft-superconductor limit Jc--+O, it coin- 
cides with the model in Ref. 9. In this case b--too, Eq. (22) 
transforms into (I), the vortex density is constant 
( n  = const), and the magnetic induction equals 

This expression gives the magnetic induction appearing in a 
soft superconductor when the field in~reases.8~' 

In the case of a hard superconductor, the density n de- 
pends on the coordinates, and instead of (24) we have 

If the external field Ho increases to the value H,, and 
then begins to decrease, a critical region fails to appear in the 
superconductor in a certain range of fields 
Hm,-AH<Ho<Hm,. In this range of fields the vortex den- 
sity remains constant everywhere in the superconductor, and 
the pinning force acting on the vortices near the boundary 
varies from +PC to -PC.  The magnetic induction also var- 
ies, since the Meissner component of the field varies. In this 
range of fields the hysteretic losses in the superconductor are 
equal to zero. The interval AH is proportional to J,A and 
depends on the geometry of the system (it was calculated for 
a semi-infinite space and a plate without consideration of the 
Bean-Livingston barrier in Refs. 4 and 5). When the surface 
barrier is taken into account, the expression for AH has the 
form 

8w 1 
AH=-=JcA exp- 

C A ' 

It is seen that the presence of the vortex-free region near the 
surface leads to an increase in the barrier AH. 

When the external field decreases further, the change in 
the electromagnetic force can no longer be balanced by a 
corresponding change in the pinning force. A critical region 
appears, and the vortices are irreversibly displaced toward 
the surface; however, no vortices exit the superconductor, 
and the thickness of the vortex-free region ld simply de- 
creases. The distribution of the magnetic induction and the 
vortex density in this case has the form (Fig. lb) 
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for O<x<ld, 

ld) for ld<x<xO, 

B(x) = 
1 4.rr 

for xo<x<b, 
C 

4 -J,A exp ( -- ) - -J,A gCr exp ( -- X;XO) for x>b, 

f "  for 0<x<ld, 

( 0  for x>b, 

aon(x) = ' 

where 1 and b are determined from Eqs. (22) and (23) when 
H=H,, . The position of the boundary between the critical 
and subcritical regions xo is determined from the continuity 
of the magnetic induction and the current density, and the 
thickness of the vortex-free region ld is determined from 
conservation of the total number of particles (16). (The tran- 
scendental equations specifying ld and xo are not presented, 
because they are quite involved). When the extemal field 
decreases further, the vortex-free region vanishes, and vorti- 
ces exit the superconductor (Fig. lc). 

Therefore, two barriers should be distinguished. The first 
is the barrier in Ref. 5, which prevents irreversible vortex 
displacement in the superconductor. It is determined from 
the bulk critical current density, and this barrier, of course, is 
not present in a soft superconductor. The second barrier pre- 
vents the entry of vortices into the superconductor and their 

Ho cosh - - for ld<x<xO, 

1 1 4lT 
H,, cosh - - H, sinh - - -Jc(x - 1) 

A 
for xo<x<b, 

A c 

exit from it. This barrier was investigated for a soft super- 
conductor in Refs. 8 and 9. In the case of a hard supercon- 
ductor, the field for the entry of vortices is specified by (25), 
and the exit field Hait can be found from the condition 
ld=O. Figures 2 and 3 present plots of ld and Hait as func- 
tions of the external field for various values of the critical 
current density. We stress that both effects can be taken into 
account systematically and self-consistently within the non- 
local critical-state model. 

We also note another special feature of the solutions 
obtained. The value of AH in the presence of the Bean- 
Livingston surface barrier depends on the thickness of the 
vortex-free region near the surface [see (26)l. At the same 
time, for a given value of the external field Ho the thickness 
of the vortex-free region depends on the history of the 
sample. For this reason AH depends on the history. 

Hmk * 
1IR 

0.6 - H-L Lj;,; ; 
0.4 - 

H - " ~  ;L,; : 
3 

0.2 - 
x X , b  x 4 

FIG. 1. Distribution of the magnetic induction (left-hand column) and the I 
vortex density (right-hand column) in the half-space x>O in the presence of 0 I the Bean-Livingston banier: a) initial increase in the external field; b) de- Ho lHmx 
crease in the external field, during which voltices do not exit the supercon- 
ductor and only the thickness of the vortex-free region decreases; c) further FIG. 2. Thickness of the vortex-free region 1 as a function of the magnetic 
decrease in the external field, after which there is no vortex-free region and field H ,  as it decreases from the maximum value H ,  for various values of 
voaices exit the superconductor. the critical current density J ,  . 
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where B(xb) is the value of the magnetic induction at xb. 
The maximum value of lb is observed in the first moment 
when the vortex front reaches xb . It equals 

FIG. 3. Exit field He,, as the external field decreases fmm the maximum 
value H,, for various values of the critical current density. 

4. BOUNDARY BETWEEN TWO REGIONS WITH DIFFERENT 
CRITICAL CURRENTS 

In the preceding section we considered the nonlocal ef- 
fects on the surface of a superconductor. It was shown that a 
vortex-free region appears near the surface when the external 
field increases. In this section it will be shown that similar 
effects appear on the boundary between two superconductors 
with different critical current densities. 

Let the boundary between the superconductors be the 
x=xb plane. Let the critical current density at O<x<xb be 
JC1 , and let the critical current density at x>xb be Jc2. We 
also assume that there is no additional surface pinning at 
x=xb.  We first consider the case in which Jcl =Jc2. In 
addition, let the external field first increase, and let there be 
no frozen vortices. At first the field penetrates precisely as in 
the case of a homogeneous half-space with the critical cur- 
rent JC1. At a certain value of the external field the penetra- 
tion depth b becomes equal to xb . When the field increases 
further, the vortices found on the distribution front are now 
in a region of weaker pinning. On the other hand, if the 
vortex density n does not have 8-function features, the Lor- 
entz force is continuous and has a characteristic spatial scale 
-A. Because the Lorentz force to the left of the point xb 
equals adc1 Ic, it is also close to @ d C 1  IC immediately to 
the right of xb at a distance much smaller than A. Here the 
Lorentz force cannot be balanced by the pinning force 
Pc2 = @ d C 2  1 c because of the condition J, > Jc2. The near- 
est point at which an equilibrium position is possible is lo- 
cated at a finite (- A) distance from xb . Mathematically this 
is manifested in the fact that it is impossible to construct a 
solution of Eqs. (15) and (5) which would satisfy the field 
and current continuity conditions without introducing a 
vortex-free region. The thickness of the vortex-free region 
lb is implicitly assigned by the expression 

We stress that the physical reason for the appearance of 
a vortex-free region near the surface when the Bean- 
Livingston barrier is taken into account is the same, since the 
Bean-Livingston barrier is associated with strong vortex 
pinning on an ideal flat surface. 

Let us now consider the case Jcl< Jc2. Similarly, when 
b<xb holds, penetration takes place precisely as in the case 
of a homogeneous half-space with a critical current JC1. 
When the external field increases further, the penetration of 
the field occurs in a totally different manner than in the case 
of JC1 > Jc2. Vortices do not penetrate the region x>xb until 
the magnetic force exceeds the pinning force 
Pcz = adc2 lc. A macr~~c~pica l ly  large number of vortices 
accumulates near xb. Mathematically this means that it is 
impossible to construct a solution of Eqs. (15) and (5) with- 
out a current-density discontinuity, which results in the ap- 
pearance of a 8-function feature on the vortex density at 
X =  xb . The expression for the vortex density in the vicinity 
of the point xb has the form 

where nmg(x) is a term which does not have a singularity at 
xb. The presence of such singularity means that vortices 
accumulate in a region whose thickness is smaller than the 
averaging scale a. This does not contradict the microscopic 
picture. In fact, when the jump in the critical current density 
Jc2-Jcl is smaller than the depairing current cH,l2~A, the 
vortex density in this region is less than the maximum per- 
missible value HC2 lao, at which superconductivity van- 
ishes. 

5. CRITICAL STATE IN SMALL SUPERCONDUCTING 
PARTICLES 

Here we would like to discuss the experiment in Ref. 20, 
which, in our opinion, can be described only when the non- 
local effects are taken into account. 

In that experiment the isothermal remanent magnetiza- 
tion MR was studied as a function of the magnetic field 
Ho,  which was first applied to the superconductor and then 
removed. Figure 4 presents experimental plots of MR(HO) 
for small superconducting particles of various diameters d. 
The data are taken from Ref. 20, where the details of the 
experiment were described. Crushed samples of a supercon- 
ducting Y-Ba-Cu-0 ceramic were divided into the follow- 
ing groups by size: 10-60 pm, 60-75 pm, 100-130 pm, 
130-260 pm, and >260 pm. Here we wish to restrict our- 
selves to consideration of the region of weak magnetic fields 
below the field for penetration into the granules. In this case 
the ceramic can be described as an effective Josephson me- 
dium. From the mathematical standpoint such a medium is 
identical (if we apply the continuous limit) to a homogenous 
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MtR, normalized units 

FIG. 4. Experimental field dependence of M, on H, in the weak-field m g e  
(0-7 Oe) for samples 1-5, which consist of ceramic particles measuring 
>260 pm, 130-260 pm. 100-130 pm, 60-75 pm, and 10-60 pm, re- 
spectively. The data were taken from Ref. 20. 

type-11 superconductor (Ref. 22;  see also Ref. 23, where a 
theory which is valid for arbitrary temperatures was de- 
vised). The main difference is that the effective penetration 
depth AJ is considerably greater than the London depth A in 
the granules. For this reason, the lower critical field H:, is 
small, and the magnetic field penetrates the ceramic in the 
form of hypervortices, whose diameter is much greater than 
the diameter of the granules. Bearing in mind everything 
stated above, we shall henceforth speak in terms of homoge- 
neous hard superconductors in this section, and we shall use 
S to denote the effective penetration depth AJ , H c l  to denote 
the field H:, , etc. Thus, the notations adopted coincide with 
those used in Ref. 20.  

As was noted in Ref. 20 ,  the experimental plots pre- 
sented in Fig. 4  cannot be explained with the traditional 
critical-state model. For example, in the Bean model1 (the 
local model with J c =  const) the expression for the remanent 
magnetization of a plate of thickness d  

has the form 

H: - for H o < H p ,  
4HP 

Hp H: H,-  - - - for H p < H o < 2 H p ,  
2  4 H ,  

for H o > 2 H p ,  

(33) 

where H p =  ( 2 r l c ) J c d  is the penetration field. The value of 
the remanent magnetization M m  is inversely proportional to 
d  in weak fields Ho<Hp and is directly proportional to d  in 
strong fields H o > 2 H p .  This results in crossing of the plots 
of M m  for different values of d .  In the experiment in Ref. 2 0  
this is true only for sufficiently large superconducting par- 

ticles with diameters d > 2 6 0  p m  (see Fig. 4). For smaller 
particles MIR increases with increasing d  over the entire 
range of fields. 

To account for the anomaly pointed out, Blinov et al." 
advanced an hypothesis that there is a vortex-free region near 
the surface, which forms when the external field decreases to 
zero. As was discussed above, a vortex-free region appears, 
if there is a difference between the external field Ho and the 
magnetic induction Bo within the superconductor near the 
boundary. For example, when the Bean-Livingston barrier is 
considered, this situation is realized when the external field 
(24)  increases. When the external field decreases, we have 
Bo= H o ,  which corresponds to the absence of a vortex-free 
region in fields HS-Hcl . It was postulated in Ref. 2 0  that a 
vortex-free region appears for H o - H c l  due to the difference 
between the field strength H  and the magnetic induction B .  
The thickness of the vortex-free region satisfies xf<  S; there- 
fore, a nonlocal treatment is necessary. The local critical- 
state model was used in Ref. 20.  For this reason, the vortex- 
free region in Ref. 20 was introduced as the region in which 
the magnetic induction B  equals zero and the field strength 
H  satisfies the London equation. These two conditions con- 
tradict the fact that H  is the thermodynamic field and 
H ( B )  is a known function. This contradiction does not arise 
in the nonlocal model, since the vortex-free region is now 
determined by the condition n = 0 ,  and B  satisfies the aver- 
aged London equation in the vortex-free region. The field 
strength H ( B )  can now be found from thermodynamic rela- 
tions. 

In order for the presence of the vortex-free region to 
have an effect on the remanent magnetization, its thickness 
x f  must be comparable to the diameter of the superconduct- 
ing particle d .  The estimate x r 3 0  ,um was given in Ref. 
20 .  The thickness of the vortex-free region is xf<  S. There- 
fore, the effective lower critical field can be estimated: 
H c l <  Oe. Thus, the interpretation given in Ref. 20  is 
fairly sensitive to the accuracy with which the external field 
is zeroed. 

From our point of view, another interpretation of the 
experiment just described can be given. The only circum- 
stance which, in our opinion, must be taken into account 
systematically is the fact that the penetration depth S is com- 
parable to the diameter of the superconducting particles d .  
This parameter does not appear in the traditional formulation 
of the critical-state model; therefore, within it there cannot 
be any singularities of the magnetic moment for small super- 
conducting particles. On the other hand, for d  S S, it is ob- 
vious that a significant role must be played by the Meissner 
fields, which are likewise not taken into account in the Bean 
critical-state model. 

We use the nonlocal critical-state model consisting of 
(15) and (5) to calculate the remanent magnetic moment of a 
plate of thickness d  (- d / 2 < x <  d12). Here we shall neglect 
the Bean-Livingston barrier and the difference between B  
and H, i.e., we shall take into account the possible presence 
of vortex-free regions near the surface. This is done to dem- 
onstrate the main cause of the anomaly under discussion, i.e., 
the comparability of d  and 6. 

Let the external field H  first increase from zero to H o .  
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FIG. 5. Spatial distributions of the magnetic induction B ( x )  (left-hand col- 
umn) and the vortex density n(x)  (right-hand column): a) initial application 
of the extemal field H = H o ;  b) H=O, H,<Ho<2H,;  c) H=O,  
Ho>2Ha .  

For Ho< Ha = ( 4 d c )  jcS cosh(d/2S), vortices do not pen- 
etrate the plate. In this case the Meissner current density j, 
is less than jc everywhere in the plate. Only for Ho>HB do 
we have j, > j, near the surface. Now the force of the Meiss- 
ner currents acting on the first vortex generated at the surface 
exceeds PC,  and the vortex moves deeper into the supercon- 
ductor. An example of the distributions of B(x) and n(x) for 
this case is presented in Fig. 5a. In the center of the plate 
there is a region ( - xo<x<xo), where n = 0. The magnetic 
field is nonzero everywhere. 

Let the extemal field next decrease from Ho to zero. 
Two alternatives are possible here. For Ha<Ho<2Hs the 
distribution of the vortices in the plate remains unchanged 
when the external field is removed. The pinning force acting 
on the vortices near the boundary changes direction, but its 
amplitude does not yet reach the maximum value PC.  The 
magnetic induction varies here, since the Meissner compo- 
nent B,  varies. The distributions of B(x) and n(x) for this 
case are presented in Fig. 5b. When Ho>2Ha holds, a sur- 
face region (xl < 1x1 <d12) appears, in which the vortex den- 
sity is lower than in the case presented in Fig. 5a (see Fig. 
5c). The values of xo and xl are determined by the following 
equations: 

where dh = ~H~/4.rrj, .  
For the remanent magnetization MR we have the follow- 

ing expressions: 

FIG. 6. Theoretical plots of the dependence of M m  of a superconducting 
plate on Ho for various values of dl& The dimensionless quantities 
M'= cMm/16'rrZjC6 and H ~ = c H d 4 m j C 8  are plotted along the axes. 

( 0  for Ho<Ha, 

M ~ =  { for H6<H0<2Ha, (35) 

( for Ho>2Ha. 

Here we have introduced the notations yo= dl2-xo and 
y l=d/2-xl. It is easy to see that in the limit S-+O these 
expressions coincide with the expressions obtained in the 
Bean model (33). An explicit analytical expression can also 
be obtained in the opposite limit dl S<c 1. We have 

( OHo<Ha, 

4mMIR= 
for Hd<Ho<2Ha, 

[ t H p ( l  - ) for H0>2Ha. 

Plots of the theoretical field dependence of MR(HO) are 
presented in Fig. 6. In strong fields the dependence of the 
remanent magnetization on the diameter of the superconduc- 
tor d is identical: MR= Hp18.rr. The situation changes radi- 
cally at small Ho. At a certain fixed value of Ho the rema- 
nent magnetization increases with decreasing d,  if d% S, and 
it decreases, if d 9  S. A feature of just this kind is seen on the 
experimental curves presented in Fig. 4. Physically this is 
because the Meissner magnetic fields, which do not contrib- 
ute to the remanent magnetization, create a considerable part 
of the magnetic moment when d e  6. 

Thus, the experiment in Ref. 20 has a natural qualitative 
interpretation within the nonlocal critical-state model. A 
quantitative comparison with experiment requires consider- 
ation of the factors which were discussed in Ref. 20, as well 
as the geometric shape of the particles etc. The following 
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critical experiment can be proposed to distinguish between 
the effects associated with the vortex-free region and the 
comparability of d and 8. When the remanent magnetization 
is measured, the external field must be lowered to a certain 
small finite value H * -  1 0 e S H c I ,  rather than removed 
completely. In this case our proposed interpretation remains 
practically unchanged, and there should be no vortex-free 
region. 

6. CONCLUSIONS 

The critical-state model is a fairly rough approximation. 
In particular, it is unsuitable for describing numerous phe- 
nomena in systems whose characteristic dimensions are com- 
mensurate with the London penetration depth A. In this case 
the nonlocal effects must be taken into account. 

The behavior of the distributions of the magnetic induc- 
tion B and the vortex density n in the bulk of a homogeneous 
superconductor was discussed in detail in Ref. 5. Here we 
focused our main attention on the boundary effects. The non- 
local critical-state model must then be used, since a new 
characteristic scale, which is comparable to A,  i.e., the thick- 
ness of the vortex-free region, appears. Correct consideration 
of the vortex-free region is possible only in the nonlocal 
critical-state model, since the vortex density n and the mag- 
netic induction B, which are related in this case not by the 
simple local relation B = nQo, but by the more general non- 
local equation (5), must now be treated separately. 

It was shown in this work that a vortex-free region ap- 
pears when the Bean-Livingston barrier is taken into ac- 
count or, in a more general case, when there is a jump in the 
critical current density. Physically the vortex-free region 
arises because a vortex which has been pinned at a certain 
point xb  on the boundary of a region with a strong critical 
current and then enters a region with a weak current has its 
nearest equilibrium point at a finite distance (-A) from 
x b .  Mathematically this is shown by the impossibility of 
constructing a solution of Eqs. (15) and (5) which would 
satisfy the field and current continuity conditions without 
introducing a vortex-free region. 

Experimental measurements" of the remanent magneti- 
zation in ceramic particles whose dimensions are comparable 
to the effective penetration depth were discussed in this pa- 
per. These experimental results cannot be described within 
the traditional critical-state model. It was shown that this is 
because the finite value of the London penetration depth is 
usually not taken into account in the critical-state model. 
When this factor is taken into account, it becomes necessary 
to use the nonlocal critical-state model, which self- 
consistently describes the experimental results. The calcu- 

lated theoretical plots of the remanent magnetization repro- 
duce all the features of the experimental plots. The anomaly 
discussed arises physically because in small superconducting 
particles a considerable part of the magnetic moment is cre- 
ated by the Meissner magnetic fields, which do not contrib- 
ute to the remanent magnetization. 

The model presented is valid in fields H c 1 4 H O Q H c 2 .  
Here the effects due to the difference between the thermody- 
namic field Hq and the magnetic induction B were disre- 
garded, which is justified in fields H S H c l .  A quantitative 
comparison with experimental also requires consideration of 
the factors that are significant for H-HcI , which were dis- 
cussed in Ref. 20, as well as the geometric shape of the 
superconducting particles, etc. 
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