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The elastic waves in a ferromagnet with zero-mean magnetostriction are considered with an 
arbitrary angle 8 between the wave vector k and the magnetic field H. The properties of the 
dispersion curves, the damping, and the polarization of the fundamental waves are studied. 
It is shown that the dispersion curves in the vicinity of the magnetoelastic resonances 
corresponding to transverse and longitudinal phonons have qualitatively different 
dependence on 8. The magnetoelastic analogs of the magneto-optical Faraday and Cotton-Mouton 
effects are studied. It is shown that the parameters characterizing the inhomogeneous 
magnetoelastic interaction can be determined, in principle, from the results of experimental 
observations of these effects. O 1996 American Institute of Physics. [S 1063-7761(96)02304-91 

1. INTRODUCTION 

A model of disorder-induced resonance crossing in a 
system of two scalar waves, one of which has a gapless 
dispersion law, while there is a gap in the spectrum of the 
other, was considered in a recent paper.1 In this model the 
parameter of the linear relationship between the waves was 
assumed to be a random function of the coordinates with a 
mean value equal to zero. It was found that the removal of 
the degeneracy in the vicinity of the point where the original 
dispersion curves cross in this model has several significant 
features not associated with the analogous phenomenon in 
homogeneous systems.2 One of the possible physical realiza- 
tions of this model is magnetoelastic resonance in amor- 
phous ferromagnets. It is known3 that some of these materi- 
als have a nearly zero value for the magnetoelastic constant 
averaged over the sample, which renders them a convenient 
object for an experimental investigation of the effects pre- 
dicted in Ref. 1. The interest in the investigation of the mag- 
netoelastic interaction in such materials is due to the need to 
develop methods for determining the values of the root- 
mean-square (rms) fluctuation and the correlation radius of 
the inhomogeneities in the magnetostriction parameter, 
which are the principal characteristics of the magnetoelastic 
properties of such materials. 

In Ref. 4 the magnetoelastic resonance in a ferromagnet 
with a random zero-mean magnetoelastic constant was inves- 
tigated for the simplest case of a wave propagating parallel to 
the equilibrium magnetization Mo. It was shown that in this 
case the equations describing the averaged dynamics of the 
elastic and spin subsystems basically reduce to the equations 
investigated in Ref. 1. Numerical evaluations demonstrated 
the fundamental possibility of using unordered ferromagnets 
to experimentally investigate the phenomenon of stochastic 
resonance crossing. It was also shown that the experimental 
investigation of the magnetic-field and frequency depen- 
dences of several parameters (the velocity of sound, damp- 
ing, etc.) can, in principle, make it possible to measure both 

the rms fluctuation and the correlation radius of the magne- 
tostriction parameter. 

A fundamental difference between coupled magnetoelas- 
tic waves and the simple model in Ref. 1 is their vector 
character. For this reason, apart from the investigation of the 
dispersion curves, the question of the polarization properties 
of these waves arises in this case. At lengths much less than 
the mean free path, the contribution of the fluctuation com- 
ponent to the polarization, which is described by the corre- 
sponding coherence matrix Ri j=  (u iu  j )  - (u i ) (u j ) ,  can be 
neglected, and the polarization properties can be described in 
this approximation using the polarization vectors of the mean 
amplitudes (u i ) .  

In the case of a wave propagating parallel to I&, which 
was considered in Ref. 4, these properties are trivial (the 
fundamental polarizations of the coherent component of the 
elastic waves are left- and right-circularly polarized waves, 
whose polarization states do not depend on the parameters of 
the material or the external conditions); therefore, a more 
general case, in which the wave propagates at an arbitrary 
angle 6 to must be considered to study them. The main 
difference between this situation and the case of 8= 0 is that 
now a longitudinal wave also participates in the interaction 
along with the transverse elastic wave. It is seen that in this 
case there are two types of resonance: one for the transverse 
phonons and the other for the longitudinal phonons. Just this 
circumstance renders the polarization properties of the waves 
in such a situation nontrivial. 

In this paper we shall investigate the special features of 
the dispersion curves of coherent elastic waves in the vicinity 
of each of these resonances and show that, in contrast to the 
case of a purely determined interaction, the behavior of these 
curves can be qualitatively different from one to another. 

In addition, the problem of the propagation of a mono- 
chromatic wave with a given frequency fl will be addressed 
in this paper. In contrast to the investigation of the dispersion 
laws of waves, where a wave vector characterizing different 
states of a coherent wave is assumed to be real, and the 
frequency obtained from the solution of the dispersion equa- 

739 JETP 82 (4), April 1996 1063-7761/96/040739-09$10.00 Q 1996 American Institute of Physics 739 



tion has an imaginary part, in the problem of the propagation 
of a traveling wave the frequency is a given real quantity, 
and the wave number k is complex. We shall investigate the 
dependence of the real and imaginary parts of k on and 
use the results obtained to analyze the evolution of the po- 
larization state of a wave incident on a medium. The analogs 
of the magneto-optical Faraday and Cotton-Mouton effects 
will be considered, and the influence of the longitudinal 
component of the elastic waves on these effects will be ana- 
lyzed. 

2. MODEL AND EQUATIONS OF MOTION 

Just as in Ref. 4, we consider an isotropic (with respect 
to the elastic properties) ferromagnet, all of whose variables, 
except the magnetoelastic parameter P(x), are assumed to be 
constant. Neglecting the magnetic-dipole interaction and the 
ponderomotive force, we write the energy density in the 
form 

where cw is the exchange parameter, H is the external mag- 
netic field, M is the magnetization, 
dijkr= d l  SijSkl+ d2(Sidjl+ Sirsjk) is the elastic modulus 
tensor, and uij is the strain tensor. We represent the magne- 
toelastic parameter in the following form: 

where (P) is the mean value of the magnetoelastic constant, 
which we henceforth set equal to zero, AP is the rms fluc- 
tuation, and p(x) is a centered normalized homogeneous ran- 
dom function, which is characterized by the correlation func- 
tion K(r): 

Just as in Ref. 4, we select the correlation function in the 
form 

K(r) =exp(- rk,), (4) 

where kc is the correlation wave number, which is inversely 
proportional to the correlation radius of the inhomogeneities 
of the magnetoelastic parameter P(x). 

The equation of motion for the components of the mag- 
netic moment and the elastic displacement vector have the 
form 

where 

g is the gyromagnetic ratio, and G is the density of the 
medium. 

We choose the coordinate system so that the z axis is 
parallel to H and Mo and the wave vector k lies in the xz 
plane (Fig. 1). Linearizing Eqs. (5) and expanding them in 

FIG. 1. Coordinate system for Eq. (6). 

plane waves a exp[i(at- k. x)], we obtain 

(a2-o:)u,-(o;-w:) sin 28+uz cos28 

= - i 5, sine&(m,), (6) 

( a 2 -  03)mx= ~ ~ [ i o , & ( q ~ u ~ + q ~ u ~ )  -n&(qyu, 

+4,uy)l, 

( a 2 -  03)my = ~ [ i o s & ( q y ~ z + q z ~ y )  +n&(qxuZ 

+q,ux)l, 

where 

[,= A P M ~ ~ I ~ ,  [,,= APMok12G, 

are the original dispersion laws of the transverse and longi- 
tudinal phonons and magnons, respectively, oo = gHo , 
wM= gMo , and 8 is the angle between k and H. 

As follows from Refs. 1 and 4, the system of equations 
(6) describes two types of excitations. One of them is char- 
acterized by nonzero values for the mean components of the 
elastic displacement vector (ui) # 0 and zero-mean values 
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for the transverse components of the magnetization 
(m,)=O. The other type is characterized by the opposite 
situation, in which (u i )  = 0 and (m,) # 0. This situation dif- 
fers significantly from the case of the resonant interaction of 
waves in a homogeneous medium, where mixed states hav- 
ing nonzero values for the amplitudes of each of the inter- 
acting waves appear. 

In this paper we restrict ourselves to considering only 
excitations with nonzero values for the mean elastic dis- 
placement amplitudes. The excitations considered arise as a 
result of the interaction of a coherent elastic wave with fluc- 
tuational (scattered) spin waves, as was discussed in detail in 
Refs. 1 and 4. The equations describing these excitations are 
obtained from (6) after eliminating the transverse compo- 
nents of the magnetization m and averaging, which we per- 
form, just as in Ref. 1, to the lowest nonvanishing order of 
perturbation theory. The applicability of such an approxima- 
tion to the description of the situation under consideration 
was discussed in Ref. 1. 

After the averaging we go over to a coordinate system 
which is more natural for describing elastic waves. For this 
purpose, we rotate the original coordinate system around the 
y axis so that the z' axis coincides with the direction of 
propagation of the wave k. In this coordinate system elastic 
displacement vectors with a zero z' component correspond 
to transverse waves, and vectors with zero x' and y' com- 
ponents correspond to longitudinal waves. Since this coordi- 
nate system will be used everywhere below, we shall omit 
the prime signs on the coordinate labels. 

As a result we obtain a system of equations containing 
the terms F- and F+ , which describe the interactions with 
resonant and nonresonant magnons, respectively: 

where S(q) is the Fourier transform of the correlation func- 
tion (3). It is seen that in the vicinity of the resonance 
F - % F + ; therefore, we neglect F + and omit the subscript in 
F- . 

As a result, the system of equations for the mean com- 
ponents of the elastic displacement vector U=(u) takes the 
form 

x cos 28 cos 8- ~ , l w ~ o : ~  cos 28 sin 2e= 0,  

+ ~ , i ~ o ~ o ~ ~  cos 28 sin 8= 0 ,  (8) 

UX[wMw:F cos 28 sin 28+ u ~ ~ ~ o ~ w : F  sin 28 cos 8 

- U , [ a 2 -  w;- loMw:F sin22 8]=0.  

Here 

In contrast to the case of 8=0, both the transverse and lon- 
gitudinal components of the elastic displacement vector now 
participate in the interaction. 

3. DISPERSION EQUATION AND EIGENVECTORS 

The dispersion equation following from (8) has the form 

The solution = or of this equation corresponds to one 
of the transverse branches not participating in the interaction. 
The remaining solutions of this equation are sought by the 
method described in Ref. 1, separately in the vicinity of the 
resonances at the frequencies of the transverse and longitu- 
dinal phonons. 

A correlation function of the form (4) yields the spectral 
density 

Calculating the integral in (9) with this function, we 
bring the expression in curly brackets into the form 

2 where K,= a w M k C .  
We rewrite (1 1) in the form of two equivalent equations: 

These equations can be rewritten as 

where we have introduced X t V l  and which are the effec- 
tive interaction and relaxation parameters of the transverse 
and longitudinal waves, respectively. 
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The essential point of the method for investigating such 
equations, which was described in Ref. 1, is that, in order to 
find the solution for a particular branch, the value of the 
unperturbed frequency of that branch is plugged into the 
equations for h and r. For example, to find the frequency 
corresponding to the coherent branch near the resonance at 
the transverse frequency, o, must be substituted into h, and 
I?, instead of Q. Thereafter Eqs. (13) cease to be equivalent 
and describe the dispersion curves in the vicinity of the 
transverse [for the interaction parameter A,(o,)] and longi- 
tudinal [Xl(wl)] resonances, respectively. 

In this case the parameters r,,l and A,,l, which describe 
the relaxation properties of the fluctuational magnons and the 
effective constant of their interaction with the transverse 
(longitudinal) phonons, are specified by the equations 

where w:' are the resonant frequencies for the transverse and 
longitudinal phonons, respectively. Thus, in this case, too, 
we arrive at the equations of the standard model considered 
in Refs. 1 and 4 with the one difference that here the inter- 
action parameter depends on the direction in which the wave 
propagates. Therefore, all the conclusions drawn in Refs. 1 
and 4 can simply be carried over to the case under consider- 
ation. 

The behavior of the dispersion curves and the damping 
in the vicinity of a resonance depends sensitively on the 
relationship between the interaction and relaxation param- 
eters. 

In the case X,,l<I',,l one of the solutions of Eq. (13) 
describes a weakly damped wave with a dispersion law 
which is slightly modified in comparison with the original 
law corresponding to longitudinal or transverse elastic 
waves. The second solution does not correspond to any 
propagating mode due to the strong damping in this case. In 
the opposite case of h,,l>T,,l the existence of two well de- 
fined solutions is possible in the vicinity of a resonance, 
whose dispersion curves are separated at the resonance point 
by a gap 

4 . 1  = m, (15) 

and for which the damping is the same and is equal to 
T,,~12. As the distance from the resonance point increases, 
the damping of one of the modes decreases, and the solution 
transforms into the corresponding original law, while the 
damping of the other mode increases, and it ultimately be- 
comes poorly defined. The vanishing of the damping for 
R >  wo in proportion to 4- is also noteworthy. 

When &ese results are applied to the case under consid- 
eration, the most important thing to note is the difference in 
the dependence of the effective interaction parameters X, and 
A, on the angle 8. At small angles XI decreases significantly, 
while h, remains practically unchanged. Therefore, at small 

8 the value of 1, must be smaller than r 1 ,  while A, can be 
greater than r,. In this situation there is only one slightly 
modified branch in the vicinity of the longitudinal resonance, 
while there can be two branches separated by a gap in the 
vicinity of the transverse resonance. When 8 increases, the 
value of hl becomes of order r 1 ,  and then a second solution 
corresponding to a propagating mode can appear in the vi- 
cinity of the longitudinal resonance. 

Let us now consider the polarizations of the elastic 
waves. 

The simplest polarization vector is that of a noninteract- 
ing wave with the dispersion law R =  wr : 

5uch an eigenvector corresponds to a transverse, ellipti- 
cally polarized wave with right-handed rotation. 

The polarization vectors for resonantly interacting waves 
can be written in the form 

cos 28(R2- 0;) 

(17) 
sin 28(R2 - w:) 

where Q must be replaced by the corresponding solution of 
the dispersion equation. 

Since the longitudinal component of the elastic displace- 
ment vector participates in the interaction, the polarization of 
the wave (except in the cases of 8 = 0  and 8= 71.12) differs 
from purely transverse or purely longitudinal polarization. 
For this reason, we shall henceforth refer to the wave which 
becomes transverse in the absence of an interaction as the 
quasitransverse wave and to a wave which becomes longitu- 
dinal at [= 0 as quasilongitudinal wave. 

Mention should be made here of a certain peculiarity 
stemming from the fact that in the case of an open gap in the 
vicinity of, say, the transverse resonance, a given value of 
k corresponds to two branches of the quasitransverse wave, 
viz., a coherent and a fluctuational branch, with different 
frequency values and thus with different polarization vectors 
[according to (17)l. Although the following analysis is valid 
for both branches, i.e., both the quasitransverse and the 
quasilongitudinal waves, to be specific we shall refer to the 
coherent branch of the quasitransverse wave. 

After representing the corresponding solution of the dis- 
persion equation in the form R = w + it (the expressions for 
w and 6 were presented in Ref. 4), we write the time depen- 
dence of the mean components of the elastic displacement 
vector: 

U,= cos 28  cos wt, 

U, = cos 8 sin wt, (18) 

2 sin 28 
U ,  = ,[wr(w- wr)cos wt- w( sin wt]. *:- 6'1 
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FIG. 2. Orientation of the plane of the polarization ellipse of a fundamental 
wave in space. 

In writing (18) we have discarded the exponential mul- 
tiplier common to all three components, which describes 
damping, but does not influence the polarization properties. 

The vector (18) has the same normalization as (16) and 
is orthogonal to within terms which are quadratic in 
min(5, rt/or). The significant difference in (18) is the pres- 
ence of a longitudinal component, which determines all the 
features of the polarization properties of the resonantly inter- 
acting wave. 

The transformation of the coordinates of the ellipse de- 
scribed by (18) can easily be brought into canonical form. If 
we apply the rotations Ry(41)Rx(42)Rz(q53), where 
Ri(+j) is a rotation around the axis i through the angle 
#j, to (18), we obtain the vector 

Ux= a cos o t ,  

uy = b sin o t ,  (19) 

The angles 41 and cP2 specify the position in space of 
the plane of the polarization ellipse: is the angle between 
the projection of the normal n to the plane of the polarization 
ellipse onto the (k,H) plane and the direction of wave propa- 
gation k, and 42 is the angle between n and the (k,H) plane 
(Fig. 2). The angle 43 assigns the orientation of the polar- 
ization ellipse in that plane. 

In the general case the expressions for c$~ and 42 can be 
represented in the form 

tan 4 , = 2  
015 

tan 28, '4 - w : 

Since the expression for 43 is fairly involved, we shall not 
present it. 

As is seen from (20), the dependence of 4, on k actually 
retraces the dependence of the damping 5 normalized to 
o, , repeating all the features of its behavior in the case of an 
open or closed gap in the spectrum of the quasitransverse 
elastic wave. 

For its part, 42 mimics the dependence on k of a modi- 
fication of the dispersion law for o- o, normalized to o,. 
This accounts for the feature in the behavior of 42 observed 
upon passage through the resonance. If we move along the 
coherent branch, 42 changes sign abruptly in the case of an 
open gap or continuously in the opposite case. 

We note that in the absence of damping (for o < o o ) ,  
+I = 0 holds and 42 is always small, so that the plane of the 
polarization ellipse practically coincides with the xy plane in 
this case. 

When 8 is so far from 7~14 that 
or( tan 28/(o: - o:)4 1 holds, the following approximate 
expressions are valid for q51 and 42: 

41-2 
6'15 tan 28, 

6': - 0; 

( 0 -  w,)ot 
42-4 sin 8. 4- "P 
It is seen that in this case the angles 41 and 42 are 

small, so that the polarization ellipse lies in a plane deviating 
slightly from the xy plane, which is perpendicular to the 
wave vector k. 

For 8 so close to 7~14 that o,5 tan 28/(o: - w ; ) ~  I, the 
orientation of the polarization ellipse is described by differ- 
ent expressions: 

Ir 
41-y- - cot 20, 

wt5 

(w- ot)cos 20  - ( cos 8 . 
Here 4, is close to n/2, and c $ ~  remains small (because of 
the small value of cos 28). In this case the polarization el- 
lipse can be assumed in an approximation to be oriented in 
the zy plane, which is parallel to k. This is because the 
x-component of the elastic displacement vector vanishes at 
e= d 4 .  

The characteristic dependence of on 8 is represented 
in the form of a peak with half-width E,  which is determined 
by the damping: 

Apart from the orientation, the ratio 7 between the semi- 
axes of the polarization ellipse is an important characteristic. 
The dependence of 77 on the wave number is caused only by 
the longitudinal component, since the amplitude of the trans- 
verse modes does not depend on k. Therefore, we present the 
expression for the ratio between the semiaxes for 8= 7~14, 
for which the dependence on k is strongest: 
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In this case the polarization ellipse is oriented in a plane 
parallel to k. 

We also note, first, that in the absence of damping 
( o <  o o ) ,  the ratio of the semiaxes vanishes, i.e., in this case 
(for O= d 4 )  the wave is linearly polarized. Second, 7, like 
4,, retraces the dependence on k and H of the damping 6 
normalized to ot . 

4. WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM 

Let a plane elastic wave, which has an assigned polar- 
ization state in the z = 0 plane, propagate along the z axis at 
an angle 0 to the magnetic field in a inhomogeneous me- 
dium. 

As we have already noted, this situation differs from the 
case already examined in that when the dispersion equation 
(9) is solved, the frequency should be considered real and the 
wave should be considered complex. 

In the vicinity of the transverse and longitudinal reso- 
nances for the quasitransverse and quasilongitudinal waves, 
it is more convenient to write this equation in the form 

where 

To be specific, we analyze this equation in the vicinity of 
the transverse resonance only. 

From the exact solution of (25) 

it is seen that the dependence of k ( a )  consists of two 
branches, which can either cross or anticross. The condition 
for the absence of anticrossing, which corresponds, at reso- 
nance, to equality of the real part of the root in (26) to zero, 
can be written in the form 

where r= t(cos2 0+cos2 20). This condition differs signifi- 
cantly from the analogous condition obtained above from the 
analysis of the inverse dependence of O ( k ) .  A simple nu- 
merical evaluation reveals that anticrossing of the branches 
does not occur for real materials; therefore, perturbation 
theory can be used to find k ( n ) .  Because of the absence of 
anticrossing, one of the branches is always the coherent 
branch, and the other is the fluctuational branch. The depen- 
dence of the real and imaginary parts of the coherent branch 
on the frequency in first-order perturbation theory has the 
following form: 

FIG. 3. Dependence of k ( o )  for the coherent branch in the case of the 
existence of "anomalous" dispersion (solid lime). The original dispersion 
curves (dotted limes) and the curves corresponding to k,=O (dashed lines) 
are also shown. 

where kt and I ,  are the wave vector and the mean free path, 
respectively. 

The fluctuational branch is poorly defined everywhere: 
its mean free path is of the order of the correlation radius; 
therefore, we shall not examine it. 

The behavior of k ( n )  as a function of 5 and kc differs 
qualitatively from the behavior of the dispersion curves, i.e., 
a ( k )  (as is seen from a comparison of Fig. 3 with the cor- 
responding figures in Ref. 4). First, as we have already 
noted, the condition for the appearance of anticrossing of the 
solutions of k(Q)  is far more rigid than the condition for the 
dispersion curves, and, second, under certain conditions a 
segment of "anomalous" dispersion, where the sign of the 
derivative changes on the plot of k(Ck), appears on the co- 
herent branch. The condition for the appearance of this 
"anomalous'' dispersion can be obtained, if we find the val- 
ues of 5 and kc at which the inequality (dkldfl) ln, ,r  S 0 
holds. 

It is interesting to note that the condition 

coincides in order of magnitude with the condition for anti- 
crossing of the dispersion curves in re~onance.~ We note that 
k ( a )  is also described well by the solution (28) obtained by 
perturbation theory when there is "anomalous" dispersion. 

Let us now consider the damping of the wave. When 
a<oo holds, the wave propagates without damping in the 
approximation under consideration, and when > wo , holds 
the mean free path is given by the expression 

744 JETP 82 (4), April 1996 Deich et a/. 744 



The dependence of the reciprocal of the mean free path 
on the frequency has a pronounced resonant character and 
coincides qualitatively with the wave-vector dependence of 
the imaginary part of the frequency of the coherent eigen- 
modes in the case of an open gap on the dispersion  curve^.^ 
At the same time, the following circumstance must be noted. 
When there is "anomalous" dispersion in the vicinity of the 
resonance at the frequencies @,&A, where A coincides with 
the magnitude of the gap between the dispersion curves in 
resonance (15), the damping is given by the expression 

which does not depend on the magnitude of the interaction. 
This expression coincides with the estimate of the mean free 
path obtained in Ref. 1 for states in the vicinity of a reso- 
nance when there is gap on the dispersion curve of the co- 
herent elastic waves. In this sense, it can be stated that the 
appearance of the "anomalous" dispersion on k ( 0 )  corre- 
sponds to the case of an open gap on Q(k). 

Let us proceed to an examination of the evolution of the 
polarization state. A wave with polarization assigned at the 
origin of coordinates is the result of the superposition of all 
three fundamental waves with the specific weights deter- 
mined by (16) and (17), where now, in contrast to Sec. 3, 
Cl is assumed to be assigned, and k must be replaced by the 
solutions of (25) corresponding to a particular branch. 

Since the expressions for the general case of the initial 
polarization are cumbersome, we shall consider the special 
cases of a linearly polarized wave (with a polarization plane 
oriented parallel to the x axis at z = 0) , a circularly polarized 
wave, and a longitudinally polarized wave. 

In the case of a wave which is linearly polarized from 
the onset, the expressions for the mean components of the 
elastic displacement vector have the following form: 

U,= i cos8 cos 20(e- '~r~-  ehikzZ), (32) 

v: ~ k , + l ; '  
Uz= sin 28 cos 2 8 7 2  (e-ikzz-e-iksz), 

V l - V t  qr 

where k2= kt- il;' and k3= kl- if;' are the wave vectors 
of the quasitransverse and quasilongitudinal waves, respec- 
tively, and Ak, is a modification of the corresponding primal 
dispersion law. In writing (32) and below we omit the mul- 
tiplier e'"', which is common to all the components. Also, 
U, and U ,  represent the transverse component of the wave, 
and Uz represents the longitudinal component. 

The wave is elliptically polarized in a plane perpendicu- 
lar to k. The corresponding ellipse is characterized by an 
angle + describing its orientation relative to the x axis and 
by the ratio between the semiaxes 7. To determine them it is 
convenient to introduce, according to Ref. 5, the polarization 
coefficient p: 

Using it, we can write the following expressions for the 
characteristics of the ellipse: 

2IPl 
tan 2 4 =  -2 cos 8, 

I~ l ' 2 - t an~4  (34) 
1 IPl 7*=I-lpl' tan2+. 

At small distances the orientation of the ellipse varies in 
accordance with the usual law for the Faraday effect: 

cos 8 cos 2 8  
'= cos2 8+ cos2 2 8 A 

As is seen from (35), the specific Faraday rotation is 
determined by the modification Ak, of the primal dispersion 
law k = Rlo, ; therefore, the observation of this effect can, in 
principle, enable us to measure this modification. At the 
sufficiently low frequencies 0 C  wo the dependence of the 
wave number of the wave interacting with the magnetic sub- 
system remains nearly linear with, however, a renormalized 
velocity c, which depends on the magnetic field H. The 
magnitude of this renormalization c- v, is given by the ex- 
pression obtained in Ref. 4 for the case of B=0 following 
replacement of the interaction parameter 5 by the angle- 
dependent analog 

An experimental investigation of the Faraday effect 
makes it possible, in principle, to measure c- v, and its 
dependence on the magnetic field, which, as was pointed out 
in Ref. 4, makes it possible, in turn, to determine both the 
rms fluctuation and the correlation radius of the inhomoge- 
neities of the magnetostriction parameter. 

Because of the damping of the interacting component, 
the linear transverse component is transformed into an ellip- 
tic component with a ratio between its semiaxes 

cos 8 cos 2 8  
"= cos2 8+cosZ 281;1z' (36) 

At large distances the interacting components (including 
the longitudinal component) undergo exponentially rapid 
damping, and the polarization consequently coincides with 
the polarization of the noninteracting component described 
by (16). 

It should, however, be noted that in this case a signifi- 
cant role is played by the fluctuational component of the 
coherence matrix, which we have neglected in the present 
work. Therefore, the noninteracting component with the po- 
larization (16) will propagate superposed on this fluctua- 
tional component. 

While the polarization properties of the transverse com- 
ponents of the wave have the standard character for ordinary 
magneto-optics, the fact that an elastic wave has a longitudi- 
nal component, for which there is no analog in magneto- 
optics, produces some new effects. 

At distances much smaller than the mean free paths of 
the quasilongitudinal and quasitransverse waves the expres- 
sion for the real part Uz can be rewritten in the form 
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FIG. 4. Frequency dependence of h, which determines the ellipticity (40) 
and the amplitude of the longitudinal component (38) when a transverse 
wave propagates. 'Ihis dependence has a qualitatively similar form for both 
normal and "anomalous" dispersion. 

where tan I,%=-(l,Ak,)-' (we have omitted the insignificant 
angular multipliers). 

Thus, the longitudinal component propagates in this case 
with a velocity equal to the average of the velocities of the 
quasitransverse and quasilongitudinal components, and its 
phase is shifted relative to the phase of the transverse com- 
ponents by #, which is determined by the modification of 
k and the damping of the transverse waves. Beyond the reso- 
nance point, at which Ak,= 0 holds, the phase shift # varies 
abruptly by IT. 

The behavior of the amplitude of the longitudinal com- 
ponent, which exhibits a peculiar interference effect, is more 
interesting. As the coordinate z varies, this amplitude under- 
goes oscillations with a spatial period L= 1~1(k,- kl), i.e, at 
certain distances the wave again becomes purely transverse, 
but, for the reasons stated above, it has nonlinear polariza- 
tion. The maximum value, which it attains at 
z,= ~ ( 2 n  + 1)/2L, equals 

The characteristic dependence of h = J-lk, on 
o in the vicinity of the magnetoelastic resonance is presented 
in Fig. 4. 

The resultant polarization of the wave is elliptical at a 
given z. The orientation of the polarization ellipse is speci- 
fied by the angles 42, and 43 (see Sec. 3), which de- 
pend in a complex manner on z, but since 4, and 42 are 
small (due to the smallness of the longitudinal component), 
qualitatively the behavior of the polarization ellipse is as 
follows: as z varies, the ellipse rotates around the direction of 
wave propagation, and, at the same time, it tilts itself around 
an axis which is perpendicular to k and turns together with 
the transverse component. We note that the rates of rotation 
of the ellipse and variation of its incline are not commensu- 
rate. 

In the case of a wave which is circularly polarized at 
z = 0, the expressions for the mean components of the elastic 
displacement vector have the form 

U,= cos 8(cos 8+ cos 28)e-'qtz+ cos 26(cos 6 

- cos 28)e-ik2z, 

U,=i cos 28(cos 8+cos 28)e-iqrz-i cos 8(cos 8 

U,= 2 sin 8 cos 28(cos 2 8  

v: Ak,+il;' 
- cos 8) -2 (,-ik2z-,-ik3z) 

vl-vt qr 

As we see, the longitudinal component behaves precisely 
as in the preceding case. 

The transverse component also has the form of an el- 
lipse, but in this case its characteristics depend differently on 
z. The corresponding expressions contain complicated terms 
which depend on 8; therefore, we present them only for the 
case of 8= d 2 .  The variation of the ellipticity is confined to 
the deviation from circular polarization 

and is determined by the same coefficient as is the amplitude 
of the longitudinal modes in (38). 

We note that although the variation of the ellipticity is 
associated both with the existence of damping and with a 
velocity difference, nevertheless, as is seen from Fig. 4, the 
ellipticity varies most rapidly at resonance, where the veloc- 
ity difference equals zero because of the crossing of the dis- 
persion curves of the transverse and quasitransverse waves. 
However, far from resonance, where 1; ' is small, the main 
role is played by Ak,, while in the vicinity of the resonance 
Ak, is small and the resonant character of ~(fl) is specified 
by the corresponding dependence of the damping. 

Although the transverse component has the form of a 
circle with an undetermined orientation at z = 0, as the wave 
propagates the ratio between the semiaxes varies, and the 
angle of orientation is then given by the expression 

exp( - zll,) 
tan 2 4 =  - 2 sin Ak,z. 

1 - exp( - 2211,) 

A wave which is longitudinal at z = 0  has the opposite 
type of behavior in a certain sense. The mean components of 
the elastic displacement vector for it have the following de- 
pendence on position: 

cos 28 v: ~k l+ i l ; '  
U,= 2- 7 (e-ik2z-e-ik3z 

sin28 v, 91 ) 9 
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The longitudinal component has the form of a wave 
which propagates with a velocity v l  and is damped in pro- 
portion to exp(-211,) . 

The transverse component has the form of an ellipse 
with a ratio between its semiaxes equal to cos 6 Icos 26 and a 
major semiaxis oriented parallel to the y axis. 

Now the amplitude of the transverse modes (for 
l;'4kr and l;'4kr) is 

d W 2 '  k - k  
ux- 91 sin (yz) , 

i.e., it exhibits an interference effect similar to (38), which is 
also caused by the difference between the velocities of the 
quasitransverse and quasilongitudinal waves. The resultant 
polarization has the form of an ellipse with an orientation 
and parameters which depend in a complicated manner on 
z, but in view of the small magnitude (at short distances) of 
the transverse component, qualitatively the polarization is 
longitudinal with some tilting around the direction of wave 
propagation. 

5. CONCLUSIONS 

The properties of elastic waves in a ferromagnet with a 
random zero-mean magnetostriction parameter have been 
considered in this paper for an arbitrary angle 8 between the 
wave vector k and the applied magnetic field. The presence 
of two types of resonance points, which correspond to cross- 
ing of the underlying dispersion curves of the transverse and 
longitudinal elastic waves with the dispersion curve of the 
spin waves, is new in comparison with the case of 8=0 
considered in Ref. 4. 

We analyzed the special features of the behavior of the 
modified dispersion curves in the vicinity of the longitudinal 
and transverse resonances and showed that these curves be- 
have in qualitatively different manners as the angle 6J varies. 
If the parameters of the material permit the appearance of a 
gap on the dispersion curve and two well defined branches of 
coherent transverse elastic modes for 8=0, the dispersion 
curve maintains the same form when 8 # 0. Conversely, the 
gap on the dispersion curve of the longitudinal waves for 6 
close to zero and 1~12 is always "closed," and its appearance 
is possible only for 6 close to ~ 1 4 .  

For 8 # 0 the question of the polarization properties of 
elastic waves in such a medium also becomes nontrivial. We 
analyzed two aspects of this problem (with neglect of the 
functional contribution to the polarization density matrix, 
which is permissible at distances much smaller than the 
mean free path). First, we investigated the fundamental po- 
larization states of the coherent (averaged) elastic waves with 
an assigned wave vector k and a complex frequency R ob- 
tained from the solution of the dispersion equation, and, sec- 

ond, we investigated the evolution of a given initial polariza- 
tion state as a wave with a given (real) frequency R 
propagates in a layer of the medium under consideration. 
Here the corresponding wave vector is determined from the 
dispersion equation and acquires an imaginary part, which 
determines the mean free path in the medium. Linear and 
circular transverse and longitudinal polarizations were con- 
sidered as the initial polarizations. The first two cases corre- 
spond to the classical Faraday and Cotton-Mouton effects 
known in magneto-optics. 

This formulation of the problem is of intereset because, 
as is well known in magneto-optics, polarization methods for 
measuring various effects are frequently far more sensitive 
than, for example, a direct investigation of dispersion curves, 
especially under the conditions of strong damping. There- 
fore, there is hope that polarization measurements of elastic 
waves in unordered ferromagnets with compensated magne- 
tostriction will make it possible to more reliably determine 
the modification of the dispersion laws and the damping co- 
efficients of elastic waves in such media. Such measurements 
are important because, as was noted in Ref. 4, knowledge of 
the magnetic-field and frequency dependences of these pa- 
rameters will enable us to determine the principal character- 
istics of the magnetostriction in such materials: the rms fluc- 
tuation and the correlation radius of the magnetostriction 
parameter. 

The relationship between the polarization and dispersion 
properties of coherent elastic waves has been established in 
the present work. We note that the presence of the longitu- 
dinal component resulted in an interesting modification of 
the Faraday and Cotton-Mouton effects: the polarization el- 
lipse not only exhibits the standard behavior for these effects 
in the plane transverse to the direction of wave propagation, 
but also performs small oscillations about that plane, whose 
period is determined by the difference between the velocities 
of the longitudinal and transverse waves and whose ampli- 
tude is determined by the mean free path and the modifica- 
tion of the dispersion law [see (38)l. 
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