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The morphological stability of a moving transformation front under the conditions of Joule 
heating is considered. The treatment is restricted to the geometrically simplest situation, i.e., two 
parallel electrodes and a planar front between them. Two situations are considered under 
these conditions: longitudinal steady motion of the front, in which the direction of motion is 
parallel to the direction of the applied electric field, and transverse motion, in which 
these two directions are mutually perpendicular. Both fixed-current regime and fixed-voltage 
regimes are considered in each of these geometries. Either steadily moving heat waves or two- 
phase periodic structures are realized, depending on the conditions. In a specific material 
with a fixed ratio between the conductivities of the low-temperature ( a l )  and high-temperature 
(a2) phases, the longitudinal wave geometry (ul>u2) or the transverse geometry 
(ul<uz) is morphologically stable. O 1996 American Institute of Physics. [S1063- 
776 1 (96)02 104-XI 

1. INTRODUCTION 

When a sample consisting of a material which undergoes 
a phase transformation is heated by an electric current, sev- 
eral phenomena, such as thermal waves, two-phase struc- 
tures, etc., can appear due to the difference between the con- 
ductivities of the phases and the amounts of Joule heat 
evolved in them. A review of such effects was given in Ref. 
1 in the case of the normal-metal-superconductor phase tran- 
sition. A review of the analogous effects observed in the 
macroscopic kinetics of chemical reactions accompanied by 
heat and mass transfer was given in Ref. 2. 

When an electric current passes, the uniform temperature 
of a sample is determined by the balance between the Joule 
heat evolved and the heat dissipated. This temperature differs 
for the different possible phases of the material due to the 
difference between their conductivities. This raises several 
questions. For example, which of the phases is stably real- 
ized under given conditions of Joule heating, how does the 
transition from one state to another occur, and under what 
conditions is the existence of two-phase structures possible? 
The transition from one state to another involves the forma- 
tion of nuclei of the new phase, their passage through the 
critical state, and their subsequent growth. The growth of 
these nuclei results from the motion of the thermal wave, 
which is simultaneously the phase-transformation wave. The 
motion of a planar thermal wave in a pure material was in- 
vestigated in Refs. 3-7, and its motion in an alloy was con- 
sidered in Ref. 7. Along with the homogeneous state of a 
sample, the existence of two-phase periodic structures is pos- 
sible under certain  condition^.^.^*^ The drift of such structures 
caused by the Peltier effect was considered in Ref. 4. The 
experimental possibilities of investigating phase transitions 

stimulated by Joule heating are quite broad. This is because 
the geometry of the samples and the electrodes can be varied, 
as well as because the experiment can be carried out under 
the conditions of a fixed current or a fixed voltage. The theo- 
retical aspects of the problem are accordingly diverse and 
complicated. 

In this paper we wish to consider the morphological sta- 
bility of a moving transformation front, i.e., the stability of 
the smooth form of the front toward perturbations. As far as 
we know, this problem has not been considered in the litera- 
ture in reference to phase transformations stimulated by 
Joule heating. We shall restrict ourselves to the geometri- 
cally simplest situation, i.e., two parallel electrodes and a 
planar front between them. Two situations will be considered 
under these conditions: longitudinal steady motion of the 
front [Fig. l(a)], in which the direction of motion is parallel 
to the direction of the applied electric field, and transverse 
motion [Fig. l(b)], in which these two directions are mutu- 
ally perpendicular. We shall consider both a fixed-current 
regime and a fixed-voltage regime in each of these geom- 
etries. 

2. FORMULATION OF THE PROBLEM 

In this paper we consider the steady motion and stability 
of a planar thermal wave which is simultaneously a phase 
boundary. The sample is a thin film cooled in an external 
medium with a temperature T,. It is heated by passing an 
electric current between the two parallel electrodes. In the 
simplest situations the planar phase boundary is assumed to 
be oriented parallel or perpendicularly to the current. For 
simplicity, the thermal characteristics of both phases are as- 
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FIG. 1. Planar thermal wave in a two-dimensional 
sample heated by an electric current: a) longitudinal 
motion; b) transverse motion. 

1 X ! X 

sumed to be identical. The phases have different conductivi- The thermal fields (in the coordinate system associated 
ties, which, for simplicity, we assume to be independent of with the moving transformation front) are described by the 
the temperature. equation 

The current density j is related to the electric field E by 
Ohm's law --= 1 dTi v dTi Qi 1 

v ~ T ~ +  - - +-- 
D at D a~ K ~ ( T I - T , ) ,  

j = u E =  -uVU, (1) 

where o is the conductivity and U is the electric potential, i =  1,2. (6) 
which satisfies the Laplace equation 

Here u is the steady-state velocity of the fiont; K is the 
V2u=0. (2) thermal conductivity; D = K / C  is the thermal diffusivity; c is 

We note that in writing the expression (1) for the current we 
have neglected the contribution to the current which is pro- 
portional to the temperature gradient and appears in a non- 
uniformly heated metal. This approximation is usually used1 
to simplify the problem and because the cross effects are 
small. 

The density of the Joule heat evolved is given by the 
relation 

The electric potential U and the normal component of the 
current j, are continuous on the phase boundary: 

and 

Here the subscripts 1 and 2 refer to the first and second 
phases, respectively, and n is the vector of a normal to the 
boundary. To be specific, we understand that phase 1 is the 
low-temperature phase, i.e., the phase which is thermody- 
namically stable at low temperatures (T< To) and metastable 
at high temperatures (T> To, where To is the equilibrium 
temperature of phases 1 and 2). 

the specific heat; h is a coefficient with the dimensions of 
length, which characterizes the rate of heat transfer between 
the sample and the surrounding medium. This heat transfer is 
assumed to be linear, i.e., proportional to the temperature 
difference between the sample and the medium. The Gibbs- 
Thomson condition holds on the phase boundary: 

Here K is the local curvature of the boundary, which we 
assume to be negative for a front bulging toward phase 2; 
y is the surface energy of the interface, which is assumed to 
be isotropic; L is the latent heat of the transformation of 
phase 2 into phase 1. In addition, a heat balance is main- 
tained on the interface, and with consideration of the Peltier 
effect the condition defining it has the form 

Here lI is the Peltier coefficient for the boundary between 
phases 1 and 2. The sign in front of the term with KI in (8) 
was chosen so that when a current passes from phase 1 to 
phase 2, i.e., when j,>O holds, Peltier heat is evolved for 

> 0 and is absorbed for Il< 0. 
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Below we shall consider the steady motion of a planar 
front and its stability in two situations: when the motion of 
the front is parallel to the current [longitudinal motion, Fig. 
l(a)] and when the motion of the front is perpendicular to the 
electric field (transverse motion, Fig. l(b).  

3. LONGITUDINAL MOTION OF THE THERMAL WAVE 

In the geometry described in Fig. l(a) the current density 
far from the interface in both phases is the same, j .  Also, the 
temperatures far from the front are determined by the bal- 
ance between the last two terms in Eq. (6),  which, with con- 
sideration of (3), gives 

T ~ = T , + ~ ~ ~ ~ I K V ~ ,  (9)  

In the case of a steadily moving front with velocity v ,  the 
distribution of the temperature TiPo which satisfies the steady- 
state equation (6) and the condition (7)  is described by the 
expressions 

T I . O ( ~ ) = T I + ( T O - T I )  exp (six), 

s 1 = ( V 2 +  l ) I n - v ,  (10) 

TzVo(x)=T2+(To-T2) exp ( - s ~ x ) ,  

Here and in what follows, all the lengths are measured in 
units of h,  and V = v h / W  is the dimensionless velocity. In 
deriving (10) and ( 1  1 )  we took into account that in the case 
of a planar front the current density j is constant across the 
sample. When the expressions (10) and ( 1  1 )  are substituted 
into the heat-balance condition (8),  we obtain the equation 
for the velocity V of the front: 

Here we have introduced the dimensionless temperature 
drops 

A l = ( T o -  Tl)cIL,  A2=(T2-  To)clL (13) 

and the dimensionless Peltier heat 

P = n h j l L D .  (14) 

Since AI and A2 depend on j2 [see (9)], the rate at which 
V increases without consideration of the Peltier effect does 
not depend on j .  Consideration of the Peltier effect intro- 
duces a dependence of the velocity on the direction in which 
the current flows. The situation in which each of the phases 
in the thermal wave is in the temperature range where it is 
thermodynamically stable, i.e., in which T I  < To< T 2 ,  is 
most stable. For the longitudinal motion of the thermal wave 
under consideration, this is possible only for al>a2 
( T I  < T 2 )  and for currents such that 

a,< j 2 h 2 / ~ ( ~ o - ~ c ) < a , .  

The reverse situation, T I  > To> T2 is most unstable in the 
thermodynamic sense. The investigation of the morphologi- 
cal stability, to which we now proceed, also demonstrates the 
existence of instability for al < a2 when T I  > T 2 .  

To investigate the morphological stability of the steady- 
state solution, we represent the shape of the front in the form 

We recall that all the lengths are measured in units of h,  and 
the dimensionless time r = ~ t l h ~ .  In (15) k is the wave num- 
ber, and R is the growth rate of the perturbation. In the linear 
approximation the curvature of the front is given by the ex- 
pression 

The potential field satisfying the Laplace equation (2) is rep- 
resented in the form 

From the linearized conditions (4) and (5) we find the 
constants A and A2: 

We substitute the fields (17) and (18) into the expression (3) 
for the Joule heat, Qi = U ~ ( V U ~ ) ~ .  After linearization with 
respect to 6 we have 

Representing the temperature field in the form 

T i ( x 9 ~  7 ) =  Ti,o+Fi(x)t(Y ,T) (22) 

and substituting (20)-(22) into Eq. (6), we obtain 

The solution of Eqs. (23) and (24) has the form 

where the coefficients B I  and B2 are still arbitrary in this 
stage, and C 1  and C 2  are found from the inhomogeneous 
equations (23) and (24). In Eqs. (25) and (26) 

q 1 = d V 2 + k 2 + R +  1 - V ,  

q 2 = J v 2 + k 2 + R + 1 + v .  (27) 

The solutions (25)-(27) are valid provided 1 + k2+ R>o.  
Otherwise, there is a continuous stable ( R < O )  spectrum. 
Next, we linearize Eqs. (7)  and (8),  and from the three equa- 
tions obtained we find B l ,  B 2 ,  and the equation for the 
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spectrum f l ( k ) .  In the linear approximation the quantities 
v, and j,, appearing in Eq. (8) have the form 

After some transformations we obtain the dispersion relation 
sought 

Here we have set a= ul / a 2 ,  and do= y ~ o c / ~ 2 h  is the di- 
mensionless capillary length. We recall that s l  and s2 are 
defined in Eqs. (10) and (1 l), A and A2 are defined in (1 3), 
q 1  and q 2  are defined in (27), and the velocity V is found 
from (12). 

In the case of small velocities, V 6  1, fl9 1, and not 
excessively large k ( I  kl V 9  1 ), the relation (30) is simplified 
significantly: 

In this limit ( V 6  1) the velocity is assigned by the expres- 
sion 

In this case, for ul>u2 (when a > l ,  T l < T 2 ,  and 
Al+A2=(T2-T l )c IL>O hold), all the terms on the right- 
hand side of Eq. (31) are negative (except for the term with 
P and the small term with V )  and thus correspond to mor- 
phological stability. At the same time, the influence of the 
Peltier effect on the morphological stability depends on the 
direction of the current. Thus, instability can appear due to 
the Peltier effect. This is easily seen from the behavior of 
f l  at small k: 

The condition f l>0  corresponds to instability. This a situa- 
tion arises at sufficiently small currents for one of the direc- 
tions of the current. We note that there is, in fact, no diver- 
gence when j=O holds, since the multiplier ( A l  + A,) in 
(33) is proportional to j2. When ul< u2 holds, instability 
appears at small k even in the absence of the Peltier effect. 
This is seen from Eq. (33), since in this case we have 

T 1  > T2 and, therefore, ( A  + A2)  < 0 .  When k increases, the 
spectrum (31) becomes stable for k> ko due to the stabilizing 
influence of the surface tension. We find ko from the condi- 
tion f l (ko)  = 0 without consideration of the Peltier effect: 

Thus, in the case of a longitudinal thermal wave, the greater 
conductivity of the low-temperature phase (ul>u2) pro- 
motes both thermodynamic stability (under which T 1 < T o  
and T2>To hold) and morphological stability of the phase 
boundary. 

In the fixed-current regime the thermal wave moves with 
a constant finite velocity, which depends on the current. At 
the same time, a two-phase periodic structure appears in the 
longitudinal geometry in the fixed-voltage regime. When the 
period of the structure is large enough to neglect the thermal 
interaction between the individual phase boundaries in the 
structure, the condition for steady motion, as can easily be 
shown, has the form 

Then the two-phase structure moves with a velocity propor- 
tional to the Peltier coefficient 

and in a direction which depends on the direction of the 
current. The condition (35) determines the fractions of the 
phases in the two-phase structure under consideration. In 
fact, when the potential difference U =  -El, where 1 is the 
length of the sample [Fig. l(a)], is fixed, the current j, on 
which A 1  and A2 depend, is determined by the fractions of 
the phases v2 and v1 = 1 - v 2 ,  according to the relation 

Taking into account this relation, as well as (9) and (13), 
from Eq. (35) we find the fraction v2 for a fixed value of 
E 

A two-phase periodic structure exists in the range of values 
of E in which O <  v2< 1. We recall that Eq. (37) is valid in 
the limit of large distances between the phase boundaries, 
which are significantly larger than the characteristic length 
h. The morphological stability of each of the fronts in this 
two-phase structure is determined by the results obtained 
above when the additional conditions (35) and (36) are sat- 
isfied. 

4. TRANSVERSE MOTION OF THE THERMAL WAVE 

When the geometry shown in Fig. l(b) is studied, the 
field E far from the interface in both phases is the same. The 
corresponding temperatures far from the front are specified 
by the relations 
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The steady-state velocity of an unperturbed planar thermal 
wave is determined precisely as in the preceding section [see 
Eq. (12)] with the one difference that there is no Peltier 
effect, since the current flows parallel to the front: 

2v=(Al-A2) JV2+1-v(A1+A2). (39) 

We shall not repeat the lengthy analysis of the stability, 
which is completely analogous to the analysis performed in 
the preceding section. We note only the following circum- 
stance. In the zeroth approximation, i.e., when the motion of 
the planar front is steady, the current j, through the interface 
is equal to zero. When this current is calculated in the linear 
approximation with respect to the perturbation we have 

Finally, the expression analogous to (30) for the spectrum in 
this case has the form 

and instead of (31), in the same approximation we have 

Here ail the notation is the same as in Sec. 3, except 

Comparing (41) and (42) with (30) and (31), respectively, we 
see a difference in the influence of the Peltier effect. In the 
case of a longitudinal wave this effect changed only the real 
part of R ,  signifying enhancement or weakening of the sta- 
bility. In the case of a transverse wave the Peltier effect 
causes the appearance of an imaginary contribution propor- 
tional to k in the spectrum R(k). This means that the per- 
turbation not only grows (in the case of instability) or decays 
(in the case of stability), but also moves parallel to the front 
with a velocity V ,  equal to 

As we have already noted, the stability or instability of a 
thermal wave is determined mainly by the sign of the quan- 
tity A + A2. For example, for small k it follows from (42) 
that 

Therefore, stability corresponds to 

( A ~ + A ~ ) = E ~ ~ ~ ( U ~ - U ~ ) ~ D L > O .  

In contrast to the case of a longitudinal wave, this situation is 
realized when ul < u2. Thus, in the case of a transverse 
wave, a smaller conductivity for the low-temperature phase 
( a l <  u2) promotes both the thermodynamic stability of the 
phases and the morphological stability of the phase bound- 
aries. In the opposite case ( a l >  u2), tendencies for both 
thermodynamic instability of the phases and morphological 
instability of the interface are displayed. 

In the fixed-voltage regime a transverse thermal wave 
undergoes steady motion with a finite velocity, which de- 
pends on the voltage [see (39)l. In the fixed-current regime a 
stationary periodic structure appears. The Peltier effect, 
which caused the two-phase structure to move in the longi- 
tudinal geometry, is not manifested here, since there is no 
current component normal to the phase boundary. In the case 
of a fixed current with a mean density j, the field intensity 
E is assigned by the expression 

The steady motion of the two-phase structure observed for 
sufficiently large distances between the fronts, which greatly 
exceed h, is specified, as before, by the condition (35) 
(A = A2). Then for the fraction of phase 2, v2, we find 

[[j2h2(u,+u2)]1R ] 
772' ~ K ( T ~ -  T,) 

- Ul (u2-u1)-I. (46) 

This two-phase structure exists in the range of values of j in 
which 0 <  v2< 1. 

5. CONCLUSIONS 

We have considered the morphological stability of a pla- 
nar front in longitudinal and transverse geometries both in 
the fixed-current regime and in the fixed-voltage regime. 

1. Longitudinal motion; fixed-current regime 
In this case there is a regime of steady motion of the 

thermal wave, and the temperature in each of the phases far 
from the wave front is higher, the smaller is its conductivity 
(TI < T2 when ul > u2). Such a planar front is stable when 
the conductivity of the low-temperature phase ul is greater 
than the conductivity of the high-temperature phase u2,  and 
for u l  < u2 it is accordingly unstable against perturbations 
with a wavelength exceeding a certain critical value. 

2. Longitudinal motion; fixed-voltage regime 
In this case there are solutions corresponding to drifting 

periodic structures in a certain range of applied voltages. The 
drift velocity is proportional to the Peltier coefficient, and the 
drift dict ion depends on the applied field intensity. The 
morphological stability was considered in the limit where the 
distances between the fronts in the two-phase structure is 
much greater than the thermal length h. As in case 1, the 
fronts are then stable for ul > u2 and unstable for ul < u2. 

3. Transverse motion; fixed-voltage regime 
In this case there is a regime in which the thermal wave 

moves at a constant rate, and the temperature in each of the 
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phases far from the wave front is higher, the greater is its 
conductivity (Tl<T2 when ul< u2). The planar front is 
stable for u, <uz and unstable for al>u2 in the long- 
wavelength part of the spectrum. The influence of the Peltier 
effect causes the perturbation not only to decay or grow (in 
the case of instability), but also to drift parallel to the front 
with a velocity proportional to the Peltier coefficient in a 
direction which depends on the direction of the applied field. 

4. Transverse motion; fixed-current regime 
In this case there are solutions corresponding to station- 

ary periodic structures in a definite range of current densities. 
The morphological stability of the individual phase bound- 
aries in this case is the same as in case 3, i.e., the boundaries 
are stable for ul < u2 and unstable for ul > u2. 

In a specific material with a fixed relationship between 
the conductivities of the low-temperature (a l )  and high- 
temperature (a2) phases, the longitudinal wave geometry 
(for ul>uz) or the transverse geometry (for ul<u2) is 
morphologically stable. 
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