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A method of statistical description of Brownian motion in a physical medium with fluctuating 
transport coefficients is proposed. Equations are obtained for the n-dimensional 
characteristic functions that describe the momentum fluctuations of a Brownian particle, and it is 
shown that in the first approximation the fluctuations of the friction coefficient can be taken 
into account by constructing and solving an equation for a two-dimensional distribution function. 
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1. INTRODUCTION 

The problem of creating an adequate theory of Brownian 
motion is directly related to the problem of constructing a 
description that takes into account the statistical characteris- 
tics of the real physical processes acting on a Brownian par- 
ticle. The causes of anomalous behavior in Brownian motion 
may include regular and irregular inhomogeneities of the 
physical properties of the medium,' large-scale correlations 
of the random effects acting on the Brownian particle? and 
nonequilibrium fluctuations in the physical parameters of the 
m e d i ~ m . ~  In all these cases, the additional effects can be 
taken into account by constructing a description of Brownian 
motion in a medium with physical properties that change in 
accordance with a priori known laws.4 The necessary calcu- 
lations involve the use of numerical and analytical methods 
and are usually restricted to the solution of a specific prob- 
lem. 

Somewhat different in nature is the problem of con- 
structing a theory of Brownian motion that takes into account 
a bounded number of particles of the medium that interact 
simultaneously with a Brownian The interaction 
of the Brownian particle with only some, and not all, of the 
particles of the medium that at a given instant of time are in 
direct contact with it makes it necessary to take into account 
fluctuations of the transport coefficients in the construction 
of the theory of the Brownian m ~ t i o n . ~  This is because the 
formation of the transport coefficients has a statistical nature, 
and the values of these coefficients depend on the nature of 
the interaction of the Brownian particle with the particles of 
the medium. The.. fluctuations of the transport coefficients 
must be most strongly manifested when only a small number 
of particles of the medium interact simultaneously with the 
Brownian particle. 

This physical effect has fundamental importance, and it 
does not appear possible to take it into account if one re- 
mains in the framework of the Markov theory of Brownian 
motion. It is necessary to construct adequate methods of de- 
scription that take into account the fluctuations of the trans- 
port coefficients that actually exist in the physical medium 
and the manner in which the effect of the particles of the 
medium on the Brownian particle differs from a Wiener ran- 
dom process. Therefore, the problem arises of developing a 
non-Markov theory of Brownian motion in which the mo- 

mentum fluctuations of the Brownian particle are described 
by means of multidimensional characteristic functions. The 
form of the equations of the non-Markov theory must depend 
on the f o m  of the a priori known characteristic functions 
that describe external random effects. 

2. THE TRADITIONAL METHOD OF DESCRIBING 
BROWNIAN MOTION 

In the traditional approach, Brownian motion is de- 
scribed by means of a Langevin equation, which in the case 
of a one-dimensional linear medium has the form8 

where P is the momentum of the Brownian particle, y is the 
friction coefficient that characterizes the energy dissipation 
of the Brownian particle as it interacts with the particles of 
the medium, and X ( t )  is a random force that describes the 
effect of the particles of the medium on the Brownian par- 
ticle. It is assumed that the random force X ( t )  can be de- 
scribed by a white-noise process with zero mathematical ex- 
pectation and a Gaussian distribution. The X ( t )  process is 
related to a Wiener random process W ( t )  by9 

The friction coefficient y is determined from the Kubo 
formula,1° which in the case of one-dimensional motion of 
the Brownian particle has the form 

where we have introduced the notation 

in which m is the mass of the Brownian particle, k is Bolt- 
zmann's constant, and T is the temperature of the medium. 
The operation (...) denotes averaging over all the variables of 
the motion of the particles of the medium. 

In the under consideration case, the kinetics of the 
Brownian particle is described by the Fokker-Planck 
equation8 
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the solution of which gives the distribution function f  ( P ;  t ) ,  
which completely describes the statistics of the Brownian 
particle. Here D  = ymkT is the diffusion coefficient. Multi- 
dimensional distribution functions can be obtained in accor- 
dance with the formula9 

where the transition distribution functions 
f ( ~ ~ ; t , l ~ ~ - , ; t ~ - ~ ) ,  I=%, are the solution of Eq. (5).  Here 
PI is the momentum of the Brownian particle at the time t ,  . 

This method gives a consistent closed description of 
Brownian motion and is based on the assumption that the 
effect of the particles of the medium on the Brownian par- 
ticle can be completely described by a Wiener random pro- 
cess and that the momentum P ( t )  of the Brownian particle is 
a Markov random process. 

3. THE METHOD OF MULTIDIMENSIONAL DISTRIBUTION 
FUNCTIONS 

A shortcoming of the traditional method of describing 
Brownian motion is the assumption that the random process 
X ( t )  corresponds to Gaussian white noise. However, for a 
real physical medium it is a consequence of the bounded 
number of particles of the medium that interact simulta- 
neously with the Brownian particle that this assumption is 
only a first approximation to the actually existing random 
process f ( t ) .  Similarly, the assumption that the coefficient 
of friction y  can be calculated with absolute accuracy by 
means of the expression (2)  is also not sufficiently well 
founded, since this expression assumes averaging over the 
variables of the motion of all of the particles of the medium 
and over an infinite time. In reality, the friction coefficient is 
formed at each point of the trajectory of the Brownian par- 
ticle by just those particles of the medium that interact with 
it at the given time. 

The method of multidimensional distribution 
 function^^'""^ has been proposed to solve these problems. In 
it, the Brownian motion is described by solving equations for 
the multidimensional distribution functions f ,(P , . . . ,P ,  ; 
t ,  ,..., t , ) .  In particular, for the present case described by the 
Langevin equation (1)  the equation for the two-dimensional 
distribution function f 2 ( P  , P2 ; t ,  , t2)  has the form 

where 

Here D =  ( D ( t ) )  is the averaged diffusion coefficient, TO is 
the time required for randomization of the particles of the 
medium, and AD(t l  , t2)  is a coefficient that describes the 
fluctuations of the friction coefficient: 

The two-dimensional distribution function f  , (PI  ,P2 ; t  , t 2 )  
makes it possible to determine the one-dimensional distribu- 
tion function f ( P ;  t ) .  If it is necessary to find distribution 
functions of higher order, then equations for the correspond- 
ing n-dimensional distribution functions must be derived and 
solved. These equations can be found by the method pre- 
sented in Ref. 7. 

4. THE STOCHASTIC DIFFERENTIAL EQUATION OF THE 
NON-MARKOVIAN THEORY OF BROWNIAN MOTION 

To construct the non-Markovian description of Brown- 
ian motion, we transform Eq. (1) to the form 

where y ( t )  is a random process that must be determined in 
accordance with the formula 

and the random process @ ( t )  is related to the process ?(t) 
by the expression 

@ ( t )  = @(to)  + It? T ) ~ T .  (12) 

The random process @ ( t )  is assumed to be different from 
the Wiener random process W ( t ) .  Equation (10) and the in- 
tegrals ( 1 1 )  and (12) are assumed to be expressed in the 
Stratonovich form?.I3 

We represent Eq. (10) in the form 

where the increment d @ t ) =  y ( t )d t  of the random process is 
found in accordance with a formula that can be obtained by 
means of the integrals (1 1 )  and (12): 

d @ t ) = A ( d t F 2 ( t ) ) .  (14) 

If @ ( t )  is a Wiener random process W ( t ) ,  the increment 
d  @ t )  of the process becomes a deterministic variable d e ( t )  
and takes the form 

dO(t)= ydt .  (15) 

The expression (15) is obtained with allowance for the fact 
that in accordance with Ref. 13 
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(dw2(t))= vdt, (16) 

where v is the intensity of the Wiener process W(t). 
Equation (13) is an equation in the Stratonovich form. 

Just as for Eq. (I), the Stratonovich form and the It6 form 
must be identical for Eq. (13). This is possible only if the 
random processes P(t)  and d&t)  in Eq. (13) are indepen- 
dent. This requirement imposes important restrictions on the 
form of the characteristic function & t) of the process. 

Equation (13) can be the same in the Stratonovich form 
and the It6 form if the additional terms9 that arise in going 
from the one representation to the other are of higher order. 
For the equation (13) in question, this means that the terms 
containing the factors (d&t)12 must be of order (dt12. 
Therefore, when we consider the actual form of the charac- 
teristic function R t )  of the process we must test whether this 
condition holds. In particular, this requirement is satisfied by 
a process &t) with one-dimensional characteristic function 
of the form 

In this case, the one-dimensional distribution function has 
the f o d  

where a...) is the delta function. It is readily established that 
the function (18) satisfies all the requirements imposed on 
the distribution functions, since it is positive definite, van- 
ishes at infinity, and has real positive-definite moments of all 
orders. 

For the further development of the non-Markovian 
theory of Brownian motion, we represent Eq. (13) in the 
form 

dB 
where b(P)  = [- P I ]  is a row vector, and d @ = ~ ~ ~ ]  is a 
column vector. Equation (19) is the point of departure for 
constructing the non-Markovian description of Brownian 
motion with allowance for fluctuations of the coefficient of 
friction. 

5. EQUATIONS FOR THE n-DIMENSIONAL 
CHARACTERISTIC FUNCTIONS 

With allowance for the form of Eq. (19), the equation for 
the one-dimensional characteristic function g (A; t) of the 
random process P(t)  has the form9 

where 

- pT)p). (21) 

The superscript T denotes transposition of the corresponding 
matrix. In (21), we have introduced the notation 

in which h (p ;  t) is the one-dimensional characteristic func- 
tion of the random process @(t). 

To construct the equation for the two-dimensional char- 
acteristic function g2(A ,A2 ;t ,t2), we write down the ex- 
pressions for the increments, 

and the expression 

where M[ ...I is the operation of finding the mathematical 
expectation. Here the subscripts 1 and 2 of @, P, and A 
indicate that they correspond to the different times t1 and t2. 

We determine the expression for the function 
~ [ e x ~ ( i p ~ ~ @ ~ ) ] .  For this, we calculate the mathematical 
expectation 

where M [ . . .I A@~] is the operation of finding the mathemati- 
cal expectation when the increment has a definite 
value, and pl corresponds to the times tl . It is assumed here 
that the process @(t) is completely described by the two- 
dimensional characteristic function h2(p  ,p2 ; t , t2). There- 
fore 

It follows from the expression (25) that 

or, to within terms of higher order in Atl, 
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where 

Next, we determine the function 
~ [ e x ~ ( i p T A $ ~  + i p i A g 2 ) ] .  Canying out manipulations 
analogous to (25), we obtain 

~ [ e x p ( i p T ~ q ~  +i ,u ;~*~)]= ( 1  +xi1) 

X(pl*l~2;tl,t2)At1)(1 +xi2)(p1 .p2;t19t2)Af2) 

+AXZO(PI t r ~ 2  rt21AtlAt2 (3 1 )  

where 

1=1,2, j=1,2, j=3-1, (35) 

where the function X(:) is determined using the first expres- 
sion in (32). 

Equation (35) for Aj=O goes over to the equation for the 
one-dimensional characteristic function g,(h ; t l )  (Ref. 9): 

1= 1,2, (36) 

where we have introduced the notation 

With allowance for the expressions (35)-(37), Eq. (33) 
can be represented in a form analogous to the one obtained in 
Ref. 7: 

where we have introduced the operators 

After further manipulations with allowance for the ex- - P L L T ) P I ) ,  
pression (31) and retention of the terms of first order in the 
product AtlAt2,  expression (24) reduces to 1= 1,2, 

x ~ i ~ ' ( b ( f ' 1 ) ~ h l  , b ( ~ 2 ) ~ h a ; t l  ,t2) 

+ x 2 o ( b ( ~ 1 ) ~ ~ 1  , b ( ~ 2 ) ~ ~ 2  3 1  J2)) 

~ e x p ( i h T ~ ~ + i h ~ ~ ) ] .  (33) 

To reduce Eq. (3) to the same form as was obtained in 
Ref. 7 ,  we determine the difference 

Manipulations similar to those above enable us to obtain the 
equation 

The initial condition for Eq. (38) is 

With allowance for the form of the operators (39) and (a), 
Eq. (38) is the required equation for the two-dimensional 
characteristic function g2(A1,h2;t1,t2) of the non- 
Markovian process P(t)  . 
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The above method also makes it possible to construct an 
equation for the n-dimensional characteristic function 
gn(A1 ,..., A,;t  ,...., t , )  in the form 

where the operator f l  is determined by means of the expres- 
sion (39), and the operator A?,, has the form 

Here 

The initial condition for Eq. (43) has the form 

Equation (43) describes the non-Markovian random process 
P ( t )  by means of the n-dimensional characteristic function 

, . . . ,An i t ,  ,... J n ) .  
With allowance for the form of the operators (21), 

(39), ( a ) ,  and (44) and the expressions (37), (41), and 
(45), Eqs. (20), (38), and (43) enable us to construct a closed 
description of the Brownian motion in the non-Markovian 
case. For this, it is necessary to have a priori knowledge of 
the form of the n-dimensional characteristic function 
h2(p1 ,.. . , p n  ; t l  ,. . . , tn)  of the external random process 
W t ) .  

6. DESCRIPTION OF BROWNIAN MOTION BY MEANS OF A 
TWO-DIMENSIONAL CHARACTERISTIC FUNCTION 

An equation for the two-dimensional characteristic func- 
tion g 2 ( A 1 , A 2 ; t , , t 2 )  of the random process P ( t )  can be 
constructed if for the random process @ ( t )  we know its 
characteristic function h 2 ( p 1  , p 2 ;  t  , t2 ) ,  where p l = { ~ l , ~ l )  
are the variables corresponding to the random processes B(t) 
and f ( t ) .  We represent the two-dimensional characteristic 
function h2(1;11 , K ~ ,  v2 , ~ , ; t ~  , t2)  in a form that correyonds 
to the above requirement that the processes P ( t )  and 8 ( t )  be 
independent: 

where AD( t l  , t2 )  is a coefficient that describes the fluctua- 
tions of the coefficient of friction. In this case, the one- 
dimensional characteristic function of the random process 
@ ( t )  has the form 

Then the equation for the two-dimensional characteristic 
function g2(Al  ,A2; t ,  , t2)  of the random process P ( t )  takes 
the form (38), and the corresponding equation for the one- 
dimensional characteristic function g  , (A;  t )  has the form 
(20). 

By means of Eqs. (39) and ( a ) ,  we :an obtain expres- 
sions for the operators f , ,  1= 1,2 and AT2 with allowance 
for the form of the characteristic function (47): 

where 

The expressions obtained above enable us to construct 
an equation for the two-dimensional distribution function 
f 2 ( P l  ,P ,  ; t l  , t , ) ,  which takes the form 

where 
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Here we have introduced the notation 

(53) 

The expressions (38) and (49)-(53) describe the Brown- 
ian motion when the effect of the particles of the medium on 
the Brownian particle can be completely described by a ran- 
dom process having a two-dimensional characteristic func- 
tion of the form (47). The dependence of the momentum 
P ( t )  of the Brownian particle on the time in this case is a 
non-Markov random process. 

Note that the expression (51) is identical to the expres- 
sion (7) obtained by the method of multidimensional distri- 
bution functions. At the same time, the operators (8) are a 
first approximation for the operators (52) and (53) obtained 
above. 

7. CONCLUSIONS 

Thus, the proposed method of describing the Brownian 
motion, which makes it possible to calculate the characteris- 
tics of the random process P ( t )  with allowance for the de- 
viation of the external disturbances from a Wiener process, 
can be regarded as one of the possible ways of constructing a 
non-Markovian theory of Brownian motion. The resulting 
expressions describe additional effects that can be detected 

by performing experiments to measure current fluctuations in 
small volumes of e le~t ro l~ tes . '~  The expressions (38) and 
(49)-(53) make it possible to take into account the real na- 
ture of the interaction of the particles of the medium with the 
Brownian particle, and this makes it possible to pose the 
problem of giving a more accurate description of the Brown- 
ian motion. The proposed method can be used to construct a 
non-Markov theory of kinetic processes with allowance for 
fluctuations of the transport coefficients. 

The approach developed in this paper to a more accurate 
description of Brownian motion in real media presupposes 
the development of methods of solution of equations having 
the form (51). The examples of the description of diffusion 
in a medium with fluctuating transport coefficients and the 
solutions of equations of the type (51) considered in Ref. 7 
are restricted to the case when the additional effects due to 
the fluctuations of the diffusion coefficient are sufficiently 
small. Then to solve Eq. (51) it is possible to use a pertur- 
bation method based in this case on the assumption of small- 
ness of the right-hand side of Eq. (51). The development of 
general methods of solving equations of the form (51) is an 
important problem that requires additional investigations. 
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