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An exact solution in quadratures is obtained for the distribution function of a plasma variable in 
a random microwave field whose evolution is described by a nonlinear homogeneous first- 
order differential equation with random force. Asymptotic estimates of the distribution function are 
obtained by the method of steepest descent. O 1996 American Institute of Physics. [S1063- 
776 1 (96)01704-01 

1. INTRODUCTION 

It follows from the experiment of Ref. 1 that for long 
pulse durations a freely localized high-pressure microwave 
discharge takes the form of a tangle of intertwined bright 
luminous plasma filaments (highly ionized phase of the dis- 
charge). Estimates show that the plasma filaments can 
strongly scatter the heating microwaves, causing the field to 
have an inhomogeneous space-time structure in the dis- 
charge region. In such systems (for DpldA, where Dpl is the 
characteristic diameter of the discharge region, and A is the 
wavelength of the microwave field), the space-time dynam- 
ics of the plasma parameters in the highly ionized phase of 
the discharge can become stochastic due to the random na- 
ture of the scattered field. 

In Ref, 2, the condition of equality of the amplitudes of 
the scattered and unperturbed waves in a model of spatially 
uncorrelated spherically symmetric inhomogeneities of small 
radius R (RIAel), which act as "nucleating centers" of the 
highly ionized phase, was used to obtain a qualitative crite- 
rion for the transition of a microwave discharge into a sto- 
chastic combustion regime in the form 

where r is the volume fraction of the discharge region occu- 
pied by the highly ionized phase, w is the frequency of the 
microwave field, and u and E are the high-frequency electri- 
cal conductivity and the permittivity of the plasma in this 
phase. 

2. STOCHASTIC MODEL OF MICROWAVE DISCHARGE 

In Ref. 3, high-pressure microwave discharges with dis- 
ordered structure were described, assuming complete ran- 
domization of the heating field in the discharge region. Very 
simple stochastic models of high-pressure microwave dis- 
charges making it possible to determine the probability char- 
acteristics of such discharges were proposed. To construct 
the statistics of the plasma formations in the microwave field 
in the approximation in which the plasma variables evolve 
locally, one introduces the distribution function P,(X) of the 
plasma variables, which determines the probability dW of 
finding a plasma variable X in the interval dX: 
dW = P,(X)dX, P,(X) =(SIX -X(t))) [where the symbol (...) 

denotes averaging over all realizations of the random process 
X(t) or over the ensemble of inhomogeneities Xk(t), and k 
is the index of the inhomogeneity]. The hypothesis is also 
made that the statistical properties of the plasma and micro- 
wave field are homogeneous in the discharge region. In the 
simplest case, when the local state of the system is charac- 
terized by a single parameter X (we assume that XdO), the 
investigation of the evolution of the original spatially inho- 
mogeneous problem reduces to the construction of the distri- 
bution function for a nonlinear dynamical system under the 
influence of a random force f(t),  the role of which is played 
by some function of the amplitude of the microwave field: 

Here F(X) and o(X) are certain known functions. As param- 
eter X of the state of the system one can use, depending on 
the particular problem, the electron temperature, the plasma 
concentration, the temperature or density of the neutrals, etc. 
The form of Eq. (2) is particularized for various special cases 
in Refs. 2 and 3. 

The equation that describes the evolution of the distribu- 
tion function for the dynamical system (2) can be obtained 
from the theory of stochastic equations? for which, however, 
it is necessary to known the statistical characteristics of the 
random force. The simplest model of the random force f (t) 
under the condition that the characteristic time of evolution 
of X is appreciably greater than the time of variation of the 
field amplitude is a Scorrelated random Poisson process, 
i.e., a process constructed on a Poisson flow of points4 with 
non-Gaussian distribution function F(t) of the fluctuations. 
Then the differential equation for P,(X) has the form3 

where rc is the characteristic correlation time of the fluctua- 
tions of the field amplitude. The operator expression O;[v] 
must be understood in the sense of a cumulant expansion: 
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For a completely randomized microwave field, i.e., when the 
condition ( 1 )  is satisfied, and also when f ( t ) = I ~ l ~ ,  the op- 
erator expression takes the form3 

~ ~ ~ u ] = e x p ( u ) ( l  + u)-3'2- I .  (4) 

We introduce the dimensionless time r - t / ~ ,  , the new 
dimensionless independent variable 

the dimensionless distribution functions 
Q ( 2 )  = T= f oP ( 2 )  u ( Z )  , and the source term F ( z ) /  U ( Z )  f 
(for F, we shall use below the previous notation F ) .  Then (3) 
reduces to the equation 

which in the general case must be solved with the 
condition 

Q(Z90) = Qo(Z)  

and boundary conditions at Z=O 

initial 

( 6 )  

(if 8: [v] is a polynomial of degree N, then n = 0 , .  . . ,N- 1 ) .  
The choice of the boundary conditions at Z = 0  in the form 
(7) for a positive-definite parameter Z is associated with the 
requirement of satisfying at any instant of time the normal- 
ization condition 

Allowing for the fact that in the limit Z--tm we also have 
fulfillment of (7) ,  the choice of the boundary conditions in 
the form ( 7 )  automatically guarantees in the case 

that the normalization condition is satisfied. 

3. GREEN'S FUNCTION IN THE CASE OF A DETERMINISTIC 
SYSTEM (2) (f=O) 

To construct a solution of Eq. (5) with the conditions ( 6 )  
and (7) ,  we find the Green's function G ( Z , Z o , ~ , ~ O )  of the 
differential Liouville equation 

which gives the distribution function in the case of a com- 
pletely deterministic dynamical system ( f=O) ,  

The solution of Eq. (8) that satisfies the boundary con- 
dition ( 7 )  can be readily found by making a Laplace trans- 
formation with respect to T and determining a particular so- 
lution of the obtained ordinary differential equation by the 
method of variation of constants. After inverting the Laplace 
transformation, we have 

for F(Zo)  > 0 ,  

for F(Zo)  < 0 ,  

(10)  

where B(+) is the step function: 

By virtue of the properties of the S function, the solution 
(10)  can be represented in several equivalent forms. Since 
6(Y) is nonzero only at the point {=0 ,  we can expand the 
argument of the Sfunction in the expression (10)  in a Taylor 
series (in Z for fixed T or in T for fixed Z )  at the point l=O 
and restrict the expansion to the first linear term, assuming 
that { ( Z , T ) = ~  corresponds to a single-valued function Z(T). 
As a result, using the Sfunction property 

where a is some constant, we obtain the solution of (10)  in 
the form 

where &T) satisfies the relations (9), and r ( r )  is determined 
by the equation 

dr(  7 )  
-= d~ F r ,  ~ ( T ~ ) = Z .  

It follows from (1 1) that the evolution of the distribution 
function with initial condition in the form of the S function 
(8) is not accompanied by distortion of the shape. Generally 
speaking, this is not true in the case when a distribution 
function of arbitrary form is specified at the initial time. The 
distortion of the shape is obviously due to the separation of 
the dynamical trajectories ( 9 )  for different Z ,  and the local 
distortion of the shape of the distribution function in time 
near an arbitrary point Z 1  is determined by 
AZ(7 )  = Z 1  ( 7 ) - z 2 ( 7 ) ,  where &(TO) is some point near 
Z 1 ( ~ O ) :  A Z ( T ~ ) / Z , & ~ .  The evolution of AZ(7) can be de- 
scribed by the differential equation 
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which gives an exponential variation in time of AZ(T): 

Assuming that the interval [ Z ,  ,Z2] determines the re- 
gion of localization of the initial distribution function Qo(Z)  
[outside the interval we have Qo(Z)=O], we find that for any 
AZ(T,)# 0 and Fi ( 2 ,  ( 7 ) )  # 0 ,  T ~ T ~  deformation of the 
original distribution function will be observed. An exception 
is the case AZ(T~)=O; then irrespective of the form of F ( Z )  
there will be no deformation of the shape of the distribution 
function: A Z ( r ) =  A Z ( T ~ ) = O .  It is in this sense that ( 1  1) 
must be understood. 

4. GREEN'S FUNCTION OF THE ORIGINAL PROBLEM 

Using the obtained above Green's function of the prob- 
lem (11) obtained above, we can rewrite the differential 
equation (5) in the integral form 

Using the property of the S function and differentiating (9) 
with respect to T, we obtain a differential equation for Q in 
the new variables r and T with constant coefficients: 

By hypothesis, 2 2 0 ,  and, therefore, the function F(0) 
can be either equal to zero or greater than zero. This means 
that there are no trajectories on the plane 2-7 with Z 0 2 0  
that intersect the Taxis (Z=O), i.e., r is also positive definite. 
In addition, it is obvious that the solutions ri(7) of (12) for 
ZO,>Zm have the property r1 (T)>r2(T) .  AS a result, the 
initial condition (6)  and the boundary conditions (7)  for Z 
applied to Eq. (3)  go over to an analogous initial condition 
and boundary conditions at r=O for r :  

The differential equation (14) with initial condition (15) 
and boundary conditions (16) can be readily solved by the 
operator method. In the important special case in which 
Q o ( r )  = S(r - ro ) ,  the solution is the Green's function of the 
original problem (14), which for r-ro<O vanishes identi- 
cally and for r - r o a O  [for an operator expression of the 
form (4),  i.e., in the case when 8: (p)+O for Re p =O and 
Im p++-m] is 

x { e x P r ~ : ( ~ ) ~ l -  1). 
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FIG. 1.  Evolution in time of the function Qf(r) .  

5. ASYMPTOTIC BEHAVIOR OF THE SOLUTION (17) FOR 
e-0, lr- r,- 71-m (METHOD OF STEEPEST DESCENT) 

The asymptotic behavior of the solution Q(r .7 )  for T>O, 
Ir - ro - T I  +a is readily obtained by the method of steepest 
de~cent .~  Investigations showed that the main contribution to 
the integral (17) is made by a saddle point y * that lies on the 
real axis of p and is determined by the condition dS(y ) l  
d y = O f o r y = y * , S ( y )  = t ? : ( y * ) ~ +  y*(r - r o -   inthe the 
case of practical interest T+W, bearing in mind that the range 
of variation of r in which the function Q ( r )  is essentially 
nonzero is localized near I r - ro  - T I  +0,  we can obtain an 
explicit expression for the saddle point y * in the form of an 
expansion with respect to the small parameter 
Q = ( r -  r,- T)/T.  

The leading term of the asymptotic expansion has the 
form 

Figure 1 shows the graph of the function Q 1 ( r )  at four in- 
stants of time [ I )  7 0 . 5 ;  2) 1.0; 3) 2.5; 4) 5.01. The heavy 
curves correspond to the numerical calculation in accordance 
with (17), the thin continuous curves to the leading term in 
the asymptotic behavior (18), and the dashed curves to the 
asymptotic behavior with allowance for the first two terms of 
the expansion. It can be seen from Fig. 1 that there is good 
agreement between the numerical and asymptotic solutions 
in the complete range of variation of r and not only as 
I r - r O - ~ l - + ~ .  

The expression for the Green's function of Eq. (14) ob- 
tained directly in the integral form (17) or in the form of the 
asymptotic estimate (18) can be used to calculate the statis- 
tical characteristics of the discharge plasma in stochastic mi- 
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