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The problem of the accumulation of large charges over a 
prolonged time is still the subject of both theoretical and 
experimental studies. This problem is an important part of 
several scientific and technical efforts, above all accelerator 
technology and the physics of charged-particle beams. 

When fluxes of electrons with high particle density are 
obtained, the forces of repulsion that arise because of the 
charges can be balanced by charges of opposite sign (posi- 
tively charged ions), but in the absence of such neutralization 
the motion of the electrons is determined not only by the 
external forces but also by the self-field forces, which are 
often comparable with the forces produced by the external 
electrodes. The self-field forces greatly restrict the possibili- 
ties of obtaining high densities in bunches of particles. To 
balance the self-field forces that arise when intense beams of 
charged particles are created, it is possible to apply to them 
external fields of various kinds, for example, quadrupole fo- 
cusing fields and longitudinal magnetic When a 
beam undergoes sufficiently rapid longitudinal acceleration, 
an effective force that confines the particles in the transverse 
direction  arise^.^ In all cases, the confining fields are pro- 
duced by systems of electrodes of various kinds. Many stud- 
ies have been devoted to different methods of confining the 
beam particles in the transverse direction. We mention, for 
example, the studies of laminar beams4 and also Ref. 5, in 
which a study was made of beams with thermal spread of the 
transverse velocities. However, the effect of the variable re- 
tarded self-field on the bunch dynamics does not appear to 
have been studied sufficiently (we mention in this connection 
Ref. 6). 

In this paper, we study the possibility of confining elec- 
tric charges in the self-field when a bunch of ellipsoidal 
(asymmetric) shape rotates. When an asymmetric bunch ro- 
tates suffciently rapidly in vacuum, the strength of the wave 
fields sufficies to keep the dimensions of the bunch constant 
in time. 

1. We shall study the behavior of a bunch of charged 
particles (electrons) in the form of a strongly prolate triaxial 
ellipsoid, making the assumption that one axis is much 
greater than the other two: R,+R,, Ry . We also assume that 
there is no motion of the particles along the z axis: i = 0 for 
all particles of the beam. We assume that the beam rotates 
about the z axis, and that the forces exerted by the electric 
field in the x, y system attached to the principal axes have 
the form 

2 F,= - o :x, Fy = 02y. (1) 

The expressions (1) describe the situation in which a 
compressive force acts along the x axis, while a force that 
pushes the particles apart acts along the y axis; moreover, the 
latter exceeds the former (%>wl). The possibility of fulfill- 
ment of the relations (1) will be demonstrated below. 

The equations of motion in a system rotating with con- 
stant angular velocity 9 have the form 

Here B(t) = i t  is the angle of rotation of the bunch relative to 
a fixed coordinate system. 

For the formulation of the problem, it is important to 
note that we study the behavior of a collisionless bunch; Eqs. 
(2) represent the linear approximation, and, for example, no 
allowance is made for the effect of the axial magnetic self- 
field on the motion of the particles (see also Ref. 6). 

We assume that the dependence of the coordinates x and 
y on the time is periodic: x(t)-constei"' and 
y(r) -const ein'. 

The eigenfrequencies ni can be determined from the dis- 
persion relation, and we can obtain 

(3) 

Both solutions are positive, S2f,2>0, if 

(oZ+ w;)~ 
>$>o: and 3o:>oi. 

8( 0; - 0:) 

Equations (2) have two invariants, and they have the form 

where 

For the self-consistent description of the bunch, we take 
an invariant in the form of a linear combination of I, and Z2: 

Z=crlIl+azZ2, 

where crl>O, a2>0. We represent the invariant in the form 
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For the distribution function of the particles, we set 

where x is a normalization constant, and S(x) is the Dirac 
delta function. This is a model distribution-it does not take 
into account the actual spread of the particles with respect to 
I .  It yields a constant value of the density within the bunch, 
and this, in its turn, determines the linear nature of the coor- 
dinate dependence of the self-field forces. Other more physi- 
cal distribution functions do not lead to significant qualita- 
tive differences-additional forces that depend nonlinearly 
on the coordinates appear. In the present problem, the non- 
linear forces are negligibly small. We note also that a S func- 
tion as distribution in the phase space is very widely used to 
describe the most varied situations in which it is important to 
take into account self-field forces.' 

Use of the expression for I leads to the relation 

It follows from (6) that the density of the particles is constant 
within the ellipse x2/R; + 2 / ~ ;  = 1 and equal to zero outside 
it, where the semiaxes are determined by the equations 

Here D , v  are the mean random (thermal) velocities. 
The most interesting range of parameter values is determined 
by the relations 

If these relations are satisfied, then for CIIA and C21B we 
obtain 

and for the semiaxis ratio RJR, we have 

The bunch in question consists of nonrelativistic particles. In 
this connection, it is important to calculate the mean veloci- 
ties of the particles in the coordinate system at rest. Since the 
rotating coordinates x,y are related to the fixed coordinates 
x1 ,Y 1 by 

we can obtain for the velocities il and y1 

j l = ( i -  &sin 8+()i+ 8,x)cos 8. (12) 

The relations (12) express the velocities in the laboratory 
system in terms of the velocities and coordinates in the mov- 
ing system, and also in terms of the angular velocity and the 
rotation angle 8. 

Averaging over the velocities using Eqs. (8) and (10) 
leads to the relations 

- So . 
il= 7 B(y cos 0-x sin 8) ,  

("1 

The maximum value of the velocities is attained at 
x- y - R, . In order of magnitude 

Averaging over the velocities by means of (6) also leads to It is important to note that there also exists a region of 
the equations nonrelativistic velocities with eR,l c > 1, since the condition 

- c1 - c2 - v ,,<c means that eR,lc< wT/ So, where &<w:. 
i= - -y ,  j = - s ~ ,  (i-;)2=~i2 

A For the mean square velocities, we have 
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The term - ( l / A  + 11B) is relatively small in the case of 
sufficiently large values of the constants a, = a 2 ,  and then the 
total velocity of the particles differs only slightly from the 
mean velocity. 

2. We calculate the self-field forces that act on the par- 
ticles of the bunch, including the forces exerted by the re- 
tarded field. 

The components of the potential in the laboratory system 
are determined by the expressions 

We represent the total potential in the form 
@=@(')+a('), where 

I dr' 
@(O)(r1 , t )=  p ( r f  , t )  - Jrl-rlI ' 

and @(') can be represented in the form of a series in powers 
of l / c :  

while the vector potential can also be represented in the form 
of a series: 

In Eqs. (14)-(16), p and j are, respectively, the charge 
density and the current density. The charge density is as- 
sumed to be constant and can be expressed in terms of the 
total number N of particles in the bunch: 

The current density j has the nonvanishing component 
jo= e P r 1 .  In Cartesian space coordinates r ' ,  we have 

To calculate the series (15)  and (16) ,  we use an expan- 
sion of Irl-r'lk-I in powers of r l l r l .  

At the same time, we note that only the terms that deter- 
mine the force that depends linearly on the coordinates are 
calculated. In (15), this corresponds to allowance for the 
term proportional to ( r l - r 1 ) 2 ,  while in (16)  it is necessary to 
take into account only the term ( - r , - r ' ) .  Significant simpli- 
fications arise from the fact that the angular velocity and the 
dimensions of the bunch are constant. After replacement of 
the coordinates x' and y ' according to 

x 1 = x 2  cos 6 - y 2  sin 6 ,  y 1 = x 2  sin 6 + y 2  cos 8 

(i.e., after the introduction of variables of integration associ- 
ated with the principal axes of the elliptic section) and allow- 
ance for the constancy of e , ~ ,  ,R, , we obtain for 

the equation 

Note that (17)  is obtained by summing series in powers 
of l l c ,  i.e., we have taken into account the retardation in all 
orders. 

The component E(: of the retarded field can be readily 
obtained from the conditions 

The density p has the form ~ = ~ ~ N / ~ . R R Z R , .  Here 
R x - - R y = j R I .  

The nonlinear terms are in order of magnitude -r:lRZ, 
i.e., for small values of x and y they are small. For what 
follows, the most interesting range of parameters is that for 
which e ~ , l c > l ,  i.e., the case when the terms proportional 
to e3$ make the largest contribution to the integral for the 
field. From (17) ,  we obtain 

Further, in (18) we express the coordinates x , y  in terms of 
xl  , y2 by means of the relations x ,  = x cos 6-y  sin 6,  
y , = x sin 8+ y cos 8. Note that the fixed coordinate system 
is used in the entire treatment. The introduction of the vari- 
ables x and y in place of x l  and y , can be regarded as a 
method of obtaining a more convenient form of expression 
of the equations. For nomelativistic values of the velocities 
( d R , e c ) ,  this transformation is a transition to a rotating 
system attached to the principal axes of the elliptic section of 
the bunch. 

In the variables x and y , the relations (18) have the form 

483 e N S  2 eR,  2 e ~ ,  
E:)= - ( x  sin - + y  cos - 

5 c  R ,  c c 

483 e N 6  2 8,R, 
y sin - 

C 
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Further, we take into account the zeroth term in the retarda- 
tion of the electric field: 

To obtain the situation described by the relations (I), we 
must set 

where k=0,1,2, ... is a nonnegative integer. 
Then 

and at the same time 

It follows from (22) that 

In the final expression on the right-hand side, the second 
term must be greater than the first. We obtain 

where 6 is determined by the relation (21). 
On the other hand, from (9) 

from which we obtain the relations 

Finally, for of we obtain 

and 
" 

The larger the value of k, the better the original approxi- 
mations are satisfied; k is related to the total number of par- 
ticles by the single-valued expression 

As we have already noted, in the framework of the con- 
sidered linear problem the influence of the axial magnetic 
self-field is not taken into account. We now establish the 
conditions under which this approximation is meaningful. 
For this, we compare the maximum frequency ~ ~ ( r ) l ~ = ~ ~  
with the particle gyration frequency o =  6Sdwf. 

It is easy to show that 

Then the condition under which the effect of the longitudinal 
field can be ignored has the form 

and we can represent it in the form 

The values of k are bounded above by the ratio RzIR, . 
Thus, in this paper we have shown that a rotating ellip- 

soidal bunch with longitudinal dimension greater than the 
transverse dimensions and interacting with the retarded self- 
field can have constant transverse dimensions. 

For the self-consistent description of ellipsoidal bunches 
with axes of comparable length, the solution of the three- 
dimensional problem is of great interest. In this case, the 
rotational angular velocity is not constant and is the sum of 
the angular velocities of the precession, rotation proper, and 
nutation. 
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