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Results are obtained in numerical and analytic form for the radiative corrections to the dipole 
matrix elements, level widths, and line intensities in hydrogenlike systems. These results 
have the relative order of magnitude a ( ~ a ) ~ l n  Za. The analytic expression has the form of a 
finite sum. The correction to the corresponding matrix elements in parabolic coordinates 
is also found. O 1996 American Institute of Physics. [S1063-7761(96)010049] 

1. INTRODUCTION 

The calculation of radiative corrections to dipole matrix 
elements has become of a topic of current interest in connec- 
tion with precise measurements of the ratio of the 2plI2 line 
width and Lamb splitting in the hydrogen atom1 and studies 
of the Stark effect in the hydrogen atom performed with the 
goal of refining the value of the fine structure ~ons tan t .~ '~  
Radiative corrections in the logarithmic approximation were 
found for the 2p level n ~ m e r i c a l l ~ ~ . ~  and then in Ref. 6 a 
general formalism was constructed, based on representing 
the Green's function of the electron in the Coulomb field of 
the nucleus in the form of a sum over states and leading to an 
integral which can be easily evaluated numerically. 

The present paper is a direct continuation of Ref. 6. 
Within the framework of the formalism developed in Ref. 6 
we obtain numerical results for the corrections to the various 
dipole matrix elements and delineate which intermediate 
states give the main contribution. With the help of the sum 
rule found in Refs. 5 and 6 we rearrange the sum, which in a 
number of cases allows us to sum up a substantial number of 
terms. We also develop a formalism for obtaining corrections 
in analytic form with the help of a closed of 
the Coulomb Green's function in the form of a combination 
of Whittaker functions. We also obtain a general expression 
for the corrections to the dipole matrix elements in the form 
of a finite double sum. The results for the corrections to the 
dipole matrix elements for the levels with n = 1 - 4 as well 
as the results for some asymptotic limits are represented in 
explicit form. A simple expression for the diagonal matrix 
elements in n is obtained for arbitrary levels. We succeeded 
in finding it by using one more representation8-lo for the 
Coulomb Green's function in the form of a Sturm expansion 
over Laguerre polynomials. We have also found corrections 
to the dipole matrix elements in parabolic coordinates. 

The paper is organized as follows: first, we obtain a 
general expression in the Yennie gauge for the radiative cor- 
rections to the dipole matrix elements for the hydrogen atom 
in the logarithmic approximation, which reduces to allowing 
for an effective 8-function potential. The following three 
Sections are dedicated to direct calculations of the correc- 
tions to the dipole matrix elements, induced by the 

8-function perturbation to the Coulomb potential. In each of 
these three Sections we consider different representations for 
the Coulomb Green's function. Section VI discusses the re- 
sults. The Appendices derive the sum rule, which is linear in 
the dipole matrix elements for arbitrary value of the orbital 
angular momentum, and the reduced Green's functions for 
some lower levels. They also include a calculation of the 
asymptotic limits of the corrections to the dipole matrix ele- 
ments. 

2. RADIATIVE CORRECTIONS IN THE YENNIE GAUGE 

It is convenient to calculate the radiative corrections in 
the Yennie 

in which the low-energy asymptotic limits of the radiative 
insertions to the electron line have the gentlest behavior and 
are free of fictitious infrared d i~e r~ences , ' ~ . ' ~  which are sub- 
tracted out in the standard gauges only in the final answer. It 
is not hard to convince oneselP6 that all radiative correc- 
tions in the logarithmic approximation are described in the 
Yennie gauge (1) by the &function potential 

where 

a = e 2  is the fine structure constant, and Z is the nuclear 
charge in units of the proton charge; here and below we use 
relativistic units, in which fL  = c = I. 

The correction to the radiation operator does not contain 
a low-energy logarithm [ln(Zcu)]. The same is true of the 
corrections to the wave functions of the states 1 # o."~ It 
suffices to consider only the correction to the wave function 
of the s-levels 

Ins) " = G,(E,)v~~s), (4) 

where the reduced Green's function G,(E) is obtained from 
the total Green's function G(E) by subtracting the pole: 
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TABLE I. Analytic and numerical values of S,,, 

Thus, the correction to the dipole matrix element expressions for the quantities 

dntmtn=(n'pm'lerlns) 

is equal to 

The corrections to the matrix elements between the other 
states do not contain logarithms and in this approximation 
are equal to zero. It is not hard to convince oneself that in the 
case of a perturbation of a central field the angular integrals 
can always be separated and the correction Sdnlmln as a 
three-dimensional vector is aligned with the original matrix 
element dntmln . To avoid complications, we present the re- 
sults in terms of d z n t m l n  (for m ' = 0),  dropping the subscript 
rn ' , or in terms of corrections to the reduced matrix element 
(nlPllrllns>. 

3. CALCULATIONS WITH THE GREEN'S FUNCTION IN THE 
FORM OF A SUM OVER STATES - 

We represent the Coulomb function as a sum over states 
of the discrete and continuous spectra: 

The correction to the dipole matrix element reduces to 

(n1Plez19s)(9slVlns) 
adznln= C 

q + n  En - Eq 
(9) 

where the matrix elements for the effective potential (2) and 
the dipole interaction are known. As a result, we obtain 

where the variable t is a continuous analog of the principal 
quantum number and for the states of the continuous spec- 
trum with wave number k  we have k = Z a r n l t ,  and explicit 

are given in Ref. 6. The quantities gqn allow simple analytic 
continuation from the discrete states to the continuous states 
and are convenient for calculation, in particular for the rea- 
son that they do not depend on the definitions of the phase 
factors in the spherical harmonics. In those cases in which 
this is important, we will use wave functions with phases 
defined according to Ref. 16. 

Calculating the corrections (10) does not present any dif- 
ficulty. With reference to expression (lo), it is convenient to 
present all numerical values in relative units: 

Numerical results for n = 1 - 4 and some asymptotic cases 
are laid out in Table I. The values for the matrix elements of 
the l s - 2 p  and 2 s - 2 p  transitions coincide with those 
found e ~ l i e r . ~ - ~  

The main advantage of calculating with the sum over 
states is the transparent physical meaning of each individual 
term. The continuous spectrum does not make too large a 
contribution (see Table 11), and the sum over states of the 
discrete spectrum is gathered mainly from the first few terms. 
This often allows us to estimate the contributions after fairly 
simple calculations, restricting ourselves to the first few 
terms. 

Note that the energy of the higher excited states is small 
and therefore it may be expected that by neglecting it in the 
denominator 

it will be possible to obtain an answer close to the right one. 
For the ground level this is reasonable for the entire discrete 
spectrum, and also for the continuous spectrum. The contri- 
bution with the simplified denominator is easily found with 
the help of the sum rulesp6 
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TABLE 11. Contributions of individual terns to S,,, . 
- - - - 

Discrete spectrum 

Individual terms Sum 

n-n' 1 2 3 4 5 6, . . .m 1, . . . m  Continuum 

This contribution is equal to and arbitrary s )  that for the standard definitions of the 

1 phases ') all the nondiagonal matrix elements have the oppo- 
[ S d z n ~ n l S =  - - (nrp le  z lns)(ns lv lns) ,  (14) site sign of the diagonal term.2) In this case it is easily shown 

En that when using the sum rule the contribution of the continu- 
or ous spectrum changes sign and, summing the discrete spec- 

~ A Z C Y ~ ~  trum in Eqs. (9) and (16), one can obtain upper and lower 
[ a d z n ' n l ~ =  Tn  dzn-n. (15) estimates. 

However, we do not have a proof that the signs of the 
The remainder can be represented in the form of a new nondiagonal terms are always identical. It should be men- 

sum: 
tioned that the form of the standard expression for the re- 

The contributions of individual terms to the remainder for 
transitions to the ground state are given in Table 111. It can be 
seen that for the ground state use of the sum rule (13) sub- 
stantially improves the quality of the estimates from the first 
few terms. 

We note also that, as is well known from standard sum 
rules (see, for example, Refs. 17 and 18), the diagonal matrix 
element ( q = n l )  is always significantly larger than all the 
remaining matrix elements (for fixed value of n ' )  and, as a 
rule, determines the sign of the total sum (9). At the same 
time, according to the sum rule (13) not all the matrix ele- 
ments (after taking out the phase factor) can be of the same 
sign. We convinced ourselves in a number of particular cases 
(the elements between ns,  n= 1-8, and arbitrary discrete 
and continuous p and the elements between n p ,  n  = 2 - 7, 

duced diagonal matrix element between states of the discrete 
and continuous spectra is such that it is not obviously real 
(see, for example, Ref. 18). 

In addition, it is not clear to what extent definiteness is 
connected with the values of the orbital angular momentum. 
An argument based on the standard sum rule and indicating 
that the diagonal element is the largest does not only apply at 
high values of the orbital angular momentum. Appendix A 
derives a sum rule for arbitrary 1, from which it is clear that 
the signs of the matrix elements ( n , l +  1 Jlrllql) for fixed n 
and arbitrary q cannot all be identical. We have also found 
that for the corresponding definition of the phases in the case 
of the dipole elements3) between nd ( n  = 3 - 6) and any dis- 
crete or continuous p and between np  ( n  = 2 - 6) and any 
discrete or continuous d the signs of the nondiagonal ele- 
ments are identical and opposite the sign of the correspond- 
ing diagonal element. 

TABLE 111. Contributions of individual terms to the remainder (16) for S,, , arising after application of the sum ~ l e .  (?he terms in parentheses are also 
included in the sum "n' , . . . ,m.") 

Discrete spectrum 
- - - - - - - - - - 

Individual terms Sum 

n-n' 1 2 3 4 5 n', . . .m 1, . . . m  Continuum 

1-2 - 0.9492 (-0.0350) (-0.0049) (-0.0013) -0.0422 0.9070 0.1098 
1-3 - - 1.398 1 1.1852 (-0.0788) (-0.0140) -0.1008 -0.3137 0.2469 
1-4 - -0.9923 -0.8639 1.2716 (-0.1126) -0.1506 -0.7352 0.3542 
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4. CALCULATIONS WlTH THE GREEN'S FUNCTION IN THE 
HOSTLER REPRESENTATION 

The representation of the Coulomb Green's function 
considered above is easily visualizable; however, it does not 
allow us to obtain answers in closed analytic form. This can 
be done by representing the nonrelativistic Coulomb Green's 
function in the form of a sum over partial waves: 

In the case of a 8-function perturbation, only the value 
of G(r , rf)  at r' = O  matters, and only the s-wave remains in 
the sum (17). Substituting explicit expressions for the partial 
Green's function g o ,  we obtain for the total (unreduced) 
function7'* 

where we have introduced the analog of the principal quan- 
tum number 

The Whittaker function Wv,,(z), defined in Ref. 20, can be 
represented in the form of an asymptotic expansion (see the 
last equation (unnumbered) in Sec. 16.3 of Ref. 20): 

I m 

=e-z/2zv l + C  - [a- ( .+ iP)']). (19) 
s = l  s!z p = l  

To calculate the corrections, we need the reduced 
Green's function at E = E n ,  and, in order to subtract the pole 
as in Eq. (5). it is necessary to consider the values of v near 
integers n. In the case of integer values of v the sum in 
expression (19) terminates and only a finite number of terms 
contribute. It is also readily grasped that for near-integer val- 
ues of v (v= n + E)  only a finite number of terms of the 
series can be of order not higher than E .  For a correct ac- 
count of the pole, it suffices to restrict ourselves to nonzero 
terms linear in the small parameter E .  That the asymptotic 
expansion cuts off at a finite number of terms, 

does not mean that their sum coincides with the function 
being expanded. However, it is not hard to convince oneself 
that in the given case the finite sum (20) indeed reproduces 
the Whittaker function Wn+E,IIZ(~) with the necessary accu- 
racy (see the derivation of the expansion in Section 16.3 of 
Ref. 20). 

It is not difficult to isolate the pole term in expression 
(18), and after subtracting it out we obtain the reduced Cou- 
lomb Green's function: 

- zam' e - ~ n ' 2  " 
Gn(En ;O,r)= - - -2 

2 a r  n! ,=o  n-s)! 

X (n-s) ($(n+ 1)-2$(n-s+l))  I I 
where $(z )  is the logarithmic derivative of the r-function 
and we have introduced the notation 

Some partial expressions for the reduced function (21) of 
some of the lower levels are given in Appendix B. 

Integrating over the coordinate does not pose any diffi- 
culty: 

2n' n f ( t+4 ) - s ' n  n-3s1/2 + In- + + 
n + n l  n (n+n l )  ns' ). (23) 

Results for particular cases, including some asymptotic lim- 
its, are given in Table I. The analytic results coincide with 
the numerical, and the asymptotic limits are calculated in 
analytic form in Appendix C. 

5. CALCULATIONS WlTH THE STURM EXPANSION OF THE 
GREEN'S FUNCTION 

Expression (23) is quite cumbersome, and it is not clear 
how it can be simplified. At the same time, however, in the 
case of the matrix elements diagonal in the principal quan- 
tum number, it is possible to obtain a simple answer. In this 
case we represent the partial Green's functions in the form of 
a Sturm expansion over the Laguerre polynomials9 (see also 
Refs. 8 and 10): 

x t 
nr=l+l ' (n '  +1)!(n1-n) 
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The generalized Laguerre polynomials in Eq. (24) are de- 
fined (in contrast to Refs. 8 and 10) as in Refs. 17 and 19: 

For the corrections to the diagonal matrix elements 
(n l=n )  the arguments of the Laguerre polynomials (z,) in 
Eq. (24) coincide with the general argument of the Laguerre 
polynomial in the radial wave function R,,  , (r), and in the 
calculation of correction (7) radial integrals arise analogous 
to those considered in detail in Ref. 19 in the discussion of 
diagonal dipole matrix elements. After calculating them we 
get the finite sum 

The summation limits of this sum are dictated by the require- 
ment that the arguments of the factorials in the denominator 
be nonnegative; for n 2 3 both lower limits can be replaced 
by n - 3. One can convince oneself by direct summation that 
the quantity in braces is equal to unity. We finally obtain 

It is not hard to make the transformation to parabolic 
coordinates (see Ref. 6), in which the corrections to the di- 
pole matrix elements have the form 

6. DISCUSSION OF RESULTS 

Let us now discuss the quantities that can be measured. 
Besides the level splitting in the Stark effect, the line widths 
(lifetimes) and line intensities, or rather their ratios, can be 
measured with high accuracy. We assume that in the mea- 
surement of the ratio of intensities of the transition from one 
level to another it is possible to achieve sufficient experimen- 
tal accuracy. 

In the Schrodinger approximation the width and inten- 
sity are equal to 

There are a number of corrections to this expression: relativ- 
istic corrections of relative order (za12 and ( ~ a ) ~  are 
known (see, for example, Refs. 8 and 21), as well as correc- 
tions to the yield.22 The leading contributions still unknown 
at the present time are the radiative corrections. In the loga- 
rithmic approximation in the Yennie gauge the leading radia- 
tive correction can be considered nonrelativistically as a cor- 
rection directly to expressions (29) and (30). The 
perturbation of the frequency is completely determined by 
the Lamb shift of the s-level taking part in the transition. The 
corrections to the dipole matrix elements were found above, 
and it is not hard now to find the corrections to the intensities 
and widths. Note that the corrections to the decay width of 
the 2p level 

found in Refs. 4-6 numeric ally^) are in agreement with an 
unpublished result by K. Pachucki, obtained by a fundamen- 
tally different approach. 

The correction to the frequency 

where the index n, pertains to the s-level, and the index 
np,  to the p-level, always has opposite sign in comparison 
with the dipole matrix element. This can be understood from 
considerations of the sum rule (14), which determines the 
sign and scale of the ground level, and by observing the sign 
of the contribution of the diagonal matrix element to the sum 
(9). We also present an analytic expression for the correction 
to the width of the 3s level in the hydrogen atom: 

The remaining states can decay in several different 
ways, and therefore closed expressions for the corrections 
are quite cumbersome. Table IV gathers together the correc- 
tions to the line intensities and also to the partial and total 
line widths for transitions between the lower levels. The cor- 
rections to the transitions not including the levels with 1 = 0 
as either initial or final state are equal in the logarithmic 
approximation to zero. 

Important for applications is the fact that the sum (9) is 
determined by the first few terms (see Table 11), and there- 
fore for estimates it is possible to use the above formulas not 
other than &function potentials. The estimate of the error of 
the logarithmic approximation that we have used in the 
present work is also connected with a consideration of po- 
tentials that are not described by a 8-function and, strictly 
speaking, are non-local. It is possible to apply our results to 
this case if we introduce an effective value for the parameter 
A in Eq. (2) according to the equality 
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TABLE IV. Corrections to the line intensities and partial and total line widths corresponding to transitions in the lower levels, in units of ~ ( ~ a ) r n ~ / . r r .  

Corrections to the intensities and widths 

Level Transition SIII Partial and total ST/T 

in which case an estimate of its relative error is given by 

In the case of a 6-function potential the ratios in (35) are 
equal to zero. The similarly defined dimensionless quantity 
A ( z ~ ) ~ ~ / T ,  in units of which all the corrections are given 
in Tables I-IV, in the case of single-loop radiative contribu- 
tions to the Lamb shift vary from 1.24(3). and 
4.0(1)- for Z=1, 2 to 1.5(1). and 2.6(3). 
for Z=20, 30, where the results for large Z were obtained 
from the numerical calculations of ~ o h r . ' ~  
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APPENDIX A: SUM RULES FOR THE DIPOLE MATRIX 
ELEMENTS BETWEEN LEVELS WITH />I 

Let us consider a central potential of the form 

and the quantity 

The latter quantity is obviously equal to zero. It can be re- 
written as a sum over intermediate states with orbital mo- 
mentum 1. We then obtain the sum rule 

Bq~(qlllrIlnt(l+ l))=O, 
4 

where 

For states of the continuous spectrum with wave number k 
we need only substitute + k ' / ( ~ a r n ) ~  for - lln2 in the prod- 
uct in the latter expression. 

The potential 

which for 1 = 0  is analogous to the potential considered in 
this paper, also leads to the same results. 

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE 
COULOMB GREEN'S FUNCTION 

Here we present the result for the reduced Green's func- 
tion (21) of the first four levels: 
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where C =  0.5772 . . . is the Euler constant. The result for 
the ground state agrees with the results presented in different 
form by many authors (see, for example, Ref. 24). 

APPENDIX C: SOME ASYMPTOTIC LIMITS OF THE 
CORRECTIONS TO THE DIPOLE MATRIX ELEMENTS 

A. In the calculation of the asymptotic limits for 
n'+m (for fixed value of n) the following representation 
can be useful: 

where 

4 u-s ( -  i ) s ( ~ - ~ ) v v  r ( ~ +  I ) ~ ( v - s + ~ )  
Q,'= C 

S = O  S! [ r ( ~ +  i - s ) ] ~  

and we have introduced the notation 

Note that in these terms 

The confluent hypergeometric function appears in ex- 
pression (Cl) in the limit n r  %n: 

n - s + 4  
-- 

2 
1Fl(n-s+5,5,-2n) 
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It should be noted that the term with the derivative in the last 
formula does not reduce to a polynomial and thus the cor- 
rection contains an infinite series. In the case n = 1 we have 

where we have introduced the notation 

nk 
- 

k = 1  kk! 

and for large values of the principal quantum number the 
matrix elements have the asymptotic limit 

The relative magnitude of the correction tends toward a finite 
limit. Explicit expressions for the asymptotic limits of the 
lower levels (n ' = 1 - 4) are given in Table I. 

B. In the limit n--+m (for fixed value of n'), using the 
expression 

and operating in a similar way, we obtain 

The asymptotic limits of the lower levels (n=  1-4) are 
shown in Table I in explicit form. The quantities g2,, and 

appearing in them grow rapidly; for example, g8=437.72. 
The asymptotic behavior of g2,, for large n is given by 
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e2"/2n (Ref. 25), and the combination appearing directly in 
the answers (see Table I) turns out to be extremely slowly 
varying with n.  

')The phase factor of the radial wave function is constructed in such a way 
that all values at zero for the ns-states should be real and positive and 
likewise the first derivatives with respect to the radius for the np-states. 
For large values of I the first nonzero derivative of the radial wave function 
with respect to the radius is required to be real and positive. Real dipole 
matrix elements in the definitions of Ref. 16 corresponds to imaginary ones 
in the definitions of Refs. 18 and 19. 

')1t is usually given in monographs (e.g., Refs. 16-18) with the wrong sign 
(see Ref. 6). 

3)Note that in the expression for the 2 p - n d  matrix elements in Ref. 18 
there is a typographical error (formula (52.4)): 2'' should read 219. 
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