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A theory of coherent scattering of electromagnetic waves by a system of polarized atoms or 
molecules is developed. General expressions for the differential and total cross sections of the 
process are obtained. It is shown that only the orientation and alignment of the polarized 
ensemble can be revealed in coherent scattering. Properties of the angular distribution and the 
polarization of the scattered radiation, as well as circular dichroism, are discussed. Effects 
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1. INTRODUCTION 

Unshifted (Rayleigh) scattering of electromagnetic ra- 
diation, in which the quantum state of the scattering particle 
does not change, is coherent. This means that in the scatter- 
ing of light') by a system of N identical particles (atoms, 
molecules, etc.) occupying a region of space whose linear 
dimensions are small in comparison with the wavelength of 
the scattered radiation, the scattering amplitudes due to all 
the particles add together, and as a result the intensity of 
scattering of the entire system is proportional to N~ (see Ref. 
1, Sec. 59). 

Recall that for coherence effects to appear the indicated 
spatial localization of the ensemble of scattering particles is 
of fundamental importance. Thus, if the distance between the 
particles (in what follows, for definiteness we will speak of 
atoms) significantly exceeds the wavelength of the scattered 
radiation, then interference of the scattering amplitudes of 
individual atoms can be neglected, and coherence effects are 
destroyed. In this case the scattering cross section of the 
entire system is obtained by multiplying the Rayleigh scat- 
tering cross section of a single atom by N). On the contrary, 
in a dense, unbounded medium separate small regions scatter 
light coherently; however, the total intensity of coherent 
scattering at all angles except zero vanishes (see, for ex- 
ample, Ref. 2, p. 19). The remaining coherent forward scat- 
tering is none other than the propagation of light in the me- 
dium, beautifully described by the equations of macroscopic 
electrodynamics. Weak Rayleigh scattering in the medium 
occurs due to various fluctuations (density, anisotropy, 
etc.).2v3 

In the present paper we develop the theory of coherent 
scattering of electromagnetic radiation of a system of polar- 
ized atomic particles, i.e., we assume that an atom (mol- 
ecule) of the medium has nonzero angular momentum j and 
the ensemble is nonequilibrium, so that states with different 
values of the projections m of the angular momentum on 
some direction are nonuniformly populated. General results 
for Rarnan and incoherent Rayleigh scattering by polarized 
atoms were obtained in our previous paper (Ref. 4). Re- 
cently, a study of Rayleigh scattering in a dense polarized 
gas5 was carried out (scattering from fluctuations), general- 
izing the results of the theory of Rayleigh scattering in equi- 

librium media3 to the case of gaseous media with polarized 
particles. 

Note that coherent scattering by freely oriented (unpo- 
larized) atoms does not require a special treatment. The cross 
section of incoherent scattering by freely oriented systems, 
as was shown by Placzek, divides into three independent 
parts: scalar, antisymmetric, and symmetric (see, for ex- 
ample, Ref. 1, Sec. 60). The cross section of coherent scat- 
tering contains only a scalar part?) However, the cross sec- 
tion of coherent light scattering by polarized particles differs 
substantially from the cross section of incoherent scattering 
given in Ref. 4. In this paper, we succeeded in obtaining a 
compact expression for the cross section which makes it easy 
to analyze various effects associated with coherent scattering 
of electromagnetic radiation by a system of polarized par- 
ticles. This latter circumstance is of no small importance for 
the solution of various spectroscopic problems. 

The paper is organized as follows. A basic expression 
for the cross section of coherent light scattering by a polar- 
ized ensemble is obtained in Sec. 2. In Sec. 3, using the 
algebra of angular momentum, the cross section is separated 
into its angular parts and the result is presented in a compact 
form suitable for analysis. Section 4 discusses different new 
effects that can be observed in association with coherent 
scattering. Section 5, the Conclusion, throws out some ideas 
about possible experimental studies of the coherent scatter- 
ing process. 

2. PRESCRIBING THE INITIAL STATE OF THE POLARIZED 
ATOM. CROSS SECTION OF COHERENT SCATTERING 

We assume that the state of a polarized atom having total 
angular momentum j f 0 is an incoherent mixture of states 
with different values of the projection m of the angular mo- 
mentum onto some direction n. In this case the density ma- 
trix of the atom is diagonal in m in the atomic coordinate 
system with axis z ,  aligned with n. As is well known, such 
polarization states arise if the external polarizing action is 
axially symmetric relative to n.6 

We will prescribe the state of the polarized atom not by 
2 j  independent populations of the magnetic sublevels-the 
diagonal elements of the density matrix in the atomic coor- 
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dinate system p:, , but by the irreducible components of the 
density matrix, called the state m~ltipoles:~ 

Equal populations of the magnetic sublevels are associated 
with an unpolarized atom, and in this case 

In general, we have 2 j+  1 various multipoles of state: 

where the bar denotes the statistical average, thus: 

As will be shown below, under conditions in which the di- 
pole approximation applies, only the orientation p: and the 
alignment p; can be revealed in coherent scattering. Recall 
that in mirror-symmetric polarization states, when the mag- 
netic sublevels with opposite values of the projection of the 
angular momentum are equally populated (p:, = p\,-,), 
the orientation and all remaining multiples of odd rank van- 
ish. 

Let us obtain the basic expression for the cross section of 
coherent light scattering by an ensemble of polarized par- 
ticles. To start with, we will use the atomic coordinate sys- 
tem and denote by d u m f m  I d a '  the Rayleigh scattering cross 
section of an atom accompanied by the change in the projec- 
tion of the angular momentum m+m ' . The cross section is 
given in the dipole approximation by the well-known 
Kramers-Heisenberg formula (Ref. 1, Sec. 59) (Reference 1 
uses the atomic system of units) 

Here w is the frequency of the electromagnetic radiation, a 
is the fine structure constant, e and e' are the unit polariza- 
tion vectors of the incident and the scattered photon, and v 
denotes the remaining set of atomic quantum numbers be- 
sides the angular momentum j and its projection m. Summa- 
tion is assumed over the repeated Cartesian indices i and 
k. The operator c ik ,  which we referred to in Ref. 4 as the 
scattering tensor, has the form 

where di  is the Cartesian component of the dipole moment 
operator of the atom. E l  is the energy of its initial state, 
which does not change as a result of Rayleigh scattering, 

is the atomic Green's function (the summation is carried out 
over all possible states In), including the continuum). 

Let N m  particles, in an atomic ensemble consisting of 
N particles, have the projection of their angular momentum 
on the z, axis of the atomic coordinate system equal to m. 
Obviously 

Here for simplicity we assume that all the particles of the 
ensemble have the same angular momentum j ;  however, this 
restriction is easily removed (see the clarifications of formula 
(12) in Sec. 3). If the ensemble scatters light incoherently 
(the distance between particles is significantly greater than a 
wavelength), then the scattering cross section of the entire 
ensemble is given by 

where 

is the cross section of incoherent Rayleigh scattering by a 
polarized atom, whose structure was investigated in Ref. 4. 
Noting that the state of the atom does not change during the 
scattering process and the scattering amplitudes of each par- 
ticle of the ensemble add if the scattering is coherent, we 
have [see formula (2)13) 

where it is natural to call 

the cross section of coherent scattering. We have intention- 
ally carried out the derivation of expression (5) in such el- 
ementary detail because it was specifically at this point in the 
treatment of coherent light scattering by an unpolarized en- 
semble that an error was made in Sec. 60 of Ref. 1, which led 
to the conclusion that the cross section of coherent scattering 
by a freely oriented system contains an antisymmetric and a 
symmetric part as well as a scalar part. 

To wrap up this section, we write out the expression for 
the cross section of coherent light scattering (5) in an arbi- 
trary coordinate system (in invariant form). We denote the 
projection of the angular momentum of the atom onto the z 
axis of this coordinate system by M, and the elements of the 
density matrix by ( v j ~ ~ l 6 l v j M ~ ) .  Expanding the states 
I vjm) in Eq. (5) over the states I vjM) and noting that the 
density operator of the polarized atom has the form 
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we easily find the invariant expression for the cross section: 

3. SEPARATION OF THE GEOMETRIC AND DYNAMIC 
PARTS. DIFFERENTIAL AND TOTAL SCAlTERlNG CROSS 
SECTIONS 

To carry out the sum over the projections of the angular 
momenta in formula (6) and delineate its dependence on the 
various angular coordinates of the problem, we use the stan- 
dard techniques of the angular momentum algebra and the 
method developed in Ref. 4. We define the irreducible com- 
ponents of the scattering tensor cik (3) by the relation 

where c : : ~ ~ ~ ~  is the Clebsch-Gordan coefficient, and the 
irreducible tensors composed from the polarization vectors 
are equal to 

By the vector components in formulas (7) and (8) we mean 
the corresponding spherical components: 

ao=a, ,  a+l=?2-1'2(a,+ia,) .  

Correspondingly, cqlq2 is the spherical component of the 
scattering tensor, defined by Eq. (3),  where the Cartesian 
components of the dipole moment have been replaced by the 
corresponding spherical components. The scalar product of 
the scattering tensor Cik and the tensor el *ek  is expressed in 
terms of the corresponding irreducible tensors (see Ref. 4) as 

In the matrix elements of the irreducible parts of the scatter- 
ing tensor (7) the dependence on the magnetic quantum num- 
bers is extracted with the help of the Wigner-Eckart theory. 
Using the abbreviated notation 

Tk=(vjlltkll vj) , k=0,1,2, 

for the irreducible matrix elements of the scattering tensor 
arising in the problem of coherent scattering, we have 

In the elements of the density matrix of the polarized 
atom it is also easy to extract the dependence on the mag- 

netic quantum numbers and on the orientation of the polar- 
ization axis n. Toward this end, invoking the law of trans- 
formation of the state multiples under rotations, as in Ref. 4 
we represent the density matrix in the form 

where YKQ(n)  is the spherical harmonic of order K and in- 
dex Q. Note that expression ( 1 )  is valid only for the axially 
symmetric polarization states considered here. For non- 
axially symmetric polarization the state of the atom is a co- 
herent superposition of states with different rn, and its den- 
sity matrix turns out to be nondiagonal in m even in the 
initial (atomic) coordinate system imposed by the external 
polarizing action. In this case, the spherical harmonic of n in 
formula ( 1  1 )  and below in formula (12) for the cross section 
is replaced by a linear combination of Wigner functions 
which will depend on the three Euler angles defining the 
orientation of the atomic coordinate system. 

Substituting expressions (9)-(11) in expression (6) and, 
with the help of the orthogonality condition, getting rid of 
the 3 j-symbols in the sum over magnetic quantum numbers, 
we obtain the following expression for the differential cross 
section of coherent scattering: 

Obviously, the index K in the sum in Eq. (12) can take only 
three values: K = 0,1,2. This is a consequence of the fact that 
the expansion of a Cartesian tensor of second rank into irre- 
ducible parts includes only irreducible tensors of zeroth, first, 
and second rank [see Eqs. (7)  and (8)] .  Consequently, only 
the orientation and the alignment of the polarized system can 
be revealed in coherent light scattering: this result being in 
no way connected with the axial symmetry of the polariza- 
tion state. 

Above for simplicity we assumed that all the particles of 
a polarized ensemble have the same total angular momen- 
tum. However, all of our results here easily generalize to the 
case where the ensemble is an incoherent mixture of states 
with different j. Indeed, let W j  be the population of a level 
with some fixed j so that 

Then in the basic expression for the coherent scattering cross 
section (5) we must replace p:, by pkm(j)  and sum over 
j. Notice that the original matrix pk, satisfies the simpler 
normalization condition 
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is the degree of circular polarization of the incident light, 
equal to +- 1 for right (left) circular polarization and zero for 
linear polarization, and 

As a result, in formula (12) and the other formulas which we 
derive below, we must make the following substitution: 

The coherent scattering cross section (12) has a signifi- 
cantly simpler structure than the incoherent scattering cross 
section of a polarized particle.5) In the case under consider- 
ation of axially symmetric systems the coherent scattering 
cross section can be written in a still simpler form containing 
ordinary scalar and vector products of vectors. Toward this 
end, we express the spherical harmonic functions YIQ(n) 
and Y2Q(n) in terms of irreducible tensors made up from the 
vector n: 

We write the scalar constructions entering into expres- 
sion (12) in the following form (the corresponding formulas 
can be found, for example, in Ref. 7): 

{er*@e),= Fi er*e, 2 ~ f ~ ( n ) { e ' * @ e ) ~ ~  
Q 

After substituting relations (13) into formula (12), expanding 
the square of the absolute value and grouping all vector com- 
binations, we can represent the differential cross section of 
coherent scattering by a system of polarized particles in the 
following final form: 

Here k and kr are unit vectors indicating the directions of 
propagation of the incident and scattered radiation, and 

The coefficients a, bi , and ci can be expressed in terms of 
the reduced matrix elements of the scattering tensor Tk [see 
Eq. (lo)]') and state multipoles p;l= (2 j + 1)- In, p;, and 
P; 

For an unpolarized system ( p; = p; = 0) only the coefficient 
a is nonzero. If the system is aligned but not oriented (p; 
# 0, pl = 0) , then the coefficients ci vanish, and if the system 
is oriented but not aligned (p(f # 0, p;= 0), then the coeffi- 
cients bi , c4, and c5 vanish. The expression for the differ- 
ential cross section of coherent scattering (14) will be ana- 
lyzed in more detail in the next section of this paper. 

The total cross section is easily obtained from the differ- 
ential cross section (14) by integrating over all scattering 
directions and taking into account the well-known relations 

As a result, some of the vector combinations vanish and we 
obtain 

where the parameters A,  B, and C can be expressed in terms 
of the coefficients (17): 
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Summation over the two independent polarizations of the 
scattered photon reduces to multiplying the total cross sec- 
tion (18) by two. 

If the polarization of the scattered photon is not mea- 
sured and we are interested only in the angular distribution 
of the scattered radiation, then we need to sum the differen- 
tial cross section (14) over the Mo independent polariza- 
tions. This is easily done with the help of the well-known 
identity (Ref. 1, Sec. 45) 

Summing the parameter 61 (16) over the polarizations obvi- 
ously gives zero since it is equal to + 1 for right (left) cir- 
cular polarization. 

With the help of an identity analogous to (19) it is also 
easy to average the differential cross section (14) and the 
total cross section (18) for coherent scattering over the po- 
larizations of the incident photon, i.e., to go over to the case 
of scattering of unpolarized light. 

Finally, we will show how to obtain an expression for 
the scattering cross section in the most general case of partial 
polarization of the incident radiation. The state of partial 
palarization is prescribed by the polarization density matrix, 
which in the basis of states with definite helicity (the basis 
vectors here are the unit vectors of right and left circular 
polarization of the incident radiation) is expressed in the 
standard way in terms of the Stokes parameters qi : 6  

Recall that the parameter q2 prescribes the degree of circular 
polarization, q3 is the degree of linear polarization relative to 
the x and y axes of the coordinate system whose z axis 
points in the direction of propagation of the incident light 
(below we will call this the laboratory coordinate system), 
and v1 is the degree of linear polarization relative to two 
mutually perpendicular axes rotated by an angle of 45" rela- 
tive to the x and y axes of the laboratory coordinate system. 
The values of the Stokes parameters q1 = q2 = q3 = 0 corre- 
spond to unpolarized light. In the general case ~ ~ 7 : s  1 
holds, whereas in the state of pure polarization prescribed by 
the vector e  (formulas (14) and (18) correspond to this case) 
we have 2,7?= 1 and v2=t2 (15). 

Let e ,  be the unit vectors of right (left) circular polar- 
ization of the incident photon which are expressed as follows 
in terms of the first two basis vectors of the laboratory coor- 
dinate system: 

To make the transition to the case of partially polarized in- 
cident radiation, it is necessary to average cross sections (14) 
and (18) over the two statistically-independent elliptical- 
polarization states (the eigenvectors of the polarization den- 
sity matrix), whose incoherent superposition with statistical 
weights equal to the eigenvalues of the density matrix (20) 
constitutes partially polarized light. Such an operation is 
equivalent to the formal substitution 

in expressions (14) and (18). Here t2 given by (15) is re- 
placed by q2. 

4. DISCUSSION OF RESULTS 

Let us consider what effects polarization of the particles 
produces in coherent scattering. Obviously, the ensemble of 
polarized particles becomes asymmetric, which is expressed 
by the substantial change both in the angular distribution and 
in the polarization properties of the scattered radiation while 
the total cross section continues to depend on the direction of 
propagation and the polarization of the incident radiation. 
The new, experimentally observable effects arising here can 
be analyzed with the help of formulas (14) and (18). Before 
discussing some of them, note once more that due to the 
difference in the physics of the two scattering processes the 
structure of the cross section for coherent scattering differs 
substantially from the structure of the cross section for inco- 
herent scattering by polarized particies." As a consequence of 
this difference, only the orientation and alignment (pl and 
p;) of tbe polarized ensemble can be revealed in incoherent 
scattering. In addition, whereas the state multipoles enter lin- 
early in the incoherent scattering cross section, the coherent 
scattering cross section also contains the product p;tp;, . 
This latter circumstance leads to a number of qualitatively 
new effects. Thus, for example, the total cross section for 
coherent scattering of linearly polarized light ( t2=0)  by an 
oriented but unaligned system (p; # 0, p!=O) continues to 
depend on the geometry as well as the orientation p; of the 
system [see the second term in formula (18)l. Under these 
conditions the total cross section for incoherent scattering 
coincides with the cross section for scattering by an unpolar- 
ized particle4 (the quantity p; is proportional to the projec- 
tion of a pseudovector, the average angular momentum, onto 
the vector n and cannot enter into the cross section linearly if 
the pseudoscalar t2 is equal to zero). 

4.1 Coherent scattering by a system of polarized particles 

Substituting pl=p;=O in formulas (17) and then sub- 
stituting these results in the general expression (14), we ob- 
tain the differential cross section for coherent scattering.by a 
system of unpolarized particles 
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which coincides with the scalar part of incoherent Rayleigh 
scattering by an unpolarized particle? The total cross section 
in this case, naturally, does not depend on the parameters of 
the incident radiation: 

Thus, the differential cross section for coherent scattering of 
light by a system of freely oriented (unpolarized) particles 
does not contain either an antisymmetric or a symmetric part, 
in contradiction to what is stated in Sec. 60 of Ref. 1 and, 
what is more, exactly coincides with the scalar cross section 
for incoherent scattering rather than differing from it by a 
factor of 2 j + 1. 

The absence of an antisymmetric and a symmetric part 
in the coherent scattering cross section of a system of unpo- 
larized particles follows entirely from formula (5): in the 
average of the polarizability (the matrix element of the scat- 
tering tensor) over the orientations of a spherically symmet- 
ric system of particles, only the scalar part should remain. 
This result can be obtained from other, purely physical con- 
siderations. As was mentioned in the Introduction, the propa- 
gation of light in an unbounded medium from the micro- 
scopic point of view is simply its coherent forward 
scattering. But it is not hard to show that only for scalar 
forward scattering is the polarization of the light unchanged. 
Consequently, the presence of nonscalar parts in the cross 
section of coherent scattering by a system of unpolarized 
particles means that when light propagates in an isotropic 
medium its polarization changes. 

Also note that the scattering of electromagnetic waves 
by macroscopic particles whose linear dimensions are small 
in comparison with the wavelength, first considered by Ray- 
leigh (see Refs. 2 and 3), from a microscopic point of view is 
another example of coherent scattering. If with the help of 
identity (19) we sum cross section (21) over the polarizations 
of the scattered light and substitute it in Eq. (4), then we 
actually, by way of a microscopic derivation, reproduce the 
Rayleigh formula (in which we need to note that the particles 
are the particles of a gas, i.e., their dielectric constant is close 
to unity). In this regard we point out that our basic expres- 
sion (4) could in general have been derived on the basis of 
considerations from classical electrodynamics similar to 
Rayleigh's arguments. In this case, however, we would have 
obtained a formula for the scattering intensity in a given 
direction, already summed over the polarizations of the scat- 
tered light and therefore less informative. 

4.2 Structure of the differential cross section of coherent 
scattering. Effects induced by processes of 
dissipation of light energy 

The expressions for the coherent scattering cross sec- 
tions (14) and (18) contain the state multipoles p l  and p; ,  
defined in the atomic coordinate system with its quantization 
axis 2, aligned with the vector n (see Sec. 2). The orientation 
p l  is proportional to the average projection of the angular 
momentum (pseudoscalar) onto the vector n and, conse- 
quently, is a pseudoscalar. In addition, this pseudoscalar, as 
is obvious, is T-odd, i.e., it changes sign upon time reversal. 

At the same time, the alignment p; is a T-even scalar. With 
this in mind, let us discuss the structure of the individual 
terms in the differential cross section of coherent scattering 
(14). Here for brevity we will refer to each term by its coef- 
ficient (e.g., the bl  term, etc.). 

The bi coefficients do not depend on the orientation p l  
[see formulas (17)l. The b,-term, which is quadratic in the 
alignment p; , cannot enter into the cross section of incoher- 
ent scattering by aligned systems, whereas the b2- and 
b3-term are linear in p; so that the vector combinations en- 
tering into them should also show up in the incoherent scat- 
tering cross section. 

Of especial interest is the b3-term, containing T-odd 
vector combinations (these combinations are also pseudosca- 
lars, but their pseudoscalarity is compensated by the pseudo- 
scalars & and (;). Since the scattering cross section is 
T-even, the coefficient b3 should also be proportional to a 
T-odd parameter. The quantity Im(ToT;) entering into b3 
(17) is T-odd. This quantity is equal to zero if the scattering 
tensor [see Eqs. (3) and (7)] is Hermitian and, from a formal 
point of view, becomes nonzero only for a non-Hermitian 
scattering tensor. The anti-Hermitian part of the scattering 
tensor is T-odd and nonzero both for resonance scattering 
due to the width of the resonant level and for above- 
threshold scattering (the photon energy exceeds the ioniza- 
tion threshold, or dissociation threshold for molecules) due 
to the non-Hermiticity in this case of the Green's function 
(resolvent) dr ,  +, . Non-Hermiticity, in principle arising as a 
result of taking radiative corrections into account, can be 
neglected. Thus, the b3-term in (14) is nonzero only when 
one of the light-energy dissipation channels is open: the 
photo-ionization channel or the photodissociation channel in 
the case of above-threshold scattering; and the radiative, col- 
lisional, or some other channel for resonance scattering. The 
role of the T-odd parameter in this case falls to a physical 
parameter determining the light-energy dissipation rate (the 
width of the resonant level, the probability of photo- 
ionization or photodissociation) which is proportional to the 
matrix element of the anti-Hermitian part of the scattering 
tensor. Note that the b3 term determines a number of quali- 
tatively new effects in the process of coherent scattering by 
aligned systems: circular dichroism, some polarization prop- 
erties (see below). Therefore we can say that these effects are 
dissipation-induced. As was recently shown by ~anakov?  
under certain conditions dissipative processes lead to polar- 
ization anomalies in the incoherent scattering of light by un- 
polarized atoms.@ The influence of dissipative processes on 
the incoherent scattering of light by oriented atoms is dis- 
cussed in Ref. 10. 

The c l  term in expression (14), quadratic in the orienta- 
tion, cannot enter into the cross section for incoherent scat- 
tering. All the remaining c terms are linear in p l .  The vector 
combinations entering into the c2' terms and c3 term appear 
in the cross section for incoherent scattering by oriented sys- 
tems (see Ref. 10). The last two terms in (14) contain prod- 
ucts of the orientation and the alignment and show up only in 
the cross section for coherent scattering. 

Note also that the vector combinations in the c2% terms 
and c4 term are T-odd; however, the overall T-evenness of 
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these terms is ensured by the T-oddness of the orientation 
p l .  At the same time, the c3 term and c5 term contain 
T-even vector combinations; therefore they differ from zero 
due to dissipation effects (the coefficients c3 and c5 (17) 
contain the T-odd quantities Im(ToTf) and Im(TIT,*)) like 
the b3-term. 

Finally, we note that the b3-term, c3-term, and c5-term 
in (14), which are proportional to the T-odd dissipative pa- 
rameter, vanish when integrated over all scattering directions 
and do not appear in the total cross section (18). 

4.3 Circular dichroism 

By circular dichroism we mean the difference in the re- 
sult that light of left or right circular polarization has on a 
physical system. 

Circular dichroism in the total cross section of coherent 
scattering (18) is observed only in the case of an oriented 
ensemble, i.e., for p; # 0 ( t2=  +-- 1 in (18) for right or left 
circular polarization of the incident radiation). The absence 
of circular dichroism in the total cross section of any elemen- 
tary process in unoriented systems is a simple consequence 
of parity conservation (see the analogous discussions for in- 
coherent scattering of light in Ref. 4 and for multiphoton 
ionization of polarized atoms in Refs. 11 and 12). This result 
is obvious: the pseudoscalar t2 cannot appear in the total 
cross section if the orientation p l  (a pseudoscalar) is equal to 
zero. 

At the same time, circular dichroism in the differential 
cross section can be observed for zero orientation. This state- 
ment is quite obvious since it is possible to construct a num- 
ber of pseudoscalar combinations from the vectors entering 
into the expression for the differential cross section. Recall 
that if a photon with nonzero degree of circular polarization 
6; (16), e.g., a circularly polarized photon, is recorded in the 
scattering, i.e., the scattered light is passed through a polar- 
ization filter, then the effect of circular dichroism is observed 
already in the scattering of light by unpolarized systems. The 
term responsible for this effect, t25;(kkr), can be extracted 
from ler*eI2 in the differential cross section (21). If a lin- 
early polarized photon is recorded, or polarization of the 
scattered light is, generally speaking, not recorded, then cir- 
cular dichroism is absent in the scattering of light by unpo- 
larized systems. 

Speaking of circular dichroism in the differential cross 
section of coherent scattering by polarized systems, we have 
in mind specifically these cases: scattering without measure- 
ment of polarization of light or scattering with measurement 
of linear polarization (e' is the material vector, 5; = 0). Here 
the effect of circular dichroism is due to the b3-term, the 
c2,-terms, and the c4-term in (14), which are proportional to 
the degree of circular polarization of the incident light. 

The c2,-terms and c4-terms are proportional to the ori- 
entation p l  [see Eqs. (17)], and the effect of circular dichro- 
ism due to them is preserved even in the total cross section 
(18). As was discussed above, terms of c2, type are also 
present in the cross section for incoherent scattering by ori- 
ented systems,'0 and a c4-term also appears in the coherent 
scattering cross section for pg # 0. 

If the ensemble of particles is unoriented, then the 
c2,-terms and c4-term in (14) will be absent, and the effect 
of circular dichroism in the differential cross section, deter- 
mined by the b3-term, will be due only to the alignment of 
the system. It was shown above that the coefficient b3 in (14) 
is nonzero only if a light-energy dissipation channel is open. 
Consequently, circular dichroism in the differential cross 
section for light scattering by aligned systems is dissipation- 
induced. 

4.4 Polarization properties of the scattered radiation 

Expression (14) for the coherent scattering differential 
cross section determines the intensity of scattering in the 
direction k' with definite polarization e' , so it contains com- 
plete information about the polarization state of the scattered 
light. The polarization state of the scattered light is deter- 
mined by the polarization density matrix, which is written in 
terms of the Stokes parameters 17: analogous to the polariza- 
tion density matrix of the incident light (20). With the help 
of formula (14) we can determine the Stokes parameters of 
the scattered light for arbitrary polarization of the ensemble 
of particles and arbitrary polarization of the incident light. 

By way of an example, let us restrict ourselves to the 
case of scattering of electromagnetic radiation by an aligned 
ensemble, for which p l  equals zero. As is well known, such 
a polarization state of the ensemble arises if the polarizing 
excitation is not only axially symmetric, but also mirror- 
asymmetric (e.g., excitation by unpolarized or linearly polar- 
ized light). An interesting non-optical method of aligning 
diatomic molecules with supersonic expansion of a buffer 
gas was developed in Ref. 13. 

Note also that in the coherent scattering of long- 
wavelength radiation, when the frequency o is small in com- 
parison with the characteristic atomic (molecular) frequen- 
cies, the orientation of the ensemble is not revealed, and for 
any type of polarization the ensemble behaves as if it were 
purely aligned. Indeed, the orientation p: enters into the ex- 
pression for the coherent scattering cross section in combi- 
nation with the reduced matrix element T, of the scattering 
tensor [see Eqs. (12) and (17)l. However, TI is proportional 
to the vector polarizability and is negligibly small in the 
low-frequency limit. This result follows directly from for- 
mula (7), in which for k=  1 the two Green's functions es- 
sentially cancel each other out. 

Let us derive explicit expressions for the Stokes param- 
eters of the scattered radiation 171 when the incident radiation 
is linearly polarized (e is the material vector, t2= 0). From 
the general expression (14) with the help of the identity (19) 
we find the differential cross section for coherent scattering 
by an aligned ensemble summed over the polarizations of the 
scattered light: 

In our case the first three terms in expression (14) are iden- 
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tical for right and left circular polarizations of the scattered 
radiation, so only the fourth term contributes to the degree of 
circular polarization 71, and 

To find the degrees of linear polarization 7; and 77; we must 
first obtain an expression for the cross section from (14) in 
which the linear polarization vector of the scattered photon 
e' makes some arbitrary angle /3 with the x' axis of the 
coordinate system of the scattered photon (the z' axis is 
aligned with the vector kt) .  It is easy to obtain this expres- 
sion in the laboratory coordinate system with z axis aligned 
with the vector e (see Ref. 4), and then rewrite it in invariant 
form. Then assigning P the values 0, 7~12, 7~14, and 31~14, 
we obtain expressions for 7; and 7; (the x' axis lies in the 
plane of the vectors e and k'): 

It follows from simple physical arguments that if the 
incident light is completely polarized (i.e., it is determined 
by the polarization vector e) then the coherently scattered 
light will also be completely polarized. Indeed, it is not a 
single atom that coherently scatters light, but the atomic en- 
semble as a whole. The initial state of the system "photon 
plus atomic ensemble" was pure. The final state of the 
atomic ensemble after coherent scattering coincides with the 
initial state, therefore the scattered photon should also be 
found in a pure quantum-mechanical state. In the case under 
consideration here this fact is verified indirectly: with the 
help of formulas (22), (23), and (24) it is easy to show that 
X i  17,!2= 1. Thus, the scattered light, generally speaking, is 
elliptically polarized. 

The degree of circular polarization 7; (22) is determined 
by a T-odd vector combination, so for linear polarization of 
the incident light the degree of circular polarization of the 
light scattered by an aligned ensemble is dissipation-induced 
and like the coefficient b3 is nonzero only for above- 
threshold or resonance scattering, as was discussed above. In 
all other frequency ranges the scattered light will be linearly 
polarized. In this case, for an unpolarized ensemble with 
7; = 0 and 7; = 1 [see Eqs. (23) and (24)], the scattered li&t 
is polarized along the x' axis, and for p; # 0 at an angle 
/3' = ar~tan(~; l~&)/2  to the x' axis. Measuring the degree of 
circular polarization of the scattered radiation, it is possible 
according to Eq. (22) to determine the alignment p; .  If 
T;= 0 holds, then the alignment can be determined from the 
degrees of linear polarization 7; (23) and 7; (24). In this 
case it is not even necessary to examine the properties of the 
angular distribution of the scattered radiation. 

Note also that the degree of circular polarization of the 
light scattered by an aligned ensemble will be nonzero only 

if the dissipation channels are open in all cases when the 
incident light has zero circular polarization (e.g., for scatter- 
ing of unpolarized light). 

5. CONCLUSION 

The results obtained in this work may be useful in the 
design of experiments on coherent scattering of electromag- 
netic waves, in their interpretation, and also in the develop- 
ment of a number of new spectroscopic methods. 

It should be borne in mind that to observe coherent scat- 
tering of electromagnetic radiation in the optical range by 
polarized particles it is necessary to localize a large quantity 
of free atoms (molecules) in a volume whose linear dimen- 
sions are small in comparison with the wavelength. Recent 
theoretical maintain that such localization can in 
principle be achieved by methods of optical control of the 
motion of the atoms. Speaking of the possibility of experi- 
mentally observing the effect of coherent light scattering, we 
note that when the ratio of the wavelength X to the mean 
distance between the atoms is of the order of lo3, for which 
it is possible to localize up to lo9 atoms in a volume on the 
order of X3, the scattering intensity will be comparable with 
the intensity of incoherent scattering of light by a gas con- 
taining - 1018 atoms and, for a density of - 10 '~cm-~,  oc- 
cupying a volume on the order of 1 cm3. 

If we consider coherent scattering of long-wavelength 
radiation, then problems with the localization of particles 
should not arise. It can be shown that in this case the scat- 
tering intensity is small since the cross section (5) is propor- 
tional to w4. However, it should not be forgotten that we are 
talking about coherent scattering, whose intensity (4) is pro- 
portional to N ~ .  For a fixed particle density, the total number 
of particles N  grows like i3 as one increases the wavelength 
X and, correspondingly, the localization region, so that the 
intensity of coherent scattering in this case grows like X2. It 
is precisely for this reason that one observes Rayleigh scat- 
tering of electromagnetic waves from small particles, at the 
basis of which lies coherent scattering from the atoms (mol- 
ecules) that make them up. Only recall that, as was discussed 
in Sec. 4, when long-wavelength coherent scattering from 
atoms is observed, only their alignment can be revealed (if 
we are not talking about atoms polarized in Rydberg states), 
whereas in the case of pblarized molecules their orientation 
can also be revealed if the radiation frequency o is not small 
in comparison with the characteristic molecular vibrational- 
rotational frequencies. 

Note, finally, that in Sec. 4 we discussed by no means all 
the effects that can be observed in the process of coherent 
scattering of electromagnetic radiation by an ensemble of 
polarized atoms. The general expressions for the cross sec- 
tions (14) and (18) allow us in a comparatively simple way 
to analyze any experimental situation. We hope that this 
study of coherent scattering of electromagnetic radiation by 
polarized systems will attract the attention of experimental- 
ists. 

654 JETP 82 (4), April 1996 M. Ya. Agre and L. P. Rapoport 654 



ACKNOWLEDGMENTS 

This work was made possible in part by a grant from the 
International Scientific Fund (Grant No. JEW100). 

' b e  word "light" is used here and below simply for brevity. The discus- 
sion is not limited to scattering of electromagnetic radiation in the optical 
range, but also significantly greater wavelengths. 

')section 60 of Ref. 1 makes an invalid assertion about the structure of the 
coherent scattering cmss section of b l y  oriented systems (see below, 
Sec. 4). 

3 ) ~ e a k  ( a N) incoherent Rayleigh scattering, which is accompanied by a 
change in the projection of the angular momentum of the atom, can of 
course be neglected. 

')The differential cmss section of incoherent scattering contains state multi- 
poles up to fourth rank inclusively, but only the orientation and the align- 
ment remain in the total cmss ~ect ion .~  

')The quantities To. T I ,  and T2 are proportional to the scalar, vector, and 
tensor parts of the dynamic polarizability, introduced in Ref. 8. 

')1t can be shown that it should not be possible to observe these anomalies in 
coherent scattering. 

'B. V. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electro- 
dynamics, 2nd ed. (Pergamon Press, Oxford, 1982). 

21. L. Fabelinskil, Molecular Scattering of Light (Plenum Press. New York, 
1968). 

3 ~ .  D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media 
(Pergamon Press, Oxford, 1960). 

'M. Ya. Agre and L. P. Rapoport, Zh. ~ k s ~ .  Teor. Fiz. 104,2975 (1993) 
[JETP 77, 382 (1993)l. 

'T. L. Andreeva, P. L. Rubin, and E. A. Yukov, Zh. E ~ S ~ .  Teor. Fiz. 107, 
1160 (1995) [JETP 80, 645 (1995)l. 

'K. Blum, Density Ma?rix Theory and Its Applications (Plenum Press, New 
York, 1981). 

'D. V. Varshalovich, A. N. Moskalev, and V. K. Khersonskil, Quantum 
Theory of Angular Momentum (World Scientific: Singapore, 1988). 

'N. L. Manakov and V. D. Ovsyannikov, Zh. Eksp. Twr. Fiz. 75, 803 
(1978) [Sov. Phys. JETP 48,406 (1978)l. 

'N. L. Manakov, Zh. Eksp. Teor. Fiz. 106, 1285 (1994) [JETP 79, 696 

(199411. 
'OM. Ya. Agre and N. L. Manakov, J. Phys. B 29, L7 (1996). 
I'M. Ya. Agre and L. P. Rapopo~t, Zh. Eksp. Teor. Fiz. 99, 429 (1991) 

[Sov. Phys. JETP 72, 238 (1991)l. 
"M. Ya. Agre, V. D. Ovsiannikov, and L. P. Rapoport, Laser Phys. 3,719 

(1993). 
"v. Aquilanti, D. Ascenzi, D. Cappelletti, and F. Pirani, Nature 371, 399 

(1994). 
"v. V. Klimov and V. S. Letokhov, JETP Lett. 61, 13 (1995). 
"YU. B. Ovchinnikov, J. Sciding, and R. Grimm, JETP Lett. 61.21 (1995). 

Translated by Paul F. Schippnick 

655 JETP 82 (4), April 1996 M. Ya. Agre and L. P. Rapoport 655 


