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The low-energy theorem for the forward Compton scattering is generalized to the case of 
arbitrary target spin. The generalization is used to calculate the corresponding contribution to the 
deuterium hyperfine structure. Nuclear-structure corrections prove to be important due to 
the deuteron's large size. The calculated corrections of this type remove the discrepancy between 
the theoretical and experimental values of the deuterium hyperfine splitting. An explicit 
analytical result is also obtained for the deuteron polarizability contribution to the Lamb 
shift. 63 1996 American Institute of Physics. [S 1063-776 1 (96)00404-01 

1. INTRODUCTION effect was calculated in the square-well approximation for 
the nuclear potential. The correction was also calculated in 

The h~pnfine (hfi in the deuterium gound state Ref. 10 for separable potentials. In the present paper we ob- 
has been measured with high accuracy. The most accurate tain a closed analytical result in the zero-range approxima- 
experimental result was obtained' with an atomic deuterium tion for the deuteron Dolarizabilitv contribution to the ~~~b 
maser: shift. 

vex,= 327 384.352 522 2( 17) kHz. (1) 

On the other hand, theoretical predictions allowing for 2. THE LOW-ENERGY THEOREM FOR FORWARD 
higher-order QED corrections yield COMPTON SCATTERING BY A TARGET WITH ARBITRARY 

V Q E D = ~ ~ ~  339.27(7) kHz. (2) SPIN 

This value was obtained by using the theoretical result Ifor 
hydrogen hf splitting from Ref. 2, 

1 420 45 1.95( 14) kHz, 

which does not allow for proton structure and the recoil ra- 
diative correction, and by employing the theoretical 
hydrogen-to-deuterium hf constants ratio from Ref. 3, equal 
to 4.339 387 6(8), which allows for the nuclear magnetic 
moments ratio and the reduced mass effect in I +(0)12. 

In the present paper the discrepancy1) 

Vex,,- VQED= 45 kHz 

According to the well-known theorem for Compton scat- 
tering by a spin-; hadron,"~'~ the scattering amplitude is de- 
scribed by a Feynman pole diagram. Here we are interested 
not in (spin-independent) Thomson scattering, which is of 
zeroth order in the photon frequency w, but in the next, 
spin-dependent, term in the w- expansion. The result can also 
easily be obtained directly in the nonrelativistic 
approximation.'3 In this approximation an electromagnetic 
vertex can be written immediately for arbitrary spin s: 

is removed by allowing for effects associated with the deu- 
teron's finite size, which have a stronger influence in deute- 
rium than in hydrogen. One nuclear-structure contribution to 
the deuterium hf splitting was obtained fairly long ago4 by 
intuitive arguments and was later discussed in greater details 
in Refs. 5-7. We threat the deuteron finite-size effects sys- 
tematically. Here we not only reproduce the old result but 
obtain new corrections, including those generated by  the 
deuteron's electric and magnetic form factors. 

To calculate some of the contributions to the deuterium 
hf structure we generalize the low-energy theorem for Comp- 
ton scattering by a target with arbitrary spin. 

Another topic considered is the contribution of deuteron 
polarizability to the deuteron Lamb shift. The fact that the 
corresponding correction is close to the accuracy attained in 
experiments was pointed out in Refs. 8 and 9, where the 

Here Z is the hadron charge, and the g-factor is related to the 
magnetic moment p (measured nuclear magneton e/2mp 
units) as follows: 

In forward scattering, when the hadron is at rest (p= 0) and 
the initial and final photons have physical transverse polar- 
izations ((ke) = (ke' ) = 0), such vertices are reduced to pure 
spin interaction. The nonrelativistic pole scattering amplitude 
generated by this interaction is 

This expression is incomplete, however. If we apply it to 
scattering by a proton, the amplitude does not agree with the 
well-known result of Refs. 11 and 12, according to which the 
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forward-scattering amplitude must be proportional to 
(g - 212. An explanation was given in Ref. 13; namely, the 
nonrelativistic pole amplitude must be supplemented by a 
contact term generated by spin-orbit coupling, which re- 
stores the agreement with the classical result."*12 

The contact term can easily be obtained for the case of 
arbitrary spin (as well as the nonrelativistic pole contribution 
(5)). We take the equation of motion for the spin in an ex- 
ternal electric field E in the lowest nonvanishing order in 
vIc: 

Here A is the target mass measured in units of mp (i.e., for a 
nucleus, which is the case we are mainly interested in here, 
A the atomic number). Obviously, the interaction Hamil- 
tonian generating Eq. (6) is 

Equations (6) and (7) differ only slightly from formulas in 
the Berestetskir et al., book.I4 After substituting 

p- ZeA v= - 
Amp 

into the Hamiltonian (7) we arrive at the following contact 
interaction: 

It produces an additional contribution to the scattering am- 
plitude: 

The sum of (5) and (9) yields the total spin part of the 
low-energy forward scattering amplitude: 

This result is the generalization of the low-energy theorem 
we are looking for. 

In the case of a proton s= l and Z= A = 1 ) the above 
formula becomes the result obtained in Refs. 11 and 12. 

3. THE LOW-ENERGY THEOREM AND THE DEUTERIUM 
HYPERFINE STRUCTURE 

Since this low-energy amplitude depends on the nuclear 
spin, there is an additional contribution to the hf structure. 
Calculating this amplitude, however, requires modifying the 
amplitude. The reason is that both photons exchanged by the 
electron and nucleus are off the mass shell, i.e., where w 
# I  kl. Moreover, virtual photons have extra polarizations. 
Here we use the gauge Ao=O, in which the photon propaga- 
tor is 

dim kikm 
Dim(w,k)= -5, dim= aim- -, w -k "'2 

First, the magnetic moment contribution MI,, to the 
pole diagram is replaced by 

Second, the convection current, proportional to k k  for a 
nucleus at rest, yields a nonzero contribution to the spin- 
dependent forward scattering amplitude: 

We can now write the expression for the nuclear-spin- 
dependent electron-nucleus scattering amplitude generated 
by the two-photon exchange with the deuteron intermediate 
state: 

Here l y  = (me,O,O,O) is the electron momentum. The product 
yi(f- k+me) yj is reduced to - iweijluI, where o is the 
electron spin. We calculate the Feynman integral with loga- 
rithmic accuracy. Two points must be mentioned here. The 
singularity at w=O, originating from l/w2 in the projection 
operator ( l l ) ,  must be interpreted in the principal-value 
sense. Moreover, calculations involve the integral 

which diverges algebraically as 1 kl +O. Regularizing this in- 
tegral requires introducing a nonzero electron velocity v. 
This leads to the well-known Coulomb wave-function cor- 
rection ~ a l v ,  which must be ignored since it is in no way 
related to our problem. We also discard the nonlogarithmic 
terms that emerge in calculating this integral. 

It is convenient to write the result in the following way. 
The spin-dependent Born contribution to the electron- 
nucleus scattering amplitude is 

which is the Fourier transform of the lowest-order contact hf 
interaction multiplied by minus one. Hence the ratio 
Ael= TeI/To is simply the relative value of the discussed 
correction to the hf structure. The result for the integral (14) 
can be written as 

For s= 4 and A = Z= 1 this agrees with the correspond- 
ing results of Refs. 15 and 16 for muonium (where the muon 
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mass serves as the effective cutoff parameter A) and hydro- 
gen (where the integral is cut off at the typical hadronic scale 
mp). 

In the case of deuterium (s = 1, g = p d =  0.857, A = 2, 
and Z =  1 ) we are chiefly interested in the range of integra- 
tion over the momentum transfer k,  limited by the inver,se 
deuteron size, ~ = 4 5 . 7  MeV. This leads to the following 
result for the relative correction in deuterium: 

For higher momentum transfers, k> K, the amplitude of 
Compton scattering by a deuteron is the coherent sum of the 
amplitudes for scattering by a free proton and neutron. This 
contribution to the hf structure can easily be obtained from 
the above formula. Since both nucleons in the deuteron are in 
the triplet state, d 2  can be substituted for sp and s, . Cutting 
off the logarithmic integral at the usual hadronic scale mp 
= 770 MeV, we get 

Here pp= 2.79 and p, = - 1.91 are the proton and neutron 
magnetic moments. 

Note also the strong numerical cancellation of A,, and 
b i n  - 

4. CONTRIBUTION OF DEUTERON VIRTUAL EXCITATIONS 

The low-energy Compton amplitude discussed above is 
the linear term in the expansion in powers of u (and also 
linear in Ik12/o for virtual photons) of the total amplitude. 
One could expect that for deuterium with its low binding 
energy this approximation is invalid even for the atomic 
problem considered here. However, as we will shortly see, 
the deuteron virtual excitations play an important role in our 
problem and dominate the present effect. Since the contribu- 
tion of high momentum transfer k> K has been calculated 
earlier (see Eq. (18)), we limit ourselves to the region where 
k< K. All calculations are carried out in the zero-range ap- 
proximation, which makes it possible to achieve results in a 
closed analytical form. 

We start with transitions induced solely by spin interac- 
tion. The corresponding scattering amplitude is 

Here I = K2/mp is the deuteron binding energy, ~ , = ~ ~ / m ~  is 
the energy of the intermediate state In) (all intermediate 
states belong to the continuous spectrum), and 

where up(,, is the proton (neutron) spin operator. 
In calculating this contribution we retain only the terms 

logarithmic in the parameter E=Z/K= ~ I m ~ 9 1 .  The loga- 
rithm emerges as a result of integration with respect to k .  

Obtaining it requires only setting the exponentials in S equal 
to unity. The operator S can induce only M 1 transitions. In 
the zero-range approximation the ground deuteron state is 
purely 3 ~ 1 ,  from which an M 1 transition is possible only 
into S states. 

Since the total spin operator s=(up+ un)/2 does not 
induce triplet-singlet transitions, we can reduce S to 

Our problem of the hf structure requires that the tensor (19) 
have an antisymmetric part that is linear in the deuteron spin 
s. This part has the following form: 

where ('So ,P 1 3 ~ 1 )  is the overlap integral of the ground-state 
wave function in the zero-range approximation, 

and the singlet function with momentum p. 
The corresponding contribution to the electron-deuteron 

scattering amplitude, 

can easily be calculated with logarithmic accuracy. Indeed, 
to this accuracy the energy denominator in Eq. (20) can be 
simplified, so that we have 

After this, integration with respect to p is done by employing 
the completeness relation. The resulting relative correction to 
the deuterium hf structure is 

Finally, let us now consider the inelastic contribution 
induced by the combined action of the convection and spin 
currents. Since the convection current is spin-independent, 
all the intermediate states are triplets. Hence we can replace 
the operator S with 

In accordance with the common selection rules, there is no 
way by which the convection current can excite the ground 
state to 3 ~ 1  states. But in the zero-range approximation all 
states with 1 # 0 are free, which means that for the interme- 
diate states we can select plane waves, the eigenfunctions of 
the momentum operator. Then the only matrix element in the 
amplitude is 
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Thus, the amplitude is 

The integrals that emerge in the calculation of the corre- 
sponding part of the electron-deuteron scattering amplitude, 

are fairly complicated even if we only retain terms singular 
in the parameter E= Klmp< 1, i.e., 1 / ~  and In r. The relative 
correction to the hf structure in this approximation is 

The term 

me P n  
-a- - 

2~ ~ d '  

was obtained and discussed in Refs. 4-7. But numerically 
the new term 

is found to be greater. 

5. CORRECTIONS DUE TO THE FINITE DISTRIBUTION OF 
THE DEUTERON CHARGE DENSITY AND MAGNETIC 
MOMENT 

For hydrogen the current problem was considered long 
ago by zemach.17 Obviously, in deuterium these corrections 
must be larger. In the zero-range approximation the problem 
can be solved analytically. 

We start with the second-order electron-deuteron scat- 
tering amplitude induced by the deuteron charge and mag- 
netic moment. The nucleus is treated in the static limit. The 
distributions of the charge ind magnetic moment in the 
nucleus are taken into account by introducing the corre- 
sponding form factors, Fch and F,. For the amplitude we 
have 

X 
FCh(q2)Frn(q2) YO(~+G   me)^- ~ ( i + G + m e )  YO 

(1" ( ~ + 4 ) ~ - m :  

(28) 

Here again l,= (me,O,O,O), and q,= (0,q). It is convenient 
to transform this expression into 

where To is the momentum-independent magnetic Born am- 
plitude (15). 

The effect we are interested in vanishes if both form 
factors are replaced by unity. Hence the corresponding rela- 
tive correction to the Born amplitude To and to the hf split- 
ting is 

In the zero-range approximation the two form factors 
have the simple form 

Substituting this into (3), we arrive at the following explicit 
expression for the correction: 

Two closely related features of the effect characteristic 
not only of deuterium should be mentioned. The correction is 
of the first order (rather than of the second) in the ratio of the 
nuclear size to the Bohr radius, m , a / ~ .  Moreover, contrary 
to possible naive expectations, the contributions of the elec- 
tric and magnetic form factors are not additive. Both features 
can be traced to the fact that the characteristic momentum 
providing the principal contribution to the integral (30) are of 
the nuclear scale rather than of the atomic. 

6. HYPERFINE SPLITTING IN DEUTERIUM. DISCUSSION OF 
RESULTS 

The final result for the nuclear-structure correction to the 
hf splitting in deuterium is the sum of the corrections (17), 
(181, (231, (271, and (32): 

Numerically this correction to the deuterium hf structure is 

A v =  43 kHz. (34) 

This value must be compared with the discrepancy (3), 
which amounts to 45 kHz. Bearing in mind the above ap- 
proximations, especially the crude nuclear model (the zero- 
range approximation) and the fact that nonlogarithmic con- 
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tributions are ignored, we believe that the agreement is 
satisfactory. In particular, inclusion of the corrections caused 
by the finiteness of the effective interaction radius ro into the 
normalization of the deuteron's ground-state wave function 
(see the details in Sec. 7) would enhance some contributions. 

Clearly, the discussed nuclear effects are responsible fbr 
the bulk of the discrepancy between the results of purely 
QED calculations and the experimental data on the deute- 
rium hf structure. Calculations of the hf corrections that in- 
corporate an accurate treatment of nuclear effects may serve 
as another verification of more detailed models of the deu- 
teron structure. 

7. NUCLEAR POLARlZABlLlTY AND THE LAMB SHIFT IN 
DEUTERIUM 

The contribution of nuclear polarizability to the Lamb 
shift in deuterium has recently been studied in Refs. 8-10. 
Here we calculate analytically the effect and arrive at a result 
in closed form. The zero-range approximation we use is ap- 
plicable if the region in which the wave function is localized 
is much larger than the interaction region. The same condi- 
tion is necessary if the true interaction is replaced with the 
crude approximation of a square-well potential, as is done in 
Refs. 8 and 9. 

The effect of the electric polarizability, which we are 
now interested in, is caused by the photon-deuteron scatter- 
ing amplitude induced only by convection currents. As ,we 
will shortly see, in our problem of the nuclear polarizability 
contribution to the Lamb shift the characteristic values of the 
photon 4-momenta are 

Hence we can neglect the dependence on k in the Compton 
amplitude. As in the amplitude M:, , here all the intermedi- 
ate states have 1 # 0 and can be described by plane waves. 
We again employ the matrix element (25), but this time set 
k=O. Finally, here we are interested in the scalar part of the 
scattering amplitude, which can be reduced to 

From the expression in the braces we subtract 

After integration with respect to p, this term, being added to 
the Thomson scattering amplitude - e2/mp, reproduces the 
correct Thomson scattering amplitude for the deuteron, 
- e2/2rnp . Employing the identity 

we arrive at the following expression for the desired photon- 
deuteron scattering amplitude: 

Its contribution to the electron-deuteron scattering ampli- 
tude, 

can be transformed into 

The first term in the braces contains no photon propagators, 
either a llk2 nor a llk4. In other words, it corresponds to the 
instantaneous Coulomb interaction. The second term corre- 
sponds to exchange by three-dimensional transverse pho- 
tons, i.e., the magnetic interaction of convection currents. 

Probably the most convenient procedure for integrating 
(38) is as follows: Wick rotation, transformation of the inte- 
gral over the Euclidean o to the integral over the interval 
(O,w), substitution of kw for k, integration over o ,  integra- 
tion over k (in the last two stages it becomes evident that the 
effective values of w and k belong to the interval (35)), and, 
finally, integration with respect to p. The following relation- 
ship also proves useful: 

The effective electron-nucleus operator (equal to 
- T;,,) can finally be written in the coordinate representation: 

Here ad(0) is the static value of the deuteron electric polar- 
izability defined, as usual, by the following relationship: 

Large distances provide the greatest contribution to the ma- 
trix elements in (40). In this asymptotic region the naive 
zero-range-approximation expression (21) for the deuteron 
ground-state wave function must be augmented by a correc- 
tion factor (1 - rO~) - ' l 2  accounting for the finiteness of the 
effective interaction radius ro (see Refs. 14 and 18). Thus, 
we arrive at the following result for the static electric polar- 
izability: 
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This is close to the experimental valueI9 of 0.70(5) fm3, as 
well as to the values 0.613, 0.623, and 0.625 fm3 obtained 
in Ref. 10 with different separable nuclear potentials and to 
0.635 fm3 obtained in Ref. 8 with a square-well potential. 

The final result (39) contains two contributions of differ- 
ent physical origin. The instantaneous Coulomb interaction 
is dominant. Its contribution to the numerical factor 

in (39) amounts to 

Its overlap with the ground-state zero-range-approximation 
wave function (21) is 

The magnetic interaction contribution to this factor is 

The level shift of the deuterium ground state produced 
by interaction (39) amcunts to - 22.3 kHz. The Coulomb 
and magnetic contributions to it are - 19.7 and - 2.6 kHz, 
respectively. The results are close to those of Refs. 8-10. 

It is natural that the Coulomb contribution is negative: it 
is a true second-order (in the electron-nucleus static interac- 
tion) correction to the ground state of the system consisting 
of an electron at rest and a nucleus in its ground state. There 
is no way in which the sign of the magnetic contribution can 
be fixed in a similar way: in terms of the common noncova- 
riant perturbation theory this is a fourth-order correction: 
second-order in the photon-electron interaction and second- 
order in the photon-nucleus interaction. 

One more contribution to the Lamb shift in deuterium, 
also considered earlier in Ref. 10, is related to the deuteron 
magnetic polarizability. It is determined by the scalar part of 
the amplitude (19). Calculations simplify because of the fol- 
lowing. First, the numerator dim of the photon propagator is 
reduced in this case to dim.  Integration with respect to k is 
spherically symmetric. Hence in our case the scalar part of 
amplitude (19) becomes 

Here we used the explicit form of the 'So-state wave func- 
tion in the zero-range approximation, 

where 

K1 
cot a= -, x1 = 7.9 MeV. 

P 

Further calculations are similar to those done when the 
electric polarizability was taken into account, the only differ- 
ence being that here integration with respect to p for the 
nonlogarithmic contribution is done numerically. The result- 
ing effective electron-nucleus interaction operator can be 
written as 

Here Pd(0) is the static value of the deuteron magnetic po- 
larizability: 

The corresponding contribution to the Lamb shift of the deu- 
terium ground state amounts to 0.31 kHz, which is very 
close to the result of Ref. 10. 

The authors are grateful to M. I. ~ i d e s ,  H. Grotch, and 
M. I. Strikman for useful discussions. The work was sup- 
ported by the Universities of Russia program (Grant No. 94- 
6.7-2053). 

Note added in proof on January 9,1996. Recently, while 
the present paper was in press, we read a paper by 
J. Martorell, D. W. L. Sprung, and D. C. Zheng [Phys. Rev. 
C 51, 1127 (1995)], who arrived at an analytical expression 
for the contribution of the deuteron's electric polarizability 
to the Lamb shift in the zero-range approximation. Their 
result agrees with ours. 

' h i s  discrepancy has been known from the late 1940s. Long before the 
maser experiment of Wieland and Ramsey,' which had a record-breaking 
accuracy. Earlier measurements are cited in Ref. 1. 
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