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The method of Laplace transformations of the radial Schrodinger equation is used to obtain 
analytical expressions for the invariant atomic parameters (the dynamical tensor and vector 
polarizabilities) of a hydrogenlike atom in the ground 1 Sl12 state. These expressions are 
presented in compact form as linear and quadratic combinations of the hypergeometric functions 
2F1. The frequency dependence of the invariant atomic parameters is also analyzed. 63 1996 
American Institute of Physics. [S 1063-776 1 (96)00204- 11 

1. INTRODUCTION s t  - ) = t a,( - 0 )  = - a,(w). (2) 

The study of the interaction between electromagnetic 
fields and atoms is an important field of modem atomic 
physics and spectroscopy. Traditionally the primary role here 
belongs to the hydrogen atom and hydrogenlike atoms as the 
simplest quantum systems interacting with an electromag- 
netic field. In the last decade studies of the behavior of atoms 
in electromagnetic field have been stimulated by new experi- 
mental possibilities opened by the use of high-power lasers 
in the optical and IR ranges (see the recent papers by Fain- 
shtein et al.,' Manakov et al.? and Damburg  eta^.^ and the 
literature cited therein). The development of the methods of 
nonlinear laser spectroscopy4 has made it possible to study in 
experiments not only the fine structure of atomic levels in an 
external field but also the hyperfine structure. 

Manakov and 0vsyannikov5 were the first to introduce 
the concept of invariant atomic parameters to quantitatively 
describe the excitation of an atomic spectrum by an external 
monochromatic field. They found that the shift and split of 
an isolated atomic level produced by a monochromatic laser 
wave can be expressed in terms of the scalar (a,(@)), vector 
(av(w)),  and tensor (at(w)) dynamic polarizabilities of an 
atom, parameters closely related to the scalar, skew- 
symmetric, and symmetric Rayleigh scattering of light by an 
atom. They also found that these parameters are equivalent 
to the scalar (a,) and (a,) polarizabilities of an atom first 
introduced by Angel and sandars6 for the case of a constant 
external field. 

The polarizability tensor of an atom in an electromag- 
netic field can be represented in the form of an expansion in 
irreducible components7** (here and in what follows summa- 
tion over repeated indices is implied): 

where F denotes, depending on the nature of the problem, 
either the total angular momentum of the atom as a whole 
(F=I+  J, with I the nuclear spin and J the total electron 
angular momentum) or the atom's total electron angular mo- 
mentum (F= J), Qik=FiFk+FkFi-(2/3)F(F+ l)Sik, and 
o is the frequency of the external monochromatic field. If we 
ignore the level width, the scalar, vector, and tensor polariz- 
abilities are real-valued and possess the following 
properties:9 

The scalar polarizability a,(@) in the ground 1 Sln state 
of the hydrogen atom is well-known.'' The tensor polariz- 
ability at(w) emerges primarily in the ground state only be- 
cause of the hyperfine coupling between the nucleus and the 
electron. Its static value (@--to) was first calculated by 
~andars:" at(0)  = - 47a2,uN/60 (atomic units; a is the fine- 
structure constant, and , u ~  is the nuclear magnetic moment in 
Born-magneton units). The frequency dependence of at(w) 
for the ground state of hydrogen was found analytically in 
Ref. 12. Tensor polarizabilities have also been calculated for 
the excited states nSln and nPl12 of alkali atoms placed in a 
static fieldl3,I4 and in a nonresonant light field (for the spe- 
cific frequencies of neodymium and ruby lasers).5 

The vector polarizability a,(w) in the ground state of a 
hydrogenlike atom is caused, as shown by Zhizhimov and 
~h r i~ lov ich?  by relativistic (- a2)  corrections: first, due to 
the spin-orbit coupling in highly excited states, and second, 
due to the presence of an additional contribution to the 
atomic dipole moment originating in the amplitude of elastic 
electric dipole scattering of light by the atom, where the 
amplitude is calculated to within relativistic terms 
(-v2/c2). The asymptotic frequency dependence of a,(w) 
for low w was found by Frantsuzov etal.:15 
a,(@--to)= - (91/72)a2w. The vector polarizabilities for 
excited states of alkali atoms were calculated numerically by 
Manakov and 0vsyannikov5 for the frequencies of neody- 
mium and ruby lasers. 

In this paper we derive analytical expressions for the 
vector (a,(w)) and tensor (at(w)) dynamic polarizabilities 
of a hydrogenlike atom in the ground 1 Sln state and study 
their frequency dependence in the entire optical range (far 
from resonances). We allow for the interaction of the atom 
with the electric component 

of the laser wave (the electric dipole approximation) but ig- 
nore the magnetic component and the spatial inhomogeneity 
of the field.2 In Secs. 2 and 3, we derive closed compact 
analytical expressions for, respectively, the tensor (at(w)) 
and vector (a,(w)) dynamic polarizabilities in the ground 

600 JETP 82 (4), April 1996 1063-7761/96/040600-07$10.00 8 1996 American Institute of Physics 600 



1SlI2 state of a hydrogenlike atom. Section 4 discusses the 
results of the two preceding sections. Throughout the article 
we use the Coulomb system of units. 

2. DYNAMIC TENSOR POLARlZABlLlTY 

Since the total electron angular momentum in the 1 Sln 
state is J =  112, the tensor polarizability in this state can arise 
only because of hyperfine electron-nucleus coupling.11 The 
corresponding Schrijdinger equation in the atom's center-of- 
mass system has the form 

where 

is the operator of the hyperfine electron-nucleus coupling16 
(n=rlr) ,  and 

is the electric dipole interaction of the atom and the laser 
wave (3). In this section the wave is assumed plane- 
polarized, and the quantization axis Z is directed along the 
wave's polarization vector. The mass factor kl appears be- 
cause of the transition to the atom's center-of-mass system17 
and will be discarded. 

We use the following notation in Eq. (4): cu is the fine- 
structure constant, I and S are the nuclear and electron spin 
operators, ,UN is the nuclear magnetic moment expressed in 
Born-magneton units, Q2 is the nuclear quadruple-moment 
tensor, ~ i ( n )  = =y2,(n) is the modified spherical har- 
monic of rank 2, and A -B and {A -B}P stand for the scalar 
and tensor (or rank p) products of the operators A and B. 

As is well known, the z-component of the atomic dipole 
moment induced by an external field isl8 

where cuz,(o) is the zz-component of the polarizability ten- 
sor (1). To simplify matters we assume that the component is 
taken in the lS ln  state of the atom with the maximum pro- 
jection of total angular momentum F. Note that in our prob- 
lem the total spin I+ S and the projection of the total angular 
momentum on the quantization axis are conserved, while the 
total angular moment is not conserved because of the mixing 
of states with orbital angular momenta 1 # 0 and the ground 
state. Such mixing is caused by the operators of the hyperfine 
and electric dipole interactions. 

On the other hand, dld) is determined by the average 
value of the atomic dipole moment operator: 

where the wave function *(r,t) is calculated from Eq. (4) in 
second-order perturbation theory in the operators of hyper- 
fine and electric dipole interaction: 

Here 

is the unperturbed wave function of a hydrogenlike atom in 
the ground lSln state with the maximum projection of the 
total angular momentum (actually the total spin, since for S 
states the values of total angular momentum and total spin 
coincide), E(')= - 112 is the unperturbed ground-state en- 
ergy, and XFF is the spin part of the wave function corre- 
sponding to the total spin I+ S= F and its maximum projec- 
tion on the quantization axis equal to F. The corrections to 
*\Irco)(r,t) are caused by the electric dipole interaction, the 
hyperfine coupling, and their combined action. 

Comparing (5) and (6) and allowing for (I), we arrive at 
the following expression for the dynamic tensor polarizabil- 
ity of a hydrogenlike atom in the ground state: 

According to (7), to calculate a , (o)  we must know the 
corrections qg) , *g) , and *g,i to the unperturbed wave 
function. Here the terms qg) and *$,it caused by the con- 
tact part of the hyperfine coupling in (4), can, obviously, 
contribute only to the scalar polarizability and therefore will 
be ignored. Below we always interpret *@) and qg!E as 
functions caused by the noncentral part of HM. 

schwartz19 was the first to calculate *g)(r,t) for the 
hydrogen atom. It is convenient to write this correction for a 
hydrogenlike atom with an arbitrary nuclear spin as 

where 

are the spin factor originating, respectively, in the magnetic 
dipole-dipole and quadruple parts of the hyperfine coupling 
operator in (4), Q is the quadruple moment of the nucleus, 
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8 stands for the direct product of the spherical harmonic 
Y2(n) and the spin function XF, and F=Z+ 112. 

The correction functions ~ 2 )  and qg?E(r,t) can be 
found by solving the appropriate perturbation-theory equa- 
tions obtained from the initial equation (4). A detailed de- 
scription of the procedure for calculating these functions by 
the method of Laplace transf~rmations~'~~' for the simplest 
case of atomic hydrogen can be found in Ref. 12. For a 
hydrogenlike atom with an arbitrary nuclear spin, the fact 
that the spin structure of the noncentral part of the hyperfine 
coupling in (4) is more complicated and the presence of an 
additional quadruple term lead to an additional spin depen- 
dence of the Laplace transforms of the radial parts of the 
corrections qc) and qg!E. Leaving out the intermediate 
calculations (see Ref. 12), we give only the final expressions. 
The correction qc) has the form 

We can write the Laplace transforms of the radial functions 
cpgJ+l(r,w) in terms of linear combinations of Gauss's hy- 
pergeometric functions 2F1 (see Ref. 22): 

where K= Jz, @(')(p, w) is a function which does not 
depend on the spin variables, and ~ $ = ( 4 1 f i ) ~ i ~ ~ ,  and 

= -(I/@) q; are spin factors dependent on the angu- 
lar part of the electric dipole interaction in (4), where 
c;;,, is a Clebsch-Gordan coefficient. 

The correction @g,k(r,t) is given by similar expres- 
sions: 

We can write the Laplace transforms of the radial functions 
hgJ+ ,(r,w) as follows: 

where D(')(p,o) is a function that does not depend on the 
spin variables, and 

are the spin factors originating in the hyperfine and electric 
dipole interactions. Selecting p= K as the lower limit in an 
integral in (12) guarantees that the functions H&!+ ,(p,w) 
behave at this point as analytic functions, which corresponds 
to the correct behavior of the radial functions hEj+l(r,w) at 
infinity and is sufficient for finding a unique solution.23 

The calculation of the dynamic tensor polarizability (7) 
is reduced to integrating the radial functions cpgJ+ l(r,w) 
and hEj+,(r,o). This in turn can be reduced to finding the 
derivatives of the corresponding Laplace transforms F:?+, 
X(p,w) and HE?+ ,(p,o) with respect to the Laplace vari- 
able according to the following scheme: 

As a result the polarizability (7), written in terms of Laplace 
variables, assumes the form 

a,(w)=a(+w)+cr(-w), 
(14) 
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where the functions (P(')(p,o) and ~ ( ' ) ( p ,  w)  are specified -- - - 
by (10) and (12), respectively. 

K - l )  2 K  + ( 6 x  
K ' K + ~  4 ~ - 1  

After simplifying Eq. (14) by using the properties of 
hypergeometric functions22 and employing Eqs. (10) and 
(12), we arrive at the following analytical expression for the 

-4)2F1(6,1,2, G) 1, 
dynamic tensor polarizability of a hydrogenlike atom in the 
ground state: 1 

B ~ ( K ) = % ( = )  2 ~ - 1  I + K  [ - *F1(6 ,4-  -, K 5 

f f t (w)=K(F) [P(+w)+P(  - w ) l ,  

where 
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3. VECTOR POLARlZABlLlTY 

Zhizhimov and IChriplovichg were the first to point out 
that vector polarizability is present in the ground state of 
hydrogen (or a hydrogenlike atom). According to them, such 
polarizability emerges, first, because of spin-orbit splitting of 
excited levels and, second, because of a relativistic correc- 
tion (- a2 )  to the operator of the atom's dipole moment. The 
spin-orbit splitting of excited levels is caused by the spin- 
orbit coupling1g 

(here, as usual, 1 is the operator of the electron's orbital an- 
gular momentum, and S is the electron spin operator) in 
states with I P 0. The correction to the dipole moment opera- 
tor emerges as a consequence of a formal mathematic device 
that makes it possible to avoid calculating relativistic correc- 
tions to the wave functions in computations of the amplitude 
fE'*E1 of elastic electric dipole scattering of light by an atom 
within terms of order v21c2. Instead, as shown in Ref. 8, one 
can use nonrelativistic wave functions, redefining, however, 
the atom's electric dipole moment: 

where p is the momentum of an outer-shell electron in the 
atom. 

The expression for the vector polarizability in the ground 
state of a hydrogenlike atom, as that for the tensor polariz- 
ability, can be obtained by calculating the induced dipole 
moment of the atom in a state with the wave function 

q ( r , r ) = q ( o ) + q ( l ) +  a2@(l)+*(2)+ 4-(2) 
E E E ff *E 

where 

is the unperturbed wave function of the ground level 1 Sin 
(without allowing for the hypefine structure), and ,yl12,,, is 
the spin part of the function. The corrections *$)(i= 1,2) 
and q(,2!, to the unperturbed wave function are caused, re- 
spectively, by the electric dipole interaction (without the 
relativistic correction) and by the combination of this inter- 
action and the spin-orbit coupling (16). The functions qg) 
X(i = 1,2) and @g,i are similar corrections caused, how- 
ever, by the relativistic term (-a2) in the dipole moment 
operator (17). In (18) we have allowed for the fact that the 
functions *$)(i= 1,2) are identically zero for the S states of 
the atom. 

Averaging the dipole moment operator (17) over the 
state (18) with allowance for (1) and (3), we arrive at the 
following expression for the vector polarizability: 
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where J is the total electron angular momentum of the atom, 
and the electromagnetic wave (3) is assumed circularly po- 
larized. 

In calculating a ,(o)  one can use the results of Sec. 2. 
By analogy with (9), the first-order correction q g ) ( r , t )  has 
the form 

Such notation corresponds to the case where the hypefine 
structure is ignored in comparison to the fine structure of the 
atomic level. The Laplace transforms of the radial functions 
qJY)(r,o) (5 = 112, 312), coincide, to within spin factors, 
with (10): 

~$ ' ) (p ,o )=  Iowdr e-prq$')(r,o)= nf(*)~( ' ) (p,o) ,  

(21) 

where 

(5 = 112, 312), are the spin factors originating in the elec- 
tric dipole interaction of the atom and the circularly polar- 
ized wave, with e,(,u= t 1,O) the cyclic components of the 
wave's polarization vector. 

The correction *\Ir(wz,)E(r,t) can also easily be found by 
analogy with (1 1) if we allow for the same radial dependence 
of the hyperfine operator in (4) (the noncentral part) and the 
spin-orbit coupling operator (16). The correction has the 
form 

The Laplace transforms of the radial functions g:')(r,o) are 
specified by the relationships: 

(23) 

where G'(')(p,w) does not depend on spin variables, 
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is the spin factor, and J =  112, 312. 
Both the tensor polarizability (7) and the vector polariz- 

ability (19) are calculated by differentiating the Laplace 
transforms (21) and (23), following the scheme (13). In 
terms of Laplace variables we have 

The functions @(')(p,w) have been defined in (10) and the 
derivatives d~( ' ) (p ,w) ldp  were found in deriving the ten- 
sor polarizability (14). 

Formula (24) yields the following analytical expression 
for the vector polarizability of the ground 1 SlI2 level of a 
hydrogenlike atom: 

where the functions A(K) and B , ( K ) ( ~  = 2,3,5,6) are defined 
in (15a). 

4. CONCLUSION 

As is well known (see, e.g., Refs. 10 and 23), the scalar 
dynamic polarizability of a hydrogenlike atom, as( w), can 
be written as a linear combination of the hypergeometric 

functions 2F1. The expressions for the dynamic tensor and 
vector polarizabilities, as Eqs. (15) and (25) show, contain 
both linear and quadratic combinations of ZF . The reason is 
that the corrections qg,L(r,t)  and q$?,(r,t), used in calcu- 
lating a,(w) and av(w), respectively, are solutions of inho- 
mogeneous differential equations with the inhomogeneous 
term caused by the correction qg) ( r , t ) ,  which is respon- 
sible for a , (o)  (see Ref. 12). 

In the static limit (o-0 and K+ 1) the quantity 
A(K--11) is equal to the quantities B , ( K + ~ )  
(n = 2,3,5,6) vanish,') and for the tensor polarizability (15) 
we obtain 

where the spin factors q$ and 17$ are defined in (8a). For 
atomic hydrogen in the ground triplet state ( I=  112, F =  1, 
and Q = 0)  this expression becomes the well-known result of 
Ref. 1 

As for the vector polarizability (25), it is zero at w=O, in 
accordance with the properties (2). Its value for small finite 
frequencies can easily be obtained by expanding a,(o)  in a 
power series in o. The two terms in the braces in (25) are 
caused by the relativistic correction to the dipole moment 
operator and by spin-orbit coupling. The expansion of the 
first of these terms yields a value of - 9a2w/2 in an approxi- 
mation linear in w. A similar expansion of the second term 
yields 233a2w/72. The net contribution of the two terms 
determines the vector polarizability of the 1 Sln level of a 
hydrogenlike atom for low external-field frequencies: 

which fully agrees with the results of Ref. 15. At the 
neodymium-laser frequency o, = 43.76X 10- at. units 
(AN= 106X lov6 cm) and the ruby-laser frequency 
wR= 66.79X lov3 at.units (hR = 6 9 . 4 3 ~  cm) this 
quantity is of order lov6 at.units, following the numerical 
estimates made in Ref. 5. 

Figure 1 depicts the functions a,(w) and a,(w) for the 
hydrogen ground state obtained numerically by tabulating 
the functions (15) (at I= 112, F =  1, and Q=013) and (25) 
and, for the sake of comparison, the scalar polarizability 
as(w) from Ref. 23. Note the various features of the fre- 
quency dependence of the tensor and vector polarizabilities. 
The presence of quadratic combinations of hypergeometric 
functions leads to a situation in which both a,(w) and 
av(w) behave in the vicinity of poles (the resonance fre- 
quencies of the Lyman series) like even functions, in contrast 
to a,(w), which in the vicinity of poles is an odd function. 
Moreover, at the frequency w-0.43 at.units 
(A = 1.05X lov5 cm), which lies within the range where the 
atomic-hydrogen medium is absolutely transparent 
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FIG. 1. We parameters a,(@) (dashed curves), a,(w)la2 (dotted curves), 
and 4a,(w)laZPN (solid curves) for the ground lSIn level of atomic hy- 
drogen. 

( a S ( w )  = 0 )  if we ignore the tensor polarizability, the quan- 
tity a , (@)  is finite and exceeds the static value by a factor of 
almost three. 

1)Actually. the divergence of B5(K) and B 6 ( ~ )  as K--+ 1 is fictitious and can 
be removed by l'H6pital's rule. 
')~ote, however, that ~andars" used a somewhat diierent definition of the 

spin part of the polarizability operator (I). Hence aI2=2aJ3, where 
(a lz  is the tensor plarizability in Sandars's notation"). 

3 ) ~ e  obtained this diagram earlier in Ref. 12. 
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