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We introduce operators for the time-dependent Schriidinger equation that link the solutions of 
equations with different potentials. For steady-state solutions these reduce to Darboux 
transformations. With these transformations we build coherent states for Hamiltonians whose 
spectrum differs from that of harmonic oscillators in that between the ground-state level 
and the other part of the spectrum there is a forbidden band consisting of a finite number of levels. 
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1. INTRODUCTION 

We interpret a quasiequidistant spectrum as an equidis- 
tant spectrum with lacunae, or gaps, i.e., an equidistant spec- 
trum with a finite number of "deleted" levels. A character- 
istic feature of potentials with such a spectrum is that any 
solution of the time-dependent Schrodinger equation with 
such a potential is a periodic function of time, which ex- 
cludes the spreading of wave packets.1 In the absence of 
lacunae we have an equidistant spectrum. The properties of 
potentials with an equidistant spectrum have been exten- 
sively studied (see, e.g., Refs. 2 and 3). 

To build potentials with a specified spectrum one can 
use the methods of the inverse problem of quantum scatter- 
ing the~ryp '~  which have been developed into a qualitative 
theory of spectrum control6 and allow for obtaining poten- 
tials with preassigned spectra and for inserting or deleting 
levels in the spectrum. Note, however, that the simplest po- 
tential, whose spectrum consists of an equidistant part and 
individual ground-state levels separated from the other part 
of the spectrum by a gap consisting of two levels, was ob- 
tained from other considerations.' Dubov et a1.: remarked 
that the same potential could be obtained from the harmonic 
oscillator potential by a Darboux transformation and built 
more complicated examples of potentials that lead to a wider 
gap and to a gap above the two lower levels. The work of 
~ d l e l ~  should also be noted, since the potential was obtained 
through a superposition of two Darboux transformations. A 
detailed analysis of the solutions of the Schriidinger equation 
for a potential whose ground-state level is separated from the 
equidistant part of the spectrum by four levels is given in 
Ref. 10, while the bifurcation of gap creation and annihila- 
tion in an equidistant spectrum and the analysis of the rela- 
tion between the approach and the spectrum-shift Fock op- 
erators are examined in Ref. 11. We also note Ref. 12, which 
gives the general expressions for potentials with a quasiequi- 
distant spectrum obtained by the Darboux transformation, 
and Ref. 13, where such potentials are studied. 

The Darboux transformation and the integral transforma- 
tion method of the inverse problem of quantum scattering 
theory constitute particular cases of more general construc- 
tions known from Delsart's paper14 as transformation opera- 

tors (see Ref. 5 for details). An analysis of the results of Ref. 
7 from the standpoint of first-order differential transforma- 
tion operators, of which the Darboux transformations are an 
example, is done in Ref. 15. The transformation operators 
are used to "dress" the Schrijdinger operator (see, e.g., Refs. 
16 and 17), a procedure that for a superposition of differen- 
tial transformation operators leads to "dressing  chain^."'^ 
Anharmonic potentials that are regular in R' and the spectra 
that emerge because of different ways of dressing the 
harmonic-oscillator Harniltonian are analyzed in Refs. 2, 11, 
and 18. The relationship between the method of the dressing 
chain for the Hamiltonian operator and the theory of the 
fourth and fifth Painlevi equations is analyzed in Ref. 18, 
and so are the spectral properties of dressed Hamiltonians. 

We also note that the problem of classifying the exactly 
solvable problems of one-dimensional quantum mechanics 
by employing quadratic algebras is discussed in Refs. 19 and 
20, and by employing the SU(l.1) algebra in Ref. 21. 

The Hamiltonians with equidistant3 and 
quasiequidistantl,7,~~,12,~3 spectra have no continuous spec- 

trum in the L ~ ( R ' )  space of functions that are square inte- 
grable in R1. On the other hand, continuous base sets in 
L2(R1) of the harmonic-oscillator coherent states are 
well-studied:2 and so are the coherent states of varying- 
frequency oscillators with an external variable force acting 
on oscillators that allow for a group-theoretic ap- 
proach. The group-theoretic methods used in Ref. 23 cannot 
be directly employed in building a system of coherent states 
for the new Hamiltonians, since the differential spectrum- 
shift operators do not form a closed algebra in this case. 
Fernandez et a1.,24*25 were, apparently, the first to use differ- 
ent methods for obtaining coherent states for the family of 
isospectral potentials with an equidistant spectrum. 

In the present paper we give the general expressions for 
potentials whose spectrum consists of an equidistant part and 
a ground-state level separated from the other part by a gap 
consisting of an arbitrary even number of levels. The coher- 
ent states are the nonstationary solutions of the time- 
dependent Schrodinger equation, and the potentials are ob- 
tained through a Darboux transformation from the harmonic- 
oscillator potential. Hence, if for the time-dependent 
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Schrijdinger equation we introduce a transformation that is 
similar to the Darboux transformation and coincides with it 
in the case of stationary solutions, we can use it to obtain 
solutions in the form of coherent states for the new poten- 
tials. For potentials with a quasiequidistant spectrum such 
states are nonspreading wave packets. Two types of transfor- 
mation are given in the paper, differential and integral trans- 
formations, and they coincide with the Darboux transforma- 
tion in the case of stationary solutions of the time-dependent 
Schrijdinger equation. When applied to nonstationary solu- 
tions of the time-dependent Schriidinger equation, they lead 
to various nonstationary states of the new Hamiltonians. This 
property is used to build a system of coherent states for 
Hamiltonians with a quasiequidistant spectrum. 

2. DIFFERENTIAL TRANSFORMATIONS 

We take the time-dependent Schriidinger equation de- 
scribing the motion of a particle in a field with potential 
energy - Vo(x,t): 

We call a particular solution u(x,t) of this equation the 
transformation function and impose an addition condition on 
u(x,t): 

( In  5) = .  
XXX 

Here and in what follows (...), stands for the partial deriva- 
tive with respect to x, the complex conjugate of u is denoted 
by u *, and all arguments of the functions are dropped for the 
sake of brevity (except to avoid ambiguity ). With steady- 
state potentials (Vot=O) Eq. (1) always has solutions satis- 
fying condition (2) (for instance, stationary states). 

If condition (2) is met, the function 

depends only on the variable t, i.e., Ll = Ll(t). For each 
solution of Eq. (1) $(x,t) # u(x,t) we build a function 
cp(x,t) via the first-order differential operator L: 

Here and in what follows the operator determinants are in- 
terpreted as differential operators obtained by expanding the 
determinant in the last column with the functional coefficient 
placed before (to the left of) the operator for f i d n g  the 
derivative. 

Simple calculations show that the function cp(x,t) is the 
solution of a new Schrijdinger equation, 

whose potential V1(x,t) differs for that of the initial equation 
(1) by the function A l(x,t) = Vl(x,t) - Vo(x,t) defined in 
terms of the transformation function u as follows: 

For (ln(~lu*))~=O and L1 = 1 Eqs. (4) and (6) become the 
well-known Darboux transformation8 for the steady-state 
Schrijdinger equation. It is therefore natural to call transfor- 
mation (4) the Darboux transformation for the time- 
dependent Schrijdinger equation. 

Formula (4) does not give a nontrivial solution of Eq. (5) 
for $(x, t) = u (x, t) . However, by analogy with the Darboux 
transformation, the solution of Eq. (5) in this case is the 
function 

If this function is used as the transformation function for 
transforming the solutions of Eq. (5), the new potential dif- 
ference differs from the initial difference (6) only in sign, 
with the result that we are back at the initial equation (1). 
The transformation operator in this case is 
L ' = - L (uXIU * + a,). It is also clear that successive appli- 
cation of the operators L+ and L generally transforms one 
solution of Eq. (1) into another. Therefore, the operator 
L'L is the symmetry operator of Eq. (1) and the operator 
LL' is the symmetry operator of Eq. (5). For stationary 
states, when the transformation function is an eigenfunction 
of the system Hamiltonian, these operators coincide with the 
Hamiltonian to within a constant term. This property of the 
Darboux transformation forms the basis for the well-known 
factorization method.26 

Applying transformation (4) N times leads to a generali- 
zation of the Crum-Krdn to the nonstationary 
case: 

where u\;)=dNu1 l a p ,  bvldp, and W(ul, . . . ,uN) 
is the Wronskian of the u1, . . . ,UN.  The function 
cp(x,t)=~(~)$(x,t) is the solution of the new Schrijdinger 
equation with the potential VN(x, t) = VO(x, t) +AN(x, I), 
where 

if the transformation functions ul , . . . , u ~ ,  the linearly in- 
dependent solutions of Eq. (I), are such that 

The function LN(t) is given here by the formula 
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When the operator (8) is applied to any of the functions 
u1 , . . . ,uN,  the result is zero. However, Eq. (7) can be gen- 
eralized to the case of N transformation functions. The func- 
tions 

where w ( ~ ) ( u ~ ,  . . . ,uN) is the Wronskian of order N- 1 
built with the functions u , ,  . . . ,uN with the exception of 
uk , are the linearly independent solutions of the new Schro- 
dinger equation. 

The majority of potentials Vo(x, t )  of interest from the 
standpoint of physics are such that a Hilbert-space structure 
can be introduced using the solutions of Eq. (1). This usually 
means that Eq. ( 1 )  has an integral of motion (not necessarily 
the total energy) that is a self-adjoint second-order differen- 
tial operator with a discrete spectrum. The set of the discrete- 
spectrum eigenfunctions q i ( x , t )  of this operator forms the 
base of the Hilbert space L ~ ( R )  of solutions of Eq. (1). By 
R = [a  ,b] we denote the interval of variation of the variable 
x in Eq. ( I ) ,  which may amount to the entire real axis. Usu- 
ally the functions #,-(x,t) are ordered in such a way that i is 
the number of their zeros. 

Another requirement is that the potential difference 
AN(x, t )  be a regular function in [a ,b ] .  The new potential 
VN(x , t )  in this case has no additional singularities in com- 
parison to those of the initial potential Vo(x, t ) .  For the trans- 
formation (4) the potential difference is regular if the trans- 
formation u has no zeros in [ a , b ] .  In the space L ~ ( R )  only 
the function +o(x,t) satisfies this condition. However, more 
possibilities for choosing the transformation functions exist 
outside this space. 

A single transformation with the function &(x,t)  
E L ~ ( R )  generates a potential difference with i singularities. 
We found that a repeated transformation with the function 
t,++,(x,t) E L ~ ( R )  removes all singularities and leads to a 
regular potential difference. For the steady-state Schrodinger 
equation this property was formulated by  rein^* and has 
been recently discussed in Ref. 9.  Here we can interpret it as 
the property of the Wronskian built with the eigenfunctions 
uki= +ki(x,t): the Wronskian W(ukl  ,uk2, . . . ,ukN) preserves 
its sign in [a ,b]  if ( k - k l ) ( k - k 2 ) - . . ( k - k N ) 3 0  for all 
k= 0,1,2, . . . . This is true, in particular, if the functions 
uki are pairwise adjacent. 

We also note that for stationary transformation functions 
the reality condition (10) is satisfied and the formulas (8) and 
(9) become the well-known formulas for the Darboux trans- 
formation applied consecutively N 

3. INTEGRAL TRANSFORMATIONS 

Integral transformations for the steady-state Schrodinger 
equation have been thoroughly studied in the inverse prob- 
lem of scattering theory (see, e.g. Refs. 4 , 5 ,  and 16), as have 
been their applications to the solution of nonlinear 
equations?g The relation of these transformations to the Dar- 
boux transformation is currently under discussion.30p31 The 

first to note the possibility of using integral formulations in 
the Darboux method was, apparently ~ a d d e e v . ~  This is pos- 
sible because the Wronskian of two solutions of the steady- 
state Schrodinger equation can be calculated in integral form 
as 

These transformations also allow for a generalization to 
the time-dependent Schriidinger equation. One such generali- 
zation was done in Ref. 32. In this section we introduce 
integral transformations of the time-dependent Schrijdinger 
equation of a more general type. 

Let the functions u(x, t )  and +(x, t )  satisfy Eq. (1). We 
define the function w(u * , +) by the following relationships: 

Using Eq. ( I ) ,  we establish that w,,= w,, , a property prov- 
ing the consistency of Eqs. (12) and (13). There are two 
ways in which w can be calculated: 

To find the functions C l ( x )  and C 2 ( t )  we employ the rela- 
tionships 

which are corollaries of Eqs. (12) and (13). 
Let the transformation function u be a fixed solution of 

Eq. (1) .  Then, obviously, the set of solutions +(x, t )  for 
which either Ci ( x )  = 0 or C i ( t )  = O  holds forms a linear 
space. On this space we can define a linear operator M by the 
following relationship: 

One can easily see that if the transformation function u 
meets the reality condition (2),  the function (18) is a solution 
of the Schrodinger equation (5) with the potential difference 
specified by (6). The function L ( t )  is calculated by employ- 
ing (3). Note that the function cp(x,t) defined in (7) is also a 
solution of Eq. (5). 

Now we take N transformation functions u l ,  . . . ,uN 
satisfying Eq. (1).  The solution of the new Schrodinger equa- 
tion (5) in this case is 

The definition of w depends on whether N is even or odd. 
For N even, 
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W ( @ , U ~  . . - ,uN)= 

For N odd, 

The expressions for the function L N ( t )  and the potential dif- 
ference AN(x , t )  and the reality condition coincide with ( 1  l ) ,  
(9), and (10) with the function W replaced by w .  

The functions w ( u f  ,u j )  used to build the determinants 
(20)-(23) and defined in (14) and (15) depend on constants, 
C i j .  These constants can be used to ensure the regularity of 
the potential difference A .  Similar constants in the function 
w(ui  ,$) can be set to zero without loss of generality, since 
another set of solutions of Eq. (5) is specified by the func- 
tions 

where the wck)(ul  , . . . ,uN) are calculated by Eq. (22) for 
even N and by Eq. (20) for odd N with the set of functions 
u l ,  . . . ,UN from which uk is excluded. 

For even N there is always the possibility of selecting 
the transformation functions so that u(u l  , . . . ,uN)  is a real 
function. To do this we must put u ~ ~ = u ~ ~ - ~ ,  
i =  1 , .  . . ,N/2,  for arbitrary functions u2i- l  and select the 
constants C i j  SO that the matrix of the determinant (20) is 
Hermitian. Then its determinant is real. If the transformation 
functions satisfy the condition w i ( a , t ) = O  and the u;Ja , t )  
are bounded functions, C ; ( t )  =O holds for all transformation 
functions ui  and the functions $ E L ~ ( R )  at x o = a .  In this 
case Eqs. (15) and (19)-(21) determine the transformation 
studied in Ref. 32. 

Now let us discuss a particular case of these transforma- 
tions when only stationary functions of the type 

$(x,t)= e E ( x , t )  = e-iEt#E(x) are involved in solving ~ q .  
( I ) .  Obviously, if IJ, E L ~ ( R ) ,  for u ,  e L ~ ( R ) ,  a<Emh,  and 
E - a > O  the condition C i ( x ) = O  is met for all #E with 
to= - im. Equations (14) and (18) define the integral trans- 
formation operator for all * E L ~ ( R ) .  The function w defined 
in (14) is proportional to the Wronskian of the functions 
u ( x )  and $(x)  and Eq. (18) defines, to within a constant 
factor, the same Darboux transformation as the differential 
operator (4) .  Equations (19)-(20) in this case can be used to 
obtain integral representations, known from the inverse prob- 
lem of quantum scattering theory>5,16.29 that link the solu- 
tions of two steady-state Schriidinger equations. This prob- 
lem, however, lies outside the scope of the present article. 

4. HARMONICOSCILLATOR COHERENT STATES 

Below we give information about the coherent states of a 
harmonic oscillator Vo(x)  = - x2 /4 .  

The creation and annihilation operators i i + ( t )  and 
ci(t),  which are integrals of motion for the harmonic oscil- 
lator, belong to the Lie algebra of first-order symmetry dif- 
ferential operators isomorphic to the Lie algebra of the 
Schrodinger equation of a free particle: 
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Coherent states defined as the eigenfunctions of the annihi- 
lation operator are solutions in separated variables of the 
time-dependent Schrodinger equation: 

t,bZ(x,t)=(2a)-'I4 exp -- x2-2 it ( :  

The transition to an oscillator with an arbitrary frequency 
w can be achieved by substituting 20x2 for x2 and 2wt for 
t .  The functions t,bz(x,t) can be expanded in the complete set 
(in L2(R)) of the orthonormalized stationary oscillator states 
In), which in the coordinate representation have the form 

where Hn(z) are the Hermite polynomials,33 and 

It is easy to calculate the average coordinate and momentum 
and their dispersion in the states 1z;t). For instance, the av- 
erage energy (E) is equal to ZZ* + f. In many problems the 
Fock-Bargmann representation proves useful (see, e.g., Ref. 
23). 

5. ANHARMONIC OSCILLATORS WITH A 
QUASIEQUIDISTANT SPECTRUM AND THEIR COHERENT 
STATES 

For the transformation function we take the following 
solution of Eq. (1) with Vo(x,t) = -x2/4: 

~k(x)=(-i)~Hek(ix),  k=0,1,2 ,... . (28) 

2 1 2  Note that Hou(x,t)= -(2k+ f)u(x,t), where Ho=dx+ p 
is the harmonic-oscillator Hamiltonian, and the functions 
(28) do not belong to the space L ~ ( R ) .  For the function 
C;(t) calculated by Eq. (17) it proves impossible to select a 
point xo such that C;(t)=O holds for all the functions 
t,hn(x,t). On the other hand, Ci(x)=O holds for all 
$,(x,t) E L;(R) if we put to= - im. Hence Eqs. (18) and 
(14) at to=-@ determine the integral operator M in 
L;(R) 4 

w e  transformation function (28) generates a family of 
exactly solvable stationary potentials obtained earlier in Ref. 
12: ' 

The wave functions of the stationary states of these poten- 
tials can be obtained through both differential (4) and inte- 
gral (18) transformations, whose action on the functions 
t,bn(x,t) differs by an unimportant (in this case) factor 

We find the ground-state function of the new Hamiltonian 
H ( ~ ~ ) =  H~ + v ( ~ ~ ) ( x , ~ )  from (7): 

The symmetry operator L+L coincides, to within a con- 
stant term, with the harmonic-oscillator Hamiltonian: 

and LL+ with the Hamiltonian of an anharmonic oscillator 
with the potential (29): 

This property makes it possible to easily calculate the nor- 
malization integral for the function (30): 

The normalization integral for the ground state can be calcu- 
lated by direct integration: 

The spectrum of the Hamiltonian H(~") consists of an equi- 
distant part coinciding with the harmonic-oscillator spectrum 
En+ = n + 112, n = 0,1,2, . . . , and a separately positioned 
ground-state level ~ i ~ ~ ) =  - 2k - 112. 

For k= 1 these functions have been thoroughly studied 
in Refs. 1 and 7. We believe, however, that Eq. (4.19) of Ref. 
1 has an error, which resulted from a mistake in the expres- 
sion for the normalization of the functions involved. Note 
that Dubov et a1.: give another expression for the normal- 
ization coefficient, which coincides with our value. For 
k = 2 the functions (30) and (3 1) have been studied in Ref. 
10. 

We denote the functions (normalized to unity) of the 
stationary states of the Hamiltonian H(~') by On ,  
n =0,1,2, . . . . These functions form an orthonormalized 
base of the space L ~ ( R )  of the solutions of Eq. (5). 

Since the operators L [Eq. (4)] and M [Eq. (18)l link the 
solutions of two Schriidinger equations, the following rela- 
tion holds: 
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Their reciprocity in the respective spaces can also be estab- 
lished. The inverse of operator (4) has the form of (18) and 
vice versa, and in both cases we must substitute llu* for 
u. Hence, if g is the symmetry operator for Eq. (I), we can 
build two independent symmetry operators for Eq. (5), 
h -=LgL-' and K=MgM-'. It is also evident that if the 
operator sets {g), (61, and {f l  form algebras G, H ,  and 
fi, all are isomorphic to each other. But if, say, G is a Lie 
algebra of differential operators, then H and fi are integro- 
differential representations of the same algebra. 

Thus, for the creation and annihilation operators 4' and 
6 specified by (24), which are integrals of motion for the 
harmonic oscillator, we can set up the following operators: 

Since we have L+L = Ho+ 2k+ $, the differential operators 
6+ and are spectrum-shift operators for the Hamiltonian 
H(~') but cannot be interpreted as creation and annihilation 
operators since their commutator is not equal to unity. On the 
other hand, b, b', 6 and F+ are integro-differential opera- 
tors that possess all the properties of annihilation and cre- 
ation operators, respectively. It is also clear that the functions - 
cp L#a and Fa= M#a-are eigenfunctions of, respec- 
tively, the operators band b and can therefore be interpreted 
as different coherent states of the new Hamiltonians. 

Let us examine the integral transformation (18) in 
greater detail. Applying the operator M to the coherent states 
(25), we obtain, to within a constant factor, the function 

which describes the coherent states of the Hamiltonian 
H('~). The expansion (27) makes it possible to obtain an 
expansion of the function (34) in the system of states {Oi): 

Note that at [=0 this function coincides with the ground- 
state function eO. Using the expansion (39, we can calcu- 
late the normalization integral for the function Q, , 

and the average energy, 

(cpzl~(2k)lcpz)= f i ( ~ z * ) ~ ~ + ' - ( 2 k +  i)(cp,lcp,). (37) 

The function (34) is expressed in terms of the error function 
erf(z). The explicit expressions for cp,(x,t), however, contain 
only elementary functions. In particular, at k=O we have a 
harmonic oscillator whose energy origin is shifted upward by 
unity, and the formulas (29)-(31) and (34)-(37) become the 
respective oscillator formulas; for instance, from (37) we get 

At k = 1 the function (34) has the form 

where 

The average values of the coordinate and momentum in 
the states (38) are expressed in terms of the complementary 
error function erfc(z): for instance, 

1 - iz- iz* 
- izz*)erfc JZ I- 

The differential transformation leads to another system 
of coherent states; for instance, for k= 1 we have the states 

which at [=0 coincide with the function of the first excited 
state of the Hamiltonian H ( ~ )  with the property b@ = 0. 

6. CONCLUSION 

We found that by employing the more general formulas 
(8) and (20)-(23) it is possible to obtain exactly solvable 
Hamiltonians with a more complicated quasiequidistant 
spectrum and to build systems of coherent states for such 
Hamiltonians. 

The transformations introduced in this paper can be used 
to construct coherent states of other systems; for instance, 
isospectral Hamiltonians generated from the oscillator 
Hamiltonian by an integral tran~formation.~ The transforma- 
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tions can also be used to derive time-dependent potentials 
and build exact solutions of the Schrijdinger equations with 
such potentials. 

This work was partly supported by the Russian Fund for 
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