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1. INTRODUCTION 

For a long time there has been a widely held opinion 
(see, for example, Ref. 1 )  that the Landau approach to the 
theory of homogeneous Fermi liquids, in which the ground- 
state energy is treated as the quasiparticle distribution func- 
tional n ( p ) ,  admits only a unique, Fermi type of solution 
with only two permissible values of n ( p )  equal to 0 and 1. 
Such an assertion implies that the energy functional 
E,[n(p)]  of the Fermi system always achieves a minimum 
at one of the boundary points of the functional ,space [ n ] ,  
whose boundaries are specified by Pauli's principle. This no- 
tion is valid for an ideal Fermi gas or systems with a weak 
interaction, but it is arbitrary from the mathematical stand- 
point. Also, since the model functional E o [ n ( p ) ] ,  which 
achieves a minimum in a certain distribution 0 < n ( p )  < 1 
with a finite derivative dnldp in a definite region of phase 
space, was devised in Ref. 2, there have been several 
papers?-6 in which new model functionals with a non-Fermi 
distribution n ( p )  were devised. Mathematically, when the 
form of E,[n(p)] is assigned, the search for the minimum 
reduces to solving the variational equation 

(where ,u denotes the chemical potential) in a finite region of 
the phase space, whose boundaries themselves are deter- 
mined by the form of the energy functional. The chemical 
potential appears, as always, because of constraints imposed 
on the variation by the conservation law for the number of 
particles. 

In the Landau theory the variational derivative 
~ ( p )  = dEo lGn(p) is nothing but the quasiparticle energy. 
Thus, if the energy funhional does, in fact, achieve a mini- 
mum at some internal point in the functional space [ n ] ,  it 
means that the plot of the spectrum of single-particle excita- 
tions ~ ( p )  has a plateau lying on the Fermi surface. There- 
fore, the Fermi system divides into two subsystems, one of 
which is dispersionless, i.e., has an infinite effective mass, 

and was called a fermion condensate in Ref. 2. At the tem- 
perature T =  0 this phenomenon is observed for definite val- 
ues of the input parameters, and the transition associated 
with the appearance of the plateau has features of a second- 
order phase transition with the condensate density as the or- 
der parameter. In Ref. 7 this phase transition was also studied 
from the standpoint of the topological structure of a single- 
particle Green's function. 

The microscopic theory of this phenomenon has scarcely 
been developed, and many involved questions pertaining to 
fennion condensates as systems with multiple degeneracy 
have not been solved. The purpose of this paper is more 
modest. Staying within the traditional Landau approach, we 
wish to find the conditions under which a transition might be 
made to some real physical system. 

Unfortunately, there is still no fully developed theory for 
the single-particle spectrum of normal Fermi systems with a 
fairly strong interparticle interaction. Practically all the 
methods for numerically calculating it suffer from shortcom- 
ings. In this paper we use a method proposed within the 
functional approach3 for this purpose. Being also approxi- 
mate, it has several advantages, one of which is the fact that 
the approximations made in it are fairly straightforward, and, 
in addition, it employs basically the same amplitudes which 
appear in the ground-state energy problem. The functional 
approach, within which this method was developed, was de- 
scribed in detail in the review in Ref. 8. The basic equation 
of the approach is the functional equation for an effective 
interaction R ,  which specifies the difference between the lin- 
ear response function x of the system and the response func- 
tion xo of a system of noninteracting particles. The use of the 
local approximation makes it possible to reduce the func- 
tional equation to an integrodifferential equation,' which is 
solved by standard numerical methods. The local approxima- 
tion has proved itself for systems in which the distance be- 
tween the particles is less than the radius of action of the 
forces, i.e., an electron gas and the dense neutron material in 
neutron stars. The main relations of the microscopic method 
for calculating the single-particle spectra of Fermi systems 
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within the functional approach were formulated in Ref. 3. In 
this paper we use these relations to study the single-particle 
spectra of a rarefied 3D electron gas, and we elucidate the 
behavior of these spectra with variation of the parameter 
r , = a B l r o  ( a B  is the Bohr radius, and ro is the distance 
between the particles). We also calculate the ratio MIM* of 
the bare electron mass to the effective electron mass as a 
function of r ,  and find the point where this ratio vanishes. 

2. BASIC RELATIONS OF THE MICROSCOPIC THEORY OF 
THE SINGLE-PARTICLE SPECTRUM OF A FERMl 
SYSTEM 

In this paper we investigate the stability of the normal 
state of a homogeneous Fermi liquid, in which quasiparticles 
fill the Fermi sphere, n ( p )  = 8 ( p F - p ) ,  up to the Fermi mo- 
mentum p ~ .  The restrictions of the Landau theory are usu- 
ally related to Pomeranchuk's stability conditions: which 
contain second variational derivatives of the energy func- 
tional E o [ n ( p ) ] .  It was shown in Refs. 2 and 3 that apart 
from these conditions, which have the character of sufficient 
conditions, there is also a necessary condition containing first 
functional derivatives for stability of the ground state of a 
Landau Fermi liquid. We focus our attention on a violation 
of this stability condition, which is formulated as a condition 
stipulating that the variation of the ground-state energy Eo is 
nonnegative under any permissible variations of the quasi- 
particle distribution function n ( p ) :  

Here p is the chemical potential of the system, and 
~ ( p , n ( p ) )  is the quasiparticle energy, which, in turn, is also 
a functional of the quasiparticle distribution n ( p ) .  For a 
Fermi distribution the variations of n F ( p )  allowed by the 
Pauli exclusion principle clearly have the same sign as the 
difference p - p F .  Therefore, starting from Eq. (2) and re- 
placing the chemical potential p for a homogeneous normal 
Ferrni system in it by the quasiparticle energy 
& ( p F  , n F ( p ) ) ,  we can easily reformulate the necessary con- 
dition for stability of the Fermi distribution in a somewhat 
different form, if we require that the quantity 

be positive at all values of the momentum p. In the weak- 
coupling limit we clearly have s ( p ) -  1. If the sign of s ( p )  
changes with increasing coupling constant g, which deter- 
mines the intensity of the pairwise vacuum potential V ( q ) ,  
instability and restructuring of the Fermi distribution n F ( p )  
occur as a result. 

Thus, the investigation of the stability of a homogeneous 
Fermi liquid against restructuring of its quasiparticle distri- 
bution (which leaves the system homogenous) involves cal- 
culating the single-particle spectrum of the system. We do 
this, using Eq. (3) and the results in Ref. 3. 

The calculation of the single-particle spectrum ~ ( p )  
starts out with the formula for the ground-state energy E o ,  
which relates it to the linear response function of the system 
x ( k , w )  (Ref. LO): 

where r is the kinetic energy of the system of noninteracting 
particles and the interaction energy is given by the expres- 
sion 

The function x ( q , o ) ,  which depends on the momentum 
q and the frequency w ,  is related to the response function of 
a system of noninteracting particles x o ( q , w )  by the 
expression8 

~ ( 9 ) = x o ( 9 ) + ~ 0 ( 9 ) R ( 9 ) ~ ( 9 ) .  (6) 

where R ( q )  is an effective interaction, which is defined as 
the second variational derivative of the interaction energy 
with respect to the density: 

A calculation of this derivative from (5) gives8 

The calculation of the effective interaction R ( k )  is insepa- 
rable from the solution of the problem of determining the 
ground-state energy of the system. We assume that this prob- 
lem has already been solved and that R ( k )  is the function 
found for the 4-momentum k .  Methods for solving it were 
described in the review in Ref. 8. 

Varying the expressions (4) and (5) with respect to 
n ( p ) ,  we obtain 

Calculating the variational derivative Sx(q ) l  Sn (p )  with 
the aid of (6), for the single-particle spectrum we obtain 

where 
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Substitution of the explicit form of the variational derivative 

+ n(p-q) + 1 - 4 ~ - q )  
E O +  P W-E;-,-~S E ~ + O - & ~ - , + ~ S  (14) 

into (1 1) gives the following expression for the term E (p) in 
Eq. (10) for the single-particle ~ ~ e c t r u m : ~ . ~  

&I(P) = ell)(p) + ei2)(p) + E ( ~ ~ ) ( P ) ,  (15) 

where 

We see that the term E l(p) is calculated for a "frozen" 
effective interaction R ( k ) ,  and if it is known, E ,(p) is found 
by direct integration. 

We now turn to the contribution ~ " ( p )  to the single- 
particle spectrum, which depends on the variation of the ef- 
fective interaction R(k) upon variation of the quasiparticle 
distribution nF(p) (hereinafter, for the sake of brevity we 
shall call it the variational contribution). The variational con- 
tribution is a part of the total correlation contribution to the 
single-particle spectrum, which is equal to the variational 
derivative of the correlation energy of the system E ,  with 
respect to n(p). The correlation contribution includes not 
only ~ , ( p ) ,  but also the term &i3)(p) and part of the term 
E : ~ ) ( ~ )  obtained by replacing p2 in (17) by (p2- 1. To cal- 
culate the function SR ( k ) l  Gn ( p), we calculate the varia- 
tional derivatives of both sides of Eq. (8) with respect to the 
quasiparticle distribution n ( p) , thereby obtaining 

which is the functional equation for SR(k)lSn(p). 
To solve Eq. (19) we can use the same approximate 

method which was used in Ref. 8 to solve Eq. (8). The 
method calls for the use of a local approximation for the 
second variational derivative of the functional, say Y(g,p), 
in the form 

s2y(q,p) - d2y(q- k,p) 

S P ( ~ )  SP( - k) - dp2 
(20) 

This relation becomes exact in the limit k+O. In the lan- 
guage of the coordinate representation this means that the 
local approximation takes into account the value of p at the 
point under consideration and treats all the terms containing 
density gradients approximately. Such an approximation 
holds best when the radius of action of the forces exceeds the 
distance between the particles. An electron gas satisfies this 
condition exactly. This is also confirmed by calculations of 
the correlation contribution to the ground-state energy (the 
difference between the total energy and the Hartree-Fock 
energy) of an unpolarized electron gas in the "jellium" 
model? which exhibit excellent agreement (to within 1%) 
with the results of Monte Carlo calculations" for values of 
r ,  ranging from 1 to 50. 

Use of the local approximation in the functional equa- 
tions (8) and (19) transforms them into integrodifferential 
equations: 

In Eq. (21) it is convenient to switch to a calculation of the 
integral over o along the imaginary axis,8 as is usually done 
when the interaction energy is calculated from Eq. (9.'' Ow- 
ing to the real character of the function x on the imaginary 
axis," Eq. (21) is brought into the form 

The integrals over o in the formulas (1 1) and (12) and in Eq. 
(22) can be calculated by the same technique, but variation 
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with respect to the occupation numbers alters the analytic 
properties of the integrand, and these changes should be 
taken into account when the path unfolds onto the imaginary 
axis. 

3. SPECTRUM OF THE SINGLE-PARTICLE EXCITATIONS 
OF A HOMOGENEOUS 30 ELECTRON GAS IN THE 
LOCAL APPROXIMATION 

Using equations from the preceding section, we calculate 
the single-particle spectrum of a homogenous 3D electron 
gas in the jellium model. In this model it is assumed that 
V ( 0 )  = 0, and in this case the expression for the spectrum has 
the form 

E ( P ) = E ; + & ~ ( P ) + E ~ ( P ) .  (24)  

We begin by calculating the contribution E ( p ) .  Substi- 
tuting 

into (16), for the first term in Eq. (15)  we have 

where a = ~ e ~ /  mpF is the Coulomb parameter. 
To calculate the term E ( , ~ ) ( ~ ) ,  we rewrite (17)  in the 

form 

where 

H ( q , o , p ) =  - 2 7 4  1 -nF(p -q ) )6 (&: -&: -q -  W )  O ( W )  

Averaging the expression (27)  over the directions of the vec- 
tor p, integrating over the frequency o, and going over to the 
variables 

we obtain (for the details of the calculation, see the Appen- 
dix) 

where the function ~ ( t , u )  is given by Eqs. (A4)- (A7) .  
An analysis of Eq. (23)8 shows that the effective inter- 

action R in a homogeneous 3D electron gas is reproduced 
well already by the first iteration Ro of Eq. (23) ,  i.e., by 
substitution of the function ,yo instead of the exact linear 
response function ,y under the integral sign on the right-hand 
side of that equation. Since Ro is linear with respect to g , the 
integral over the coupling constant in Eq. (23)  is easily cal- 
culated, and we ultimately obtain the following expression 
for the contribution under consideration in the single-particle 
spectrum: 

Calculating the contribution ~ 1 ~ )  to the spectrum, we 
again employ the first iteration Ro of Eq. (23)  as the effective 
interaction R in (18) .  In this case the calculation of the inte- 
gral over the coupling constant on the right-hand side of (18)  
is elementary. Then, calculating the integral over the angles 
and switching to the variables t  and u introduced by Eq. (29)  
and the variable 

we obtain 

Calculating the contribution of E l ( p )  to the ratio 
MIM* at small a ,  we can easily prove that & i 2 ) ( p )  makes 
the contribution 

and that & i 3 ) ( p )  makes the contribution ( M I M * ) ( ~ ) - ~ ~ .  
Since, as follows from (26) ,  ( M I M * ) ( ' ) =  a,  at small a we 
obtain exactly the Gell-Mann-Galitskii formula12 

We turn now to the calculation of the variational contri- 
bution e U ( p )  defined by Eq. (12) .  The variational derivative 
SR(q) lGn(p)  in this expression is determined from Eq. (22) .  
The solution of this equation will be the subject of a separate 
report. A preliminary analysis shows that for a Coulomb gas 
the iterations of Eq. (22)  for SR(q)l  Gn(p) ,  like those of Eq. 
(23)  for the effective interaction R ( q ) ,  rapidly converge, and 
to calculate the variational contribution ~ ~ ( p )  it is sufficient 
to take the first. iteration SRo(q ) lSn(p )  of Eq. (22)  as 
S R ( q ) l S n ( p ) ,  i.e., to substitute ,yo instead of ,y on the right- 
hand side and to set ( ~ ( q )  = 1. The function SRo(q)/  Sn (p )  is 
calculated in the Appendix. In the dimensionless variables 
(29)  it has the form 

where Y ( t , u )  is given by Eq. (A21).  
Now substituting the expression (36)  into (12)  as the 

variational derivative SR(q) l  Sn (p )  and switching from in- 
tegration over q ,  w ,  and g to integration over t ,  z, and a, we 
obtain 

where 
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FIG. 1. Correlation cantribution to the chemical potential p, as a function 
of a. Solid line--calculation in the present work; filled squaresMonte 
Carlo calculation." 

Performing the elementary integration over a in Eq. (38), we 
obtain 

4. DISCUSSION 

We used the equations in the preceding section to calcu- 
late the single-particle spectra of a homogeneous unpolarized 
electron gas in the jellium model. The accuracy of the cal- 
culation of the complete correlation contribution to the spec- 

FIG. 2. Plots of  s ( p )  for various values of the Coulomb parameter. The 
numbers near the curves are the values of a. 

FIG. 3. The dimensionless single-particle spectra e ( p )  - p for various val- 
ues of the Coulomb parameter. The numbers near the curves are the values 
of a. 

trum can be evaluated by comparing the correlation contri- 
bution to the chemical potential pc= E ! ~ ) ( ~ , )  + ~ 1 ~ )  
X ( p F )  + &"(pF)  with the analogous quantity p,MC, which is 
obtained using the formula 

from the results of Monte Carlo calculations of the correla- 
tion energy 8yC per particle of a homogeneous unpolarized 
electron gas.11 The correlation contributions p ,  calculated in 
the present work are depicted in Fig. 1 together with the 
Monte Carlo contributions p?. A comparison shows that 
the difference between pc  and ,uF is at most 8% in the 
range of a from 0.166 to 3.32, which corresponds to a varia- 
tion of r ,  from 1 to 20. 

Figure 2 shows the function s ( p )  calculated for various 
values of the Coulomb parameter a ranging from 1 to 5. The 
dimensionless difference ( E  ( p )  - p ) 2  Mlp;  for the same 
values of a is depicted in Fig. 3. The function s ( p )  first 
vanishes at a= 3.6 at the point pc=0.6p,. The appearance 

FIG. 4. The contribution A e ( p )  to the single-particle spectrum for 
a= 3.6: 1)  ~ ( p ) ;  2) E ;  3)  e l l ) ( p ) ;  4) &IZ)(p);  5)  ~ ( 1 ~ ) ( ~ ) ;  6) ~ " ( p ) .  
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FIG. 7. Plots of MIM* as a function of a calculated with (solid line) and 
FIG. 5. The dimensionless variational contributions e , ( p ) -  E , (PF)  for without (dashed line) of the variational contribution. 
various values of the Coulomb parameter. The numbers near the curves are 
the values of a. 

of negative values of s ( p )  means that the Fermi distribution 
of the quasiparticles with respect to the momentum n F ( p )  
has become unstable against small variations, and this results 
in restructuring of the ground state of the system, i.e., ferm- 
ion condensation. The appearance of a momentum range 
p < p F ,  where s ( p )  takes negative values, at a>3.6 fits the 
fact that ~ ( p )  exceeds & ( p F )  in this region of the spectrum 
& ( P ) .  

The absolute values of the contributions of the individual 
terms to the spectrum ~ ( p )  for a= 3.6 are given in Fig. 4  in 
electron volts. The role of the variational contribution in the 
phenomenon under study merits a separate discussion. It is 
clearly seen in Fig. 4  that the absolute values of the varia- 
tional term in the spectra are small in comparison with the 
remaining terms. However, since the spectrum flattens out 
when a- 3, the slope of the variational term as a function of 
p  begins to play a more important role. Figure 5 presents the 
dimensionless differences ( ~ , ( p )  - ~ , ( ~ , ) ) 2 ~ l ~ :  for vari- 
ous values of a .  This difference is greater than zero when 
p<pF and less than zero when p > p f  therefore, the varia- 
tional contribution to s ( p )  is clearly negative over the entire 
momentum range studied. The importance of taking into ac- 
count this contribution for the vanishing of s ( p )  is demon- 

strated by Fig. 6 .  While s ( ~ )  first has a vanishing point for 
a=3.6 when the variational contribution is taken into ac- 
count (Fig. 6a), s ( p )  first has a vanishing point only for 
a = 5  when it is not taken into account (Fig. 6b). Thus, when 
a c 3 . 6 ,  another Fermi surface appears in the system under 
consideration at p=0.6pF,  and the effective mass on this 
Fermi surface goes to infinity. From a rigorous standpoint, an 
investigation of the system beyond the point ~ ~ ~ 3 . 6  without 
consideration of the new phase appearing is not correct. Nev- 
ertheless, it is interesting to evaluate how rapidly the region 
occupied by the new phase, i.e., the fermion condensate, ex- 
pands as a increases and at what values of a the entire 
0 . 6 ~ ~ - p ,  region will be occupied by the condensate. It fol- 
lows from the calculations that the function s ( p )  intersects 
the horizontal axis at the point p = p ,  when the Coulomb 
parameter a = 4 .  In this case the right-hand boundary of the 
momentum range where E ( p )  > E ( p F )  reaches p ~  . When a 
increases further, the right-hand boundary of the region for 
negative values of s ( p )  shifts further to the right and em- 
braces an area with p > p F ,  in which we now have 
E ( p )  < E ( p F )  . It is convenient to characterize this picture by 
the value of MIM* calculated for p = p F .  Figure 7 presents 
the value of MIM* as a function of the Coulomb parameter 
a .  As is seen from the figure, when a 5 3 . 6 ,  MIM* equals 

FIG. 6.  Plots of s(p)  calculated for 
a = 3.6 (a) and a = 5 (b) with (solid line) 
and without (dashed l i i  consideration 
of the variational contribution. 
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~ 0 . 0 8 .  When aC4, this ratio vanishes. Neglect of the varia- 
tional correction appreciably alters the slope of this function, 
displacing the sign change of MIM* to a=5.2 (see Fig. 7). 

The instability which we analyzed occurs at a relatively 
large value of a, which corresponds to a strongly correlated 
Fermi liquid. This raises the question of what other instabili- 
ties (phase transitions) might occur at comparable or smaller 
values of a. We shall restrict ourselves to consideration of 
the possibility of the appearance of the three known insta- 
bilities in an electron gas: superconductivity, a ferromagnetic 
(antiferromagnetic) phase transition, and the appearance of 
charge-density waves (a Wigner crystal). The possibility of 
superconductivity (superfluidity) in systems with a repulsive 
interaction has been discussed in the literature.13 However, 
such a phase transition does not occur in an electron gas 
when a < 5  (Ref. 14). Nevertheless, had such a phase transi- 
tion occurred, it would not have prevented fermion 
conden~ation.~.~ According to Monte Carlo calculations, a 
ferromagnetic phase transition occurs in an electron gas 
when a= 12.4 (Ref. 11). Also, no antiferromagnetic phase 
transition could be detected in calculations with a < 6  (Ref. 
14). We note that these phase transitions likewise do not 
preclude the development of fermion condensation. We pro- 
pose to address in another paper both this question and the 
instability associated with the appearance of charge-density 
waves. 

Crystallization (a Wigner crystal) appears in an electron 
gas at a= 16 (Ref. 11); therefore, charge-density waves 
could hardly be expected to appear at significantly smaller 
values of a. According to our calculations, this instability is 
manifested at a= 12 (Ref. 15). Thus, we can conclude that 
fermion condensation is very likely the first instability ap- 
pearing in a strongly interacting electron liquid. 

5. CONCLUSIONS 

The single-particle spectrum ~ ( p )  of a rarefied 3D elec- 
tron gas has been studied in this work in the jellium model. 
To calculate E ( p )  we used the approximate method proposed 
in Ref. 3 within a functional approach to the theory of 
strongly correlated Fermi systems. The purpose of the study 

was to ascertain the stability of the Fermi distribution of the 
quasiparticles with respect to the momentum 
n F ( p )  = f?(pF-p) as the Coulomb parameter a increases, 
i.e., to determine the value of a at which a necessary condi- 
tion for the stability of n F ( p )  is violated. Mathematically, 
this condition is formulated as a requirement that the func- 
tion s ( p )  assigned by Eq.  (3) be negative. 

The value of a at which the system becomes unstable 
against a phase transition with the formation of a fermion 
condensate has been found. The function s ( p )  first vanishes 
when 0 ~ 3 . 6  (r,-21) at the point p,=0.6pF. As a in- 
creases, the right-hand boundary of the region for negative 
values of s ( p )  shifts toward higher values of p ,  and when 
a= 4 it reaches p~ . 

We have studied the role of the variational correction in 
the appearance of negative values of s ( p )  due to modifica- 
tion of the effective interaction in response to the quasipar- 
ticle distribution, and the behavior of its boundaries as a 
increases. Neglect of this correction postpones the vanishing 
of s ( p )  for the first time to a = 5 .  
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APPENDIX A 

We average over the directions of the vector p and inte- 
grate over o in Eq. (27). In the integrand the dependence on 
p is confined to the function H(q,w,p) .  Integrating over 
angles, we obtain 

where 

2 
p2 PF 

in the range p > p F ,  O<w<- - - 
2M 2M'  

- p +  JP-<q<p+ J-; 
in other ranges. 

To calculate ~ ( p )  at values of the momentum p not too far d o  
from p,,  it is sufficient to take the function p ( q , w )  at 1 ( 4 r ~ ) =  @ ( ~ . W , P ) Z _  (A3) 
w=O, and the dependence on w then remains only in the 
function @ (q , w , p )  . The calculation of the integral of the function (A2) is elementary. In the variables t and u 
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and the trace is calculated over the spin indices. 
The variational derivative of the Green's function (A12) 

has the form 

(29) it has the form 

f v ( l ) ( t , u ) ,  ua 1 ;  

Formulating the action integral of the second derivative 
d 2 / d p 2  in terms of SIGn(p): 

we can easily obtain the following expression for the varia- 
tional derivative: 

Calculating the integral and substituting it into Eq. (AlO), for 
D ( k , p )  we obtain the expression 

Now substituting the calculated function v ( t , u )  into Eq. 
( A l )  as the integral of O ( q , o , p )  over w ,  we obtain Eq. 
(30). 

We now calculate the variational derivative 
where 

We represent (A8) in the form 

We now calculate the integral over the angle in Eq. (A9),  
and as a result we have and we first calculate 

For this purpose we represent xo(q ,w)  in the form 
Substituting (A16) into (A19) and integrating over q ,  we 
obtain the final expression for SRo(k)I Sn(p) .  In the dimen- 
sionless variables t  = k/2pF and u  = p / p F  it has the form 

where 

where 
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We also present the explicit form of the first iteration of 
Eq. (23) for an effective interaction 
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