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This paper presents a generalization of the theory of the isothermal growth of cellular, dendritic, 
and doublon structures for directional crystallization under a temperature gradient. The 
theory takes into account the temperature gradient and the corresponding renormalization of 
thereby capillary effects, as well as the equations of mass balance in the diffusion problem. In the 
case of a cellular structure, the mass conservation equation relates the supercooling at the 
solidification front to the fraction of the solid phase in the cell. In dendritic and doublon structures, 
renormalization of the mass conservation equation corresponds to a modernization of the 
Ivantsov relation between supercooling and the Piclet number. The resulting equations relate 
supercooling at the solidification front to the crystallization rate. For all the types of 
solidification fronts, these functions are nonmonotonic and have minima. At growth rates much 
higher than the critical rate corresponding to the onset of the plane front instability, the 
functions coincide with those obtained in the case of the isothermal growth, when corrections 
due to the temperature gradient are small. We have found that the structure of the 
solidification front changes from cellular to dendritic and then to doublon as the growth rate 
increases. We present arguments that the first transition from cells to dendrites is gradual, i.e., the 
radius of curvature peaks of gradually drops as the growth rate increases, for a fixed period 
of the structure. The second transition, from dendrites to doublons, is sharp. like a first-order 
kinetic transition. O 1996 American Institute of Physics. [S 1063-7761 (96)02703- 11 

1. INTRODUCTION 

In the process of controlled directional solidification, a 
thin sample of melt is drawn at a constant velocity v across 
a region with a constant temperature gradient G. The propa- 
gating plane crystallization front becomes unstable over 
some wavelength range if the drawing velocity is larger than 
some critical velocity v, proportional to the temperature gra- 
dient and dependent on the melt composition. When the 
drawing velocity exceeds the critical value, a new stationary, 
periodic shape of the solidification front is established after 
some period of dynamic restructuring. Both the nonsteady 
growth and the final steady-state front shape are controlled 
by the ratio of velocities vlv,. 

The aim of our work was to describe analytically the 
basic types of growth front patterns and transitions between 
them. These structures include well-known cellular and den- 
dritic structures,' and "doublon" structures recently discov- 
ered in experiments with directional crystal Our 
treatment of directional crystallization is based on the theory 
of growth of these structures under isothermal conditions. 
The corresponding papers include an investigation of growth 
of an isolated dendrite: of a symmetric "finger" in a 

an asymmetric "finger" in a channel,'-lo and of 
an isolated doub~on. '~- '~ The isolated doublon is a limiting 
case of an asymmetric finger in a channel close to one wall 
and far from the other. 

In the case of isothermal growth, the problem is formu- 
lated as follows: determine the growth rate and typical di- 
mensions of a grown structure at a given melt supercooling. 
In the case of directional crystallization, the growth rate is 
determined by the drawing rate, and the problem is to deter- 
mine the supercooling at the solidification front (or the front 
position under a given temperature gradient) at a fixed 
growth rate. Since there is a temperature gradient, the equi- 
librium concentrations at the solid-liquid interface, which 
are functions of temperature determined by the equilibrium 
phase diagram, are also functions of the coordinates at the 
interface. This effect, which does not occur in isothermal 
growth, leads to a renormalization of both capillary effects 
and mass balance condition in the diffusion problem. As a 
result, the relation between supercooling and growth rate for 
different interface structures in directional solidification is 
very different from that in the case of isothermal growth. 

The paper is organized as follows. Section 2 contains 
basic equations describing the directional crystallization of a 
binary alloy under a linear temperature gradient. Section 3 
describes capillary length renormalization due to the tem- 
perature gradient. Sections 4, 5, and 6 describe the cellular, 
dendritic, and doublon patterns, respectively. In Section 7 we 
discuss the results and propose the following sequence of 
growth patterns versus the growth rate: cells, dendrites, dou- 
blons. 
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2. STATEMENT OF THE PROBLEM; BASIC EQUATIONS 

In this paper we consider crystallization of a binary di- 
lute alloy under a temperature gradient G. Diffusion is taken 
into account only in the liquid phase. The concentration field 
C(x,z) in the melt and the crystallization front shape [(x) in 
the steady-state two-dimensional process are described by 

(the initial concentration in the melt far ahead of the growth 
front is C,). The mass balance equation at the solidification 
front is 

where v is the drawing velocity, D is the diffusion coeffi- 
cient in the melt, k is the impurity distribution coefficient, 
and O is the angle between the normal to the interface and 
the growth axis Oz aligned with the temperature gradient. 
The concentration in the melt near the interface is assumed 
to be equilibrium and determined by the Gibbs-Thomson 
condition: 

The origin, z=0,  corresponds to the solidus temperature Ts 
of the initial melt composition C, , Ts= T,- m C, 1 k, Tm is 
the melting temperature of the pure material, 
mlk= - dTsldC determines the slope of the solidus line, L 
is the latent heat of fusion, y(O) = y(O) + y"(O), where 
y(O) is the surface energy of the interface, which is as- 
sumed to be anisotropic in the general case, and 
K =  -["/(I +['2)3'2 is the curvature of the crystallization 
front. 

Although the problem seems fairly simple, its solutions 
describe various shapes of the solidification front, namely, 
shallow and deep periodic cells, dendrites and doublons, 
various random structures, etc. One formulation of the prob- 
lem is to determine the shape and location of the crystalliza- 
tion front for a given temperature distribution at a fixed 
wavelength of the grown structure. The more profound prob- 
lem of the wavelength selection of the grown structure has 
been discussed extensively in the literature, but its ultimate 
solution has not been found yet (see Ref. 13 and references 
therein). 

In this paper we discuss three types of structures: peri- 
odic cellular, dendritic, and doublon (Fig. l). The theory of 
their growth has been developed for the case of isothermal 
crystallization (G= 0). There are publications on the growth 
of an isolated dendrite: crystal growth in a and 
doublon An important feature of these theories is 
that they take into account the interface curvature in Eq. (3) 
as a singular perturbation to the equation for the growth front 
shape. These theories yield solvability conditions for equa- 
tions of the growth front shape in the form of selection rela- 
tions. For example, in the case of an isolated dendrite at zero 
temperature gradient, the selection relation has the form4 

FIG. 1. Three patterns of two-dimensional crystallization fronts: a) cellular 
structure; b) dendritic structure; c) doublon structure; p is the radius of 
curvature at the peak (in the doublon pattern p is the radius of curvature of 
the envelope); w is the structure period. 

where do= yoTmlLm is the capillary length, p is the radius 
of curvature of the dendrite peak, Co is the equilibrium sol- 
ute concentration in the melt at a given temperature, 
a*(&) is a known function of the surface energy anisotropy 
parameter, a. In the case of four-fold anisotropy 
[y(O)= yo(l - a cos 40) ]  and at a small a ,  the function is 
a * ( ~ u ) - a ~ ' ~ .  One effect of the temperature gradient is a 
change in selection relations like Eq. (4). This change may 
be formalized as a renormalization of the capillary length 

do. 

3. RENORMALIZATION OF THE CAPILLARY LENGTH DUE 
TO A TEMPERATURE GRADIENT 

The renormalization procedure was described in Refs. 14 
and 15 and is performed as follows. A new field is intro- 
duced so that Eqs. (2) and (3) have the same form as the 
equations for the isothermal problem, i.e., Eq. (3) must con- 
tain no 2-dependent terms. It is known4 that in the isothermal 
case the selection relation (4) can be derived by replacing 
Eq. (1) with the Laplace equation at a sufficiently small ve- 
locity v : 

and by replacing the concentration Ci in Eq. (2) by Co: 

In the isothermal case Eq. (3) is transformed to 
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In solving the problem of directional crystallization under a 
temperature gradient, we also replace in Eq. (2)  the local 
concentration Ci determined by Eq. (3) with the constant 
Co, which equals the equilibrium concentration at the tem- 
perature of the peak (the omission of the term depending on 
the curvature is justified by the same arguments as in the 
isothermal approximation). The dependence of Ci  on the co- 
ordinate z may be ignored because in the derivation of the 
selection relations the only essential variations are those over 
a length comparable to p,  which are small at a fairly small 
gradient G: 

Thus we can derive the selection relations from Eqs. (5)  and 
(6) and the unchanged Eq. (3).  Introducing the new concen- 
tration field CI instead of C using relation 

we obtain the same Eqs. (5)-(7) for with C replaced by 
C and do(@) by z0(@): 

Using this renormalization of the capillary length, we can 
write instead of Eq. (4)  a selection relation for an isolated 
dendrite under a temperature gradient: 

4. CELLULAR PERIODIC STRUCTURE 

Our aim is to find the temperature on a cellular structure 
growth front as a function of the period w and the growth 
velocity v .  This problem was analyzed by many 
 researcher^'^-'^ using its similarity to the Saffman-Taylor 
problem at small P6clet numbers. But the analysis of crystal- 
lization of a pure substance in a channel7-lo demonstrated 
that the difference between the crystallization problem, 
which is described by the diffusion equation, and the 
Saffman-Taylor problem, which reduces to the Laplace 
equation, is significant, even at small P6clet numbers. Using 
the solution for the isothermal growth of a pure substance 
and the renormalization of the capillary length given by Eq. 
(9),  we shall write the selection relations for the isothermal 
growth of an alloy in a channel of width w at a supercooling 

where Co is the equilibrium concentration in the melt at a 
given temperature To. From Eqs. (4.4) and (4.13) in Ref. 7 
we derive 

where p= 113 is a numerical factor and 

The parameters s and A determine the shape of the crystal- 
lization front, which is assumed to have the Saffman-Taylor 
form, 

where zo is the location of the peak. The relative width A of 
the rod is determined by mass balance, and in isothermal 
crystallization 

In crystallization directional crystallization at a given 
temperature gradient, Eqs. ( 1  1)-(15) are modified in the fol- 
lowing way. If the temperature gradient is fairly small so that 

the front shape over a distance w is the same as in isothermal 
crystallization, and is described by Eqs. (13) and (14). Sub- 
sequent complete crystallization takes place over a length 

Given that the temperature gradient is small, we define Co in 
Eq. ( 1  1 )  as the equilibrium concentration at temperature To 
at the peak of the structure, and A in Eq. ( 1 1 )  is the super- 
cooling at the peak. In Eq. (12) the renormalized capillary 
length &, defined by Eq. (9) must be used instead of do. (In 
this section we ignore capillary length anisotropy in the 
analysis of cellular structure.) Taking account of the tem- 
perature gradient in the mass conservation condition, Eq. 
(15) is modified1': 

where u, is the critical growth velocity corresponding to the 
onset of instability at a plane front, capillary effects being 
ignored: 

v,= GDklmCm(l  - k ) .  (17) 

Equation (16) can be easily derived from the effective con- 
servation equation for diffusion near the peak of the structure 
at z=zo: 

Assuming that diffusion fields can be described by one- 
dimensional functions both ahead of the peak, 

and behind it, 

we derive Eq. (16) from Eq. (18). 
Let us introduce dimensionless parameters 
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and transform Eqs. (12), (13), and (16) by replacing do with 
the renormalized length zo defined by Eq. (9): 

These equations determine the shape parameters, s and A, 
and the supercooling A at the peak as functions of the growth 
velocity V and structure period W. The real difference be- 
tween our analysis and that in Ref. 15 is that the Pbclet 
number is included in Eq. (20). As a result, the supercooling 
A at the peak is a nonmonotonic function of the period. If we 
adopt the hypothesis that the operating point of the growth 
process is at the minimum of the supercooling A as a func- 
tion of the period W, these two parameters can be deter- 
mined as functions of the pulling velocity V. Our analysis 
indicates that in the range of realistic parameters A is close to 
112 (the supercooling may significantly differ from 112). 
Given that A-  112 and the Pbclet number VW are small, we 
derive from Eqs. (20) and (21) 

VW 1 4pTr2(1 +k) 
(A- l12)= -+ -[ 

8~ 4 JZvw2(1-v,/v) 
IY3. (23) 

It follows from Eq. (22) that dA/dA>O. Therefore the extre- 
mum of A(W) coincides with that of A(W). At the extre- 
mum dAldW=O, hence 

and A is determined by Eq. (22) at A = A, . These equations 
are valid if A - 1/24 1. They do not hold in a narrow range of 
velocities around the critical velocity V, , 

and at very large velocities, 

Since typical values are V,- 10-~-10-~ ,  the range where 
Eqs. (23)-(25) are valid is fairly wide. The resulting function 
of A versus V is nonmonotonic (Fig. 2). In the two limiting 
cases, V+V, and V+w, the supercooling A, as well as 
A,, tends to unity. As was noted above, these two limiting 
cases are not described by Eq. (25) and formally can be 
analyzed using more general equations (20)-(22) at A 4  1. 

FIG. 2. Dimensionless supercooling, A ,  at the peak versus reduced growth 
velocity: a) a curve for cellular structure calculated using Eqs. (22) and (25); 
b) a curve for dendritic structure calculated using Eq. (38); c) a curve for 
doublon structure calculated using Eq. (50). The calculations used the fol- 
lowing parameters: V,= k =  113, 0* = 0.02. The entire curve c, in- 
cluding the dashed portion, corresponds to the isotropic case, a = O .  The 
solid portion of curve c shows the domain of the doublon solution defined 
by the criterion of Eq. (47) with an anisotropy parameter a = 0.1 (see details 
in the text). 

Note, however, that the selection relation (21) was derived at 
A close to 112. Nonetheless, the nonmonotonic function 
A(V) is described by Eqs. (22) and (25) over a wide range of 
parameters. The supercooling is minimum, A,, at a growth 
velocity 

Since V,+ 1, the point of extremum is at VlV,% 1. At this 
velocity the minimum supercooling is 

5. DENDRITIC GROWTH IN DIRECTIONAL 
CRYSTALLIZATION 

In addition to cellular structures, dendrites are clearly 
seen at the crystallization front in some experiments on di- 
rectional growth. The basic difference between the cellular 
and dendritic structures is that the peak radius p of a dendrite 
is much smaller than the structure period w (separation be- 
tween neighboring dendrites), whereas in cellular structures 
these two parameters are comparable. In this section we de- 
scribe dendritic structure. As a first step, let us consider the 
growth of an isolated dendrite at w - i m .  Here we do not 
consider the interaction between dendrites, which deter- 
mines, in the long run, the separation between them.13 

It is known that the isothermal growth of an isolated 
dendrite is described by two equations. The first relates the 
Piclet number p = vp12D of the grown dendrite to the super- 
cooling A,  capillary effects at the interface being ignored17: 
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This equation was derived for the case of two-dimensional 
crystallization; here A is determined by Eq. (1 1). The second 
equation is the selection relation (4). These two equations 
determine the growth velocity v and the peak radius p as 
functions of the supercooling A. In directional crystallization 
under a temperature gradient, the dendrite growth rate is de- 
termined by that of pulling. The problem is to derive the 
peak radius p and the supercooling A at the dendrite peak 
from given growth parameters, namely the velocity u and 
temperature gradient G. To this end, we use Eq. (10) with 
the capillary length renormalized taking into account the 
temperature gradient instead of Eq. (4). The Ivantsov relation 
(29) must be also modified to include the temperature gradi- 
ent. Our modification is based on the boundary-layer model 
(BLM), which yields an approximate but qualitatively cor- 
rect relation between the Piclet number p and the supercool- 
ing A in the case of isothermal growth18: 

(compare to the exact equation (29)). The BLM steady-state 
equation for alloy crystallization, which replaces Eqs. (1) 
and (2), has the formlg 

where 

is the dimensionless solute concentration in the melt at the 
growth surface, which is determined, according to Eq. (3), by 
the equation 

Recall that O is the angle between the growth axis z and 
the normal to the solidification front. In order to derive the 
equation relating the Piclet number to the supercooling, we 
omit the term due to the capillary effect in Eq. (31). By 
differentiating Eq. (31) with respect to O ,  we obtain 

where the critical velocity v, is determined by Eq. (17). By 
expanding in powers of O the unknown functions U(O)  and 
K ( O )  around 0 = 0, 

K ( @ ) = K ~ + ~ @ ~ +  . . . , (33) 

we derive from Eq. (30) near the dendrite peak at 0 4 0  
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Given the relationship between Uo and the supercooling A at 
the dendrite peak, 

we derive from Eq. (34) 

Here the peak radius p= l /Ko,  and the supercooling A at the 
dendrite peak is determined by Eq. (11). Equation (36) re- 
places the Ivantsov relation (29). We rewrite the selection 
condition (10) as 

The parameter p is eliminated from Eqs. (36) and (37), and 
dimensionless velocities V and V, are introduced, according 
to Eq. (19). Hence follows the final equation relating the 
supercooling A at the dendrite peak to the growth velocity 
v :  

As in the case of cellular structure, A(V) has a minimum 
(Fig. 2). At V-iV, the supercooling, A tends to unity: 

We stress that Eq. (39) is most probably inaccurate, because 
at V-i V, the Piclet number diverges as ( 1 - V/ V,)-Il2, as 
follows from Eqs. (36) and (39), whereas the selection equa- 
tion (37) and the capillary length renormalization were de- 
rived at moderate Piclet numbers. If V, is small, there is an 
intermediate asymptote as V-iV,,  namely, at 

we have 

As (V) increases, A(V) goes through a minimum. The mini- 
mum supercooling A, is described by the equation 

A; (b-2A,) (b-2)2  -- 2V, 
( 1  - A , ) ~  [ l  - ( I  - k ) ~ , ] ~ b ' -  k g * '  (41) 

where b is a function of A, : 

and the velocity at the minimum depends on A, : 
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At the parameters of Fig. 2, the minimum has the coordinates 
V, /V,= 18.7, A,=0.392. At larger velocities ( V P  V,), we 
have the same relation between A and V as in dendritic 
growth under isothermal conditions: 

Note that formally Eq. (38) has two additional solutions 
A(V) at V-V,. These solutions define a closed loop in the 
A-V plane. But these solutions are unphysical, since the 
Piclet number [Eq. (36)] for them is negative. 

6. DOUBLON GROWTH IN DIRECTIONAL CRYSTALLIZATION 

In crystal growth, the doublon s t ~ c t u r e ~ ~ ~ " ~  may com- 
pete with both cellular and dendritic structures. In this sec- 
tion we modify the theory of isolated doublon growth12 simi- 
larly to the previous section. Doublon growth under 
isothermal conditions is described in the following way. 
Doublon shape is defined by two parameters: the radius of 
curvature p of the envelope parabola at the peak and the 
width h of the liquid layer far from the peak (Fig. 1). The 
Piclet number p = up/2D for the envelope parabola is related 
to the supercooling A by the Ivantsov relation (29). The di- 
mensions h and p are interdependent, and their relation at 
small Piclet numbers is described by the equationI2 

Finally, there is a selection relation between the parameter 

and the Piclet numberI2: 

Equations (44) and (46) describe doublon growth in an iso- 
tropic system: the anisotropy parameter a is zero. In aniso- 
tropic systems with a small but finite parameter a, steady 
doublon growth is not possible at all supercoolings, but only 
when the Piclet number p(A) is larger than a critical value, 
which is a function of the anisotropy parameter a: 

p(A) > C Y ~ ' ~ .  (47) 

This condition was derived for four-fold symmetry.12 In the 
domain of the doublon solution, i.e., when the condition (47) 
is met, the selection is approximately determined by the 
same equations (44) and (46), which contains only expansion 
terms of the zeroth order in a. We propose a modification 
procedure for directional crystallization under a temperature 
gradient similar to the case of dendrite growth (Section 5): 

a) the relationship between the Piclet number p for the 
envelope parabola and the supercooling A near the peak is 
determined by Eq. (36): 

b) the capillary length do in the definition of u (Eq. (45)) 
is replaced by the renormalized length defined by Eq. (9): 

Note that the gap h in the middle of the doublon is closed at 
a distance of the order of the thermal length I T ,  which is 
expected to be much larger than the radius p. 

After eliminating the parameter p from Eqs. (44), (46), 
(48), and (49) and introducing the dimensionless velocities 
V and V, (Eq. (19)), we obtain the equation relating the 
supercooling A at the peak to the growth velocity V: 

The resulting relation between A and V for a doublon grown 
in an isotropic system has a minimum, given by Eq. (50), 
like those of the cellular and dendritic structures (Fig. 4, 
curve c). At VPV, , the same relation as for the isothermal 
doublon growth can be obtained: 

At V close to V,. the supercooling is approximately equal to 
unity: 

Note that, as in the case of dendrite growth (Section 5), 
Eq. (52) does not hold at V-+V, since the Piclet number 
increaseses without bound as ( 1 - V/ V,) -2'9, whereas the 
theory was developed for small Pkclet numbers. In the case 
of anisotropy, Eqs. (50)-(52) are valid only in the domain of 
the doublon solution, i.e., when the additional condition (47) 
holds. As a result, a solution exists in only two ranges of the 
growth velocity: near V, , when V,< V< V I  , and beyond 
another critical velocity, V> V2, so no solution exists in the 
intermediate range V1 < V< V, . If a is relatively large, the 
critical velocities Vl and V2 may be estimated using the 
asymptotic relations in Eqs. (51) and (52), and Eqs. (47) and 
(48): 

In this derivation we assume that ~ , / a ~ / ~  is small. Other- 
wise, when this parameter is large, we obtain V1 > V, , i.e., 
the doublon solution exists throughout the whole velocity 
range V> V, . A situation in which the solution exists at all 
velocities is possible when a is smaller than some critical 
value, a< a , ,  which can be estimated by taking Vl- V, . 
This estimate yields a,-~:~. At parameters given in Fig. 1 
the solid portion of curve c corresponds to velocities 
V>V2. The parameter V1 is very close to V,, and they 
cannot be distinguished in Fig. 2. 
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7. DISCUSSION 

We have discussed three types of growth morphologies 
in directional crystallization: cellular, dendritic, and doublon 
(Fig. 1). Supercooling is plotted as a function of growth ve- 
locity in Fig. 2. The basic difference between cellular struc- 
ture and the other two types is that its peak radius is compa- 
rable to the structure period, whereas in dendritic and 
doublon swctures the peak radius is much smaller than the 
structure period. In fact we ignored the diffusion interaction 
between different stems of the dendritic and doublon struc- 
tures assuming that the structure period was larger than the 
diffusion length, Dlv. The curves of the supercooling versus 
the solidification velocity are nonmonotonic in all three cases 
(Fig. 2). All these curves originate from the point VIV,= 1, 
A =  I, corresponding to the onset of the plane solidification 
front instability. Near the critical point, the supercooling 
drops with increasing growth velocity, and after passing the 
minimum increases. At V+V, the rising portions of the 
curves are, naturally, described by the equations for isother- 
mal growth. Under these conditions, the effect of the tem- 
perature gradient is small. 

In the case of cellular structure, the period and the cur- 
vature radius are comparable, and supercooling at the front is 
a function not only of VIV,, but also of the structure period. 
The solution of the Laplace equation for this structure15 in- 
stead of the diffusion equation yields the monotonically de- 
creasing function A(w), with w entering in the form of a 
dimensionless parameter w 2 v l d o ~ .  Analysis in the context 
of the diffusion equation (i.e., at a finite Piclet number, 
vwlD) yields a minimum in A ( w ) .  Curve a in Fig. 2 shows 
A as a function of VIV, for cellular structure, which corre- 
sponds to the function A(v ,w) being minimized with respect 
to the period w. In other words, the curve is plotted not for 
an arbitrary period, but for the period corresponding to mini- 
mum supercooling. At a different period w, the curve of 
A(V/V,) would be similar, but higher than curve a in Fig. 2. 
In fact, we have selected the cellular structure period by 
minimizing the supercooling, although we must stress that 
there is no deep underlying physical reason for this selection. 
The period of the cellular structure determined by the mini- 
mization versus the growth velocity is given by Eq. (24). At 
V/V,+ 1 the period drops with velocity as 

If we use this hypothesis of the minimum supercooling 
to select the structure, one can see in Fig. 2 that dendritic 
structure is preferable at moderate growth velocities, and it 
seems that the domain of cellular structure vanishes. But 
experimental data clearly indicate that the cellular structure 
is grown at a velocity several times higher than V,, and the 
transition to dendritic structure takes place at VIV,- 10. In 
our opinion, the fact that cellular structure is produced at a 
growth velocity close to V, can be explained as follows. In 
order to produce dendritic structure, the period must be at 
least larger than 2p, where p is the dendrite peak radius. The 
structure period due to plane front instability is of the order 
of the Mullins-Sekerka length at a velocity of order v ,  : 

Increases in the structure period take place extremely 
inefficiently. By estintating the peak radius p from Eq. (37) 
and taking 2plw- 1, we find that dendritic structure should 
appear at VIV,> 1/(.rr2v*k). At the parameters selected in 
our study, a*=0.02 and k= 113, we have V/V,> 15, and 
cellular structure should occur at lower velocities. Note that 
the transition from cells to dendrites is gradual. In fact, at a 
fixed structure period, the peak radius decreases with growth 
velocity, and at plw< 1 dendritic structure is clearly seen 
and has well-developed side branches. The selection of the 
period of well-developed dendritic structure was studied by 
Warren and ~ a n ~ e r , ' ~  and they demonstrated that the pattern 
selection is history-dependent, namely, it is determined by 
the transition from the plane solidification front through in- 
stability to developed dendritic structure. 

The doublon solution at parameters selected in this study 
(including the case of the anisotropy parameter cr = 0.1) ex- 
ists only at V/V,> lo3 and is more preferable in this range 
since it has the lowest supercooling at a given velocity. 

Our analysis indicates that the shape of the solidification 
front changes with velocity in the following sequence: cells, 
dendrites, then doublons. The transition from cells to den- 
drites was detected long ago, and the second transition from 
dendrites to doublons was discovered quite recently.273 In our 
opinion, unlike the gradual cell-dendrite transition, the 
dendrite-doublon transition is sharp, like a first-order kinetic 
transition, and leads to a jump in the supercooling at the 
front. Note that a similar transition from dendritic to "sea- 
weed" structure was described in Ref. 20. Subsequent stud- 
ies of the isothermal growth of asymmetric  structure^^-'^^'^ 
demonstrated that the doublon is a basic component of "sea- 
weed" structure. 
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