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It is shown that the partition function of the two-dimensional Ising model on a dual lattice of 
finite dimensions with periodic boundary conditions can be expressed in terms of a 
certain combination of partition functions on the original lattice with different boundary conditions. 
A generalization to the inhomogeneous case is given, and a proof is presented for a weakly 
inhomogeneous distribution of the coupling constants when the system has arbitrary finite 
dimensions. O 1996 American Institute of Physics. [S 1063-7761(96)02603-51 

1. INTRODUCTION Nevertheless, as was noted by the authors themse~ves,'~~ 
the relations (1) and (2) cannot be taken literally. For ex- 

The duality transformation for the two-dimensional Ising ample, when (1) is derived by the method of the 
model was discovered in 1941 by Kramers and ~annier . '  high- and low-temperature expansions, it is difficult to take 
They succeeded in establishing the correspondence between into account and graphs which include spins on 
the partition function of the model in the low-temprature boundaries (particularly those that contain loops that em- 
phase and the partition function on the dual lattice in the brace a toms in the most boundary con- 
high-temperature phase ditions). On the basis of general physical arguments it can be 

(sinh 2 ~ ) ~ ~ ' ~  Z ( K ) =  (sinh 2F))-N'2 z(g), 
sinh 2K. sinh 2F= 1. (1) 

This property of self-duality made it possible, in particular, 
to determine the critical temperature even before an exact 
solution of the Onsager model2 had been obtained. 

In Ref. 3 the Kramers-Wannier duality relation (1) was 
generalized to the inhomogeneous case, in which the cou- 
pling constants are arbitrary functions of the lattice coordi- 
nates: 

(sinh K ~ ( ~ ) ) ) - " ~ z [ K ~ ( ~ ) ]  
r , l  

sinh 2K,(r). sinh 2Z2(r7 = 1, (3) 

sinh 2K2(r) .sinh 2El(r3 = 1. 

The notation of the coordinates and the parameters on the 
original and dual lattices is precisely defined in the next sec- 
tion (see Fig. 1). The Kadanoff-Ceva ansatz (2) is extremely 
informative: it establishes an equality between functionals, 
rather than functions, in contrast to the Kramers-Wannier 
duality relation (1). For example, the duality relation (2) can 
be used to determine the disorder variable ,x in a physically 
and mathematically correct manner, to derive expressions 
which relate the correlation functions on the original and 
dual lattices, to define the "mixed" correlation functions 
(u(r i )  . . . a(r j) ,p(rk)  . . . ,u(rl)), etc. Using (2), Kadanoff 
and ceva3 obtained the duality relation between the two- 
point correlation functions of the spin variables and the dis- 
order variables on the original and dual lattices. 

assumed that the equality (I) is valid in the thermodynamic 
limit, i.e, for the specific free energy. However, in the inho- 
mogeneous variant (2) the very procedure of going to the 
thermodynamic limit is quite indefinite. In either case it 
would be very useful to have exact equalities unlike (1) and 
(2), relating partition functions in mutually dual lattices 
when the system has finite dimensions. This is the subject of 
the present work. 

The notation and a representation of an inhomogeneous 
Ising model in the form of a Grassmann functional integral 
are introduced in Sec. 2. An exact duality relation for the 
homogeneous case on a finite lattice with periodic boundary 
conditions is derived in Sec. 3. It is found that the partition 
function of the model on the original lattice can be expressed 
in terms of a certain combination of partition functions on 
the dual lattice with different boundary conditions. In Sec. 4 
a generalization is made to the inhomogeneous case, and a 
proof is presented for a weakly inhomogeneous distribution 
of the coupling constants. An exact duality relation between 
pairwise correlation functions of the order and disorder vari- 
ables on finite lattices is derived in Sec. 5. 

2. THE MODEL 

The partition function of the 2D Ising model with inter- 
action between nearest neighbors on a rectangular lattice 
stretched over a toms with the dimension N = n X m has the 
form 

The Ising spin takes two values cr(r) = + 1 ; the coordinates 
of the lattice points r =  ( x , y )  run through the values (see Fig. 
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FIG. 1. Correspondence between the coordinates and coupling constants in 
mutually dual lattices. The lattice dimension is N =  n X m. The coordinates 
are r = ( x , y )  and F=r+ ( 2 + 9 ) / 2 ,  where 2  and 9 are unit vectors. 

1) x= 1, . . . ,n and y = 1, . . . ,m; the coupling constants 
along the horizontal and vertical bonds Kl(r)  and K2(r) are 
arbitrary functions of the coordinates in the general case. The 
shift operators V, and V, act on a ( r )  in the following man- 
ner: 

where i and j are unit vectors along the x and y axes. For 
boundary conditions which are periodic with respect to x and 
Y 

( v y =  1, ( V y =  1, 

and for antiperiodic boundary conditions 

where the superscript p denotes periodic boundary condi- 
tions and the superscript a denotes antiperiodic boundary 
conditions. 

Bearing in mind the four possible alternatives for the 
boundary conditions on a torus, we introduce the correspond- 
ing superscripts into the statistical sum z("*~)[K]: for ex- 
ample, 

Henceforth it will be more convenient for us to regard 
z(".~)[K] as a four-component vector Z[K] with the com- 
ponents Zb[K], where b = 1, 2, 3, 4 

Z[K] = (z(P.P),z(P.~),z(~.P),z(~.~)). (6)  

The coordinates, as well as the corresponding functions 
and functionals on the dual lattice, are marked with a tilde: 

< q q ,  zT1(Fj, Z[iq, %IT] , . . .  

The coordinates of the points of the dual lattice coincide with 
the coordinates of the centers of the plaquettes of the original 
lattice and vice versa (see Fig. I): 

In these notations the dual partition fiunction and Hamil- 
tonian, unlike (4) and ( S ) ,  have the form 

The coupling constants Ki(r) and K(r^) are related to one 
another by the (local) duality condition (3). 

The fact that the partition function of the 2D Ising model 
can be represented in the form of a functional integral with 
respect to a real fermion field has been known for a long 

For the problem which we are considering it is im- 
portant that such a representation can be rigorously derived 
for the case of a finite inhomogeneous 

+ Q'"."' CKI). (7) 

Here Q(",~)[K] is a functional integral over a four- 
component Grassmann field with a Gaussian distribution: 

where 
4 

r j= l  

and the $j(r) are the Grassmann variables: 

{$i(r)>$j(rr)I=O- 

The action in (8) has the form 

ti(r)- tanh Ki(r). 

The representation (7) was written for boundary condi- 
tions which are periodic with respect to x and y in the 
Hamiltonian (5). Nevertheless, it is obvious that it is valid 
for any combination of (periodic or antiperiodic) shift opera- 
tors in the Ising Hamiltonian. For example, z(~.P) is distin- 
guished from z(PJ') only by changes in sign in all the cou- 
pling constants K,(r) of the horizontal bonds in the extreme 
right-hand coh~nin of the lattice, i.e., 
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and thus 

t 1 ( n , y ) + - t , ( n , y ) .  (10)  

However, the transition (10)  is nothing but a change in the 
boundary conditions of the shift operator in the action ( 9 )  

vp-v,. . 

Therefore, the expression for z ( ~ . P )  differs from z ( ~ , P )  only 
with respect to the arrangement of the plus and minus signs 
in front of the terms in (7): 

+ Q ( ~ ~ ~ ) [ K ] ) .  (1 1) 

There are expressions similar to (7) and (11)  for the other 
two possible alternatives of the boundary conditions on the 
torus ( z ( ~ . ~ ) ,  z ( ~ , ~ ) ) .  Using the definition ( 6 ) ,  we can write 
all four representations for the partition functions with dif- 
ferent boundary conditions in the following compact form 

where, in analogy to ( 6 ) ,  we introduced the vector 

and the matrix R ,  which has the form 

The integral ( 8 )  can be expressed in terms of the Pfaffian 
of an antisymmetric matrix D of dimensionality 4 N X  4 N ,  
which assigns the anticommutative quadratic form ( 9 )  of 
S( *) 

where 

In these notations 

(14)  

There are similar representations for the dual lattice 
where the matrix 5, unlike (13) ,  has the following form: 

Z[K] = R G [ f ] ,  

t  y(r")= tanh gi(Fj. 

We note in concluding this section that the Pfaffians of high-temperature limit Pf(D) is calculated by direct integra- 
the matrices (13) and (15)  are polynomials of finite degree in tion of ( 8 ) ,  because the cross terms created by g a p P ) ( + )  
ti(r) or c(3 when the lattice has finite dimensions. In the vanish: 

Pf(D) = 1 when t i ( r )  = 0. ( 1 6 )  
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In precisely the same manner in the low-temperature limit 
we have 

~ f ( 6 )  = 1 when <(q = 0. (17) 

3. THE HOMOGENEOUS CASE 

In the general case of arbitrary dimensions m and n and 
irregular distributions of the coupling constants K,(r), it is 
impossible to express either the Pfaffian or the determinant 
of the matrix D in any closed analytic form. Conversely, in 
the homogeneous case, in which 

Ki(r) = Ki= const, 

this can easily be done, since the matrix D becomes transla- 
tionally invariant, and its determinant can be calculated by 
means of Fourier transformation: 

where ti=tanh K,. Here we have not written out the super- 
scripts (a, p) ,  implying that, depending on the boundary 
conditions for the shift operators V, and V, , the projections 
of the quasimomentum p= (p, ,py) run through integral or 
half-integral values, respectively, in units of 2mln and 
21~lm. 

Taking into account that 

for Q[K] we find from (14) and (18) 

where 

ci=cosh 2Ki, si=sinh 2Ki. 

Similarly, for the dual lattice 

G2(K1 , K 2 ) = n  ( ~ G - s ^ ;  cos px-G cos p,), (20) 
P 

where 
- - 

G= cosh 2Ki, %--= sinh 2K, 

Comparing (19) and (20) to one another, we find that 

However, (21) is none other than the duality relation for the 
squares of the functional integrals, in terms of which the 
individual terms can be expressed in the representation of the 
partition function (7), rather than the duality relation for the 
partition functions. Taking the square roots of both sides of 
the equality (21), we obtain 

We now show that the minus sign in (22) applies only to the 
functions Q ( P . ~ )  and that the plus sign applies to the remain- 
ing components of the vectors Q and 6, i.e., 

( S ~ S ~ ) - ~ ' ~ Q ( K ~  ,K2) = (&&)-N'4g6(Z1 ,E2), (23) 

where the singular matrix has the form 

1 - 1  0 0 o \  

Since, as was previously noted, Pf(D) is a polynomial in 
t i ,  det(D) is the perfect square of that polynomial, as can 
easily be seen from the explicit expressions (19) and (20). In 
fact, all the multipliers appear in the product (19) in pairs 
according to the quasimomentum projections f-p, and 
+py  . The only exceptions are the multipliers corresponding 
to p,=p, = IT and p,=p, =O. We use q ,  and q ,  to denote 
them: 

Hence it is seen that all the multipliers in the products deter- 
mining the functions Q ( ~ , P )  (apart from Q(P.P)) are sign- 
invariant in the range of variation of the parameters 

and thus the functions themselves do not change sign. Con- 
versely, the function Q(~.P) ,  which contains the multiplier 

( 1 - s changes sign upon passage through the 
critical line s ls2= 1 .  We clearly arrive at the same conclu- 
sions regarding the dual functions Therefore, with 
consideration of the limiting values (16) and (17) for the 
Pfaffians in the high- and low-temperature limits, we find 

thereby proving the equality (23). 
Multiplying the right- and left-hand sides of (23) by the 

matrix i? (12), we obtain the duality relation sought for the 
partition functions 

where 
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It is seen from (24), for example, that the difference between 
the right- and left-hand sides of the Kramers-Wannier dual- 
ity relation (1) 

does not vanish for any values of Ki ,  m, and n with the 
exception of the critical line 

sinh 2KI-  sinh 2K2= 1. 

Moreover, away from this line (more precisely, outside the 
scaling region) the right- and left-hand sides of (26) become 
equal as the dimensions increase (m,ndw) .  Therefore, the 
duality relation in the form (1) should be understood only in 
the sense of a thermodynamic limit, i.e., 

The duality relation (24) was derived for the ferromag- 
netic sector K1 3 0, K2 3 0. However, since the partition 
functions z (~ .P)  are analytic functions of Ki (polynomials of 
finite degree in the exponential functions ekKi )  when the 
lattice dimensions are finite, the entire nonanalytic depen- 
dence of the right-and left-hand sides of (24) can originate 
only from the multipliers ( S , S ~ ) - ~ ' ~ .  Therefore, the relation 
(24) can easily be continued into the other three regions of 
values of the parameters (KI 2 0, K2<O; K,<O, K2 2 0; 
K, <0, K2<O) with proper observance of the rules for cir- 
cumventing the branch points corresponding to 
sinh 2K1=0 and sinh 2K2=0. 

4. THE INHOMOGENEOUS CASE 
In the preceding section we showed how the Kramers- 

Wannier duality relation (1) should be modified so as to be 
transformed from a symbolic expression to an exact equality. 
It is clear that the Kadanoff-Ceva ansatz (2), for which (1) is 
a special case, is not an exact equality, and it must be treated 
circumspectly. For example, we cannot restrict ourselves, as 
in the homogeneous case, to a simple allusion to a thermo- 
dynamic limit without imposing some requirements on the 
class of functions assigning the distribution of coupling con- 
stants Ki(r). This can be illustrated by a simple example, in 
which the sequence of the functions ~ ! ~ ) ( r )  for increasing 
values of N is chosen such that the coupling constants on the 
boundaries r of clusters of finite dimensions would become 
equal to zero: K,(r E I') = 0. Then, clearly, as N increases we 
obtain a growing number of lattices of finite dimensions, 
which do not interact with one another. The situation is more 
reminiscent of a self-averaging regime for unordered systems 
than a thermodynamic limit in the conventional sense. 
Among other things, this is another argument in favor of 
attempting to formulate a duality relation for an inhomoge- 
neous model, which would have the form of a strict equality, 
as it can be a good tool for theoretically analyzing systems 
with random bonds. 

The covariant form for the exact result (24) in the ho- 
mogenous case hints at an obvious procedure for generaliza- 
tion to the inhomogeneous case. For a lattice of finite dimen- 
sions stretched over a torus, the Kadanoff-Ceva ansatz (2) 
should be modified in the following manner: 

n (sinh ~ K ~ ( ~ ) ) - " ~ z [ K ] =  n (sinh 2G(i))-114f2[E]. 
r,[ 

-. 
r.1 

(27) 

Unfortunately, we are unable to prove (27) in the general 
case of arbitrary lattice dimensions and distributions of the 
coupling constants. We note, however, that we tested this 
relation by means of direct computer calculations on lattices 
of small dimensions (n,m = 2, 3, 4) using a program of ana- 
lytic calculations and became convinced of its validity. 
Moreover, the duality relation (27) can be rigorously proved 
for the weakly inhomogeneous case, in which 

K,(r)= Ki+  SKi(r), Ki= const, SKi( r )4  1 

at arbitrary finite n and m. 
In first order with respect to SKi(r) we have 

n (sinh (2Ki+ S K , ( ~ ) ) ) ' / ~ =  (s1~2)-N14 
r, I 

Because of their translational invariance, the means 
( a ( r )u ( r  +i))  and ( a ( r )u ( r  +?)) do not depend on r ,  but 
they are not equal to one another when K l  and K2 are not 
equal and (or) n # m: 

With consideration of (28)-(30), the duality relation (27) 
takes on the following form in first order with respect to 
SKi(r) and 6Ki(i): 
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For the first two terms on the left- and right-hand sides of 
(31) this equality is satisfied according to the homogeneous 
duality relation (24).  We show that it is also satisfied for the 
terms which are linear in SK and sZ. From (3) it follows 
that 

a - - -- a d -  - d - s 2 - ,  - - - - S I T ,  
dK1 dK2 dK2 dK1 

and from (23) it follows that - - 
Q(K1 , K ~ ) = ( ~ % ) - ~ ' ~ ~ Q ( K I  ,K2). (33)  

Substituting (32) and (33) into the left-hand side of (31) and 
combining similar terms, we obtain 

Recalling (25) (whence follows ~g = f ~ ) ,  we see that (34) 
coincides exactly with the right-hand side of (31). This also 
proves the duality relation (27) in the weakly inhomoge- 
neous case for arbitrary m and n. 

To conclude this section we note that a duality relation 
in a normalization different from (26) is more convenient, 
for example, for applications to the analysis of correlation 
functions. Using the equalities which are obvious from ( 3 )  

and introducing the notations from Ref. 3 

Y [ K ]  = n (cosh 2 K i ( r ) ) - 1 1 2 ~ [ ~ ] ,  
r,i 

instead of (27) we obtain 
A- - 

Y [ K ]  = T Y [ K ] .  

5. DUALITY FOR CORRELATION FUNCTIONS 
The duality relation for the inhomogeneous Ising model 

is useful for studying the properties of correlation functions. 
ITor this purpose it is convenient to use the representation of 

FIG. 2. Magnetic dislocations of two types. Dislocation T, : coupling con- 
stants on the line joining the points r ,  and r ,  are replaced by K + i ~ / 2 .  
Dislocation T, : coupling constants intersecting the line joining the points 
P and F' are replaced by - K. 

correlation functions in terms of magnetic dislocations? i.e., 
extended defects on an Ising lattice. This representation is 
based on the trivial equality 

Taking into account that 

we can write 

where the Hamiltonian with the defect P H 1 [ u ]  can be dis- 
tinguished from P H [ a ]  by the fact that along the line of 
defects, i.e., the magnetic dislocation Tu (see Fig. 2),  which 
joins the points r  and r ' ,  the coupling constants K are re- 
placed by K t  = K +  i d 2 ,  and y is the length of this path, i.e., 
the number of "dislocated" bonds. Then, using the function- 
als (35) introduced in the preceding section, we can write the 
correlation function in the following manner (the subscripts 
specifying the boundary conditions are no longer written 
out): 

with the distribution of coupling constants 

K + i d 2  in bonds belonging to T, 
Kl ( r )  = 

in other bonds. 

The correlation function of the disorder variable ,u(q was 
introduced in Ref. 3 .  This parameter characterizes the degree 
of disorder in the vicinity of the point Ton the original lat- 
tice, and it can be regarded as the result of the duality trans- 
formation of the Ising variable a ( r ) .  The correlation func- 
tion ( , u ( 3 , u ( r r ) )  is defined by analogy to (37) using the 
magnetic dislocation Tc, (see Fig. 2) 

where 

- K in bonds intersecting I?, 
in other bonds. 
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The duality relation for the correlation functions obtained in 
Ref. 3 

follows from the equality (2) and the mapping of the mag- 
netic dislocation Tu on the original lattice onto the magnetic 
dislocation T, on the dual lattice, i.e., 

which follows from (3). The duality relation (27) for a lattice 
of finite dimensions differs from the Kadanoff-Ceva ansatz 
(2). Accordingly, the duality relation for the correlation func- 
tions takes a form which is more complex than (38). For 
example, using (36), for a dual lattice with periodic boundary 
conditions we obtain 

& . . P ) ( ~ , ~  1) = $P.P)[~']~$P.P)[K] 

It is not difficult to see that (39) transforms into (38) only 
under the condition that the correlation length is small in 
comparison with the lattice dimensions, which occurs out- 
side the scaling region and when m and n are sufficiently 
large. We note that the relation (39) is consistent with the 
relation obtained for the critical point in Ref. 9 by the meth- 
ods of quantum conformal field theory.1° 

6. CONCLUSIONS 
The duality relation for the inhomogeneous Ising model 

can have several useful applications. We touched upon one 
of them in the preceding section. This relation can also be 
used to correctly introduce mixed correlation functions of the 
form ( u p u ' p ' )  and to explicitly reveal their fermionic be- 
havior. The ansatz (27) makes it possible, in principle, to 
construct a generating functional, which depends simulta- 
neously on the external sources J(r) ,  f i r ) ,  and ~ ( r ) ,  the 
first two of which are associated with fluctuations of the 
order and disorder variables, while ~ ( r )  generates excita- 
tions of the fermion type. 

The duality relation (27) was formulated for lattices 

stretched over a toms. Nevertheless, it is not difficult to ob- 
tain a duality relation for several other boundary conditions 
from it. In particular, it can be shown that a lattice with the 
dimensions n x m  and free boundaries is dual to an 
(n - 1 ) X ( m  - 1 ) lattice with magnetic fields on its bound- 
aries. Application of the inhomogeneous duality relation to 
the analysis of unordered systems seems attractive in the 
case of an Ising model with random bonds. 

Thus, the ansatz (27) is interesting not only in itself, but 
also in the context of various applications and possible gen- 
eralizations. However, unfortunately, we still do not have a 
proof for the general case of arbitrary distributions of the 
coupling constants and lattice dimensions. The duality rela- 
tion (27) was rigorously proved in this paper for the homo- 
geneous case and for the weakly inhomogeneous case in the 
first order (it would not be difficult to prove it in the second 
order). The relation (27) can also be proved for conditions 
under which a certain small number of coupling constants 
are chosen arbitrarily on a background of the remaining iden- 
tical bonds on the lattice. A positive result from direct testing 
of the duality relation (27) on small lattices with m,n= 2, 3, 
4 would be an additional argument supporting its validity. 
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