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The effect of the capture of carriers by the field of a large-amplitude rf wave on the 
electromagnetic properties of metals is studied theoretically. It is shown that carrier capture 
suppresses collisionless absorption and makes possible the propagation of helicon waves in noble 
metals in a geometry in which there are open trajectories and helicon waves are not 
observed in the linear regime. It is further shown that the decrease in collisionless cyclotron 
absorption at magnetic fields below the helicon threshold in the nonlinear regime can be so 
significant that the propagation of a new wave not having analogs in the linear regime 
becomes possible. The frequency of the wave is proportional to the fourth power of the wave 
vector and inversely proportional to the constant magnetic field, and its damping is 
inversely proportional to the mean free path of the carriers and the square root of the amplitude 
of the exciting rf field. The conditions under which the excitation of such waves in copper 
is possible are indicated. The possibility of the observation of nonlinear waves in aluminum and 
indium is discussed. O 1996 American Institute of Physics. [S1063-7761(96)02403-21 

1. INTRODUCTION 

It is known that circularly polarized rf waves, i.e., heli- 
con waves, can propagate in strong magnetic fields in metals 
with unequal concentrations of electrons and holes. The heli- 
con spectrum is specified by the Hall conductivity, i.e., is 
shaped by all the carriers. The damping of helicon waves is 
caused by collisions of the carriers. In an alkali metal with a 
spherical Fermi surface, a helicon wave exists in a range of 
fields in which its wavelength exceeds the maximal displace- 
ment of an electron during a cyclotron period. Therefore, the 
region where it exists has a weak-field threshold. Below the 
threshold there is strong cyclotron absorption of the wave by 
carriers, whose displacement equals the rf wavelength in the 
metal. This absorption renders the propagation of helicon 
waves in weaker magnetic fields impossible. 

In noble metals there is another type of collisionless ab- 
sorption. In certain orientations of the constant magnetic 
field H relative to the crystallographic axes, there are open 
orbits on the Fermi surface of these metals, which corre- 
spond to infinite motion of the carriers in the transverse 
plane. Then the carriers which move in phase with a wave 
cause collisionless absorption resembling Landau damping. 
Although the fraction of carriers with open orbits is small, 
this absorption is very effective. For example, in copper in 
the H1([110] geometry the concentration of such carriers 
amounts to 0.04 of the electron concentration; however, be- 
cause of the absorption just mentioned the helicon mode be- 
comes strongly damping and is scarcely observed.' 

This raises the question of whether the collisionless ab- 
sorption can be reduced somehow and more favorable con- 
ditions for wave propagation can thereby be created. The 
answer is yes. It was shown theoretically and experimentally 
in Ref. 2 that electron capture by the field of a strong rf wave 
weakens the cyclotron damping of a hole doppleron in cad- 
mium and increases the amplitude of the doppleron oscilla- 
tions of the impedance of the metal slab several fold. In the 

present paper we analyze the influence of the capture of the 
carriers responsible for collisionless absorption on the wave 
properties of metals with unequal electron and hole concen- 
trations. In Sec. 2 the properties of an alkali metal are con- 
sidered in the case of strong nonlinearity in the range of 
fields below the helicon threshold. The properties of copper 
in the Hll k11[110] geometry, where k is the wave propagation 
vector, are analyzed in Secs. 3 and 4. It is shown in Sec. 3 
that the capture of carriers with open orbits can suppress the 
collisionless absorption so much that helicon-wave propaga- 
tion becomes impossible in that geometry. The wave proper- 
ties for the opposite circular polarization of the rf field are 
considered in Sec. 4. We find that the capture of the holes 
responsible for cyclotron absorption and of the carriers with 
open orbits responsible for Landau damping creates a possi- 
bility for the propagation of a new wave, which does not 
exist in the linear regime. The wave properties of aluminum 
and indium in the Hllk1)[100] geometry are discussed in 
Sec. 5. 

2. NONLINEAR MODE IN AN ALKALI METAL 

Let us consider a metal with a spherical Fermi surface in 
a constant magnetic field Hllkllz. In this case the Fourier 
transform of the nonlocal conductivity for circular polariza- 
tions of a wave field is given by (see, for example, Ref. 3): 

where 

kv F e H 
q= - + wc- o- i v '  

oc=-, 
m c  
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w is the angular frequency of the wave, e is the charge of the 
electron, rn is its mass, V F  is the Fermi velocity, n is the 
concentration, and v is the collision frequency. (The expres- 
sions (1) and (2) are a generalization of the Reuter- 
Sondheimer equation> which was derived for H  = 0.) We are 
interested in the case in which o4 v4w, and 
q =  +kvFIwc is the ratio between the displacement of the 
electrons at the reference point on the Fermi surface 
(vZ= v F) during a cyclotron period and the wavelength. The 
dispersion relation for the wave 

can be written in the form 

In the strong-field region, where 5< 1, the roots of Eq. 
(4) are less than unity. Also, the logarithm in (2) and, there- 
fore, the root of the dispersion equation for negative polar- 
ization are real. This root also defines a helicon wave, which 
exists in a field H > H L ,  where H L  is the field strength cor- 
responding to the condition 5= 1. In the range H < H L  we 
have q2> 1, and the logarithm in (2) has an imaginary part 
equal to - rri Sgn q ,  which describes cyclotron absorption. 
In the range of fields where 5% 1 (q2% 1), we have 

3 71-i 3 
F-(q)=- 9 Sgn q+,, 

the imaginary part of this function is large, and an anomalous 
skin effect appears. Such is the situation in the linear regime. 
In the nonlinear regime the magnetic field of the wave "cap- 
tures" the electrons with v,=o,lk (Ref. 2), which are re- 
sponsible for cyclotron absorption. The velocity of these 
electrons is modulated with a frequency 

where 2% is the amplitude of the magnetic field of the wave 
in the metal, S(p,) is the area of the cross section of the 
Fermi surface formed by the pz=const plane, and pp is the 
value of p, for which kv,(p,)= o,(p,). For a spherical 
Fermi surface we have p ~ = m o c l k ,  and Eq. (6) takes the 
form 

where vl is the transverse velocity of the electrons with 
vz= w,lk. If the modulation frequency oo exceeds the col- 
lision frequency v, cyclotron absorption decreases by a fac- 
tor wo/v, and the function (4) is consequently replaced by 

In the case of strong nonlinearity, in which woS v, the sec- 
ond term in (8), which did not play a significant role in the 
linear regime, becomes the main term, and the roots of the 
dispersion equation with a positive imaginary part have the 
form 

These relations are valid in the range of fields below the 
helicon threshold (5% 1 ), in which the imaginary term in the 
square brackets is small in comparison with the real term, 
i.e., in which the following inequalities hold: 

In this region the root q2  characterizes a damping mode, 
and q l  characterizes a propagating mode. The spectrum of 
this nonlinear wave is described by the equation 

where wp=(4.rme2/m)112 is the plasma frequency of the 
electron gas. The damping of the wave is 

where 1 = V F  I v is the electron mean free path. Unfortunately, 
in alkali metals 1 is small (of the order of 0.01 cm), and it 
does not seem possible to make K so small that the passage 
of a nonlinear wave through a metal slab would be observed. 

Noble metals (Cu, Ag, and Au), as well as the group-I11 
metals aluminum and indium, are more suitable for the ob- 
servation of nonlinear effects. There are two reasons for this. 
First, the electron and hole mean free paths can be one or 
two orders greater in these metals than in alkali metals, so 
that the nonlinear regime ( v 4  wo) can be realized at much 
smaller values of H. Second, the Fermi surfaces of these 
metals are such that in certain orientations of the constant 
magnetic field H relative to the crystallographic axes the 
bulk of the carriers do not contribute to cyclotron absorption, 
i.e., cyclotron absorption is already weakened in them as a 
consequence of the features of their Fermi surfaces. Such a 
situation is observed in noble metals in the ~llkll[l  lo] ge- 
ometry, as well as in aluminum and indium in the 
Hllk11[100] geometry. This is also responsible for the fact 
that nonlinear effects should be displayed especially strongly 
in these metals. 

3. NONLINEAR HELICON WAVES IN THE PRESENCE OF 
OPEN ORBITS 

3.1. Model of the Fermi surface and nonlocal conductivity 
of copper in the Hll kll[llO] geometry 

As we know, in this geometry there are three groups of 
carriers on the Fermi surface of copper. In the range of lon- 
gitudinal momenta lpzl<p1=0.2fi A-1 there is a layer of 
hole orbits of the "dog bone" type. In the ranFes of p, 
defined by the inequalities p < l p z l  <p2= 0.8fi A- ' there 
are closed electronic orbits, which form the main group of 
carriers. Finally, in the two narrow ranges where 
p2< I P z l  <p3 there are open orbits. The cross sections sepa- 
rating the electronic orbits from the hole orbits and from the 
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open orbits pass through saddle points. This means that 
dSldp,  goes to infinity at p , = p l  and p , = p 2 .  Hence it fol- 
lows that the function dSldp ,  has a minimum in the range 
( p  , p 2 ) .  This qualitative conclusion is confirmed by the nu- 
merical calculations of S(p , )  and dSldp ,  performed for cop- 
per by Powell (as reported from a private communication in 
Ref. 6) .  

To describe the properties of copper in the nonlinear 
regime we use the model proposed in Ref. 5,  which was 
devoted to a study of Doppler-shifted cyclotron resonance 
and the associated doppleron. In this model the electronic 
and hole orbits are assumed to be circular, and the depen- 
dence of their area on p ,  is defined by the expressions 

where a, p ,  So ,  and S1 are constants. When the parameters 
have the values 

the plots of S,(p,)  and Sh(pz )  given by Eqs. (14) and (15) 
are very close to those which were obtained by Powell using 
numerical calculations. We note that in the range of p ,  from 
0 to p l  the function dSh l d p ,  increases monotonically from 
zero to infinity, while IdS,ldp,( has a minimum at 
pz=  (p2 -p1 )12 ,  at which its value is equal to 2n-p. 

In the case under consideration, the contributions of the 
electrons and holes to the nonlocal conductivity are given by 

Apart from af and ah, , the contribution of the carriers with 
open orbits must also be taken into account. Since the con- 
stant magnetic field H does not restrict the motion of these 
carriers along the open trajectories, their contribution to 
a,, is essentially the same as for H=O. For simplicity we 
note that the open part of the Fermi surface has the form of a 
cylinder described by the equation 

where mo and eo are the mass and Fermi energy of the 
carriers with open orbits. Then the calculation of the contri- 
bution of these carriers to a,, in the nonlocal limit gives 

where v o = ( 2 ~ o l m o ) 1 ' 2 ,  no is the carrier concentration, and 
p ,  is the dimension of the Brillouin zone parallel to the p,  
axis. 

Substituting (14) and (15) into (16) and integrating with 
respect to p ,  from - p 2  to p 2 ,  we obtain 

where 

Here n ,  and nh are the electron and hole concentrations, and 
q  is the ratio of the minimal displacement of the electrons 
during a cyclotron period to the rf wavelength. It is conve- 
nient to use the first expression in (20) for q2< 1 and the 
second for q2>  1. Hence it is seen that F, is real when 
q 2 >  1 and ye+O. The fact that it does not have an imagi- 
nary part means that cyclotron absorption vanishes when 
q2> 1 .  This is a consequence of the fact that IdS,ldp,l has a 
minimum and that among the electrons there are none which 
would satisfy the condition for cyclotron absorption 
kv ,=  w, when q2>  1. 

3.2. Properties of helicon waves and impedance of a metal 
slab 

Let us consider the properties of a mode whose field 
rotates in the same sense as do electrons in a magnetic field 
H. The properties of this mode at large values of H can be 
described by the asymptotic expressions for F ,  and Fh at 
small q ,  which have the form 
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The imaginary parts of these functions characterize the cy- 
clotron absorption of the wave by electrons, and holes, re- 
spectively. With consideration of (19) and (24), we write the 
dispersion equation (3) in the form 

where 

the value presented for Xo  corresponds to no=0.04n, and 
movo=0.3h A - I .  At strong fields the real and imaginary 
parts of the root of Eq. (25) are 

The expressions (28) are valid in the range of fields where 
the conditions 5 4  1 and q"<ql hold. These conditions can 
be represented in the form 

In this region there is a helicon wave, whose wave vector and 
damping are given by 

where k, is of the order of the thickness of an anomalous 
skin layer. 

The value of K ,  depends nonmonotonically on H. The 
first term in (31), which represents cyclotron absorption by 
electrons and holes, decreases rapidly with increasing H. 
The second term, which represents the contribution of carri- 
ers with open orbits (Landau damping), increases linearly 
with H. Therefore, K,(H) has a minimum at the field 
strength 

The corresponding value of K~ is ~,=0.2k,. Thus, the 
damping K I  is of the order of kH, i.e., the helicon mode is 
strongly damped. When the frequency of the exciting field is 
1 MHz and the thickness d of the copper slab equals 0.02 
cm, ~ ~ d 2 . 9 .  It is impossible to observe the signal of a heli- 
con wave passing through such a slab, because it is weak- 
ened 6000-fold. This corresponds to experiment: helicon 
waves are not observed in the Hll kll[llO] geometry.1 

We now show that the situation is radically altered in the 
nonlinear regime. We obtain an expression for the nonlinear 
conductivity by me'ans of a qualitative treatment based on 

simple physical arguments. Let us consider the motion of an 
electron with an open orbit and a constant magnetic field H 
in the field of an rf wave. We write the equation of motion in 
the system moving with the wave in which the electric field 
is absent and the magnetic field is stationary. In this system 
the equation has the form 

where %(z) = (5% cos kz, 2% sin kz, 0) is the magnetic field 
vector of the wave, and the dot denotes differentiation with 
respect to time. Since we have vy=drldpy=O for the dis- 
persion law (17), Eq. (34) reduces to two equations for v, 
and uz , which do not contain H: 

;,=cRov, sin kz, vz= -cR~v, sin kz, (35) 

where cRo= e%moc. Landau damping is governed by carri- 
ers with a velocity v, equal to the phase velocity of the wave 
in the metal wlk. Since the latter is smaller than the Fermi 
velocity of the carriers by several orders of magnitude, the 
difference between the transverse velocity of the effective 
carriers and vo can be disregarded. Setting v,=uo in the 
second equality in (33,  we obtain the following equation of 
motion of a particle along the z axis: 

2 
w 0 i=- - sin kz, 
k 

where 

The first integral of Eq. (36) has the form 

It follows from (38) that particles for which 
vzo> w = Goo lk perform unbounded motion along the z 
axis and that carriers for which vzo< w are captured by the 
field of the wave and undergo oscillatory motion with a fre- 
quency of the order of oo. The former are called transiting 
carriers, and the latter are called trapped carriers. The damp- 
ing of the wave depends on wo / vo , where vo is the collision 
frequency of the carriers. At small wave field amplitudes, at 
which oo4 vo, no carriers are captured, and the linear re- 
gime is realized. At large field amplitudes, at which 
wo% vo, a fraction of the carriers equal to wlvo is captured 
by the magnetic field of the wave. These carriers make the 
main contribution to the Landau damping. Equation (35) 
yields the relation v,d,= - vzdz , which means that the os- 
cillations of each particle along the z axis are accompanied 
by the modulation of u,. This oscillating addition to v, has 
a 7r12 phase shift relative to %,,(z). The situation is similar 
to what occurs for the oscillations of a trapped particle in a 
high-frequency (WT * 1) electric field. If no collisions occur 
( v ~ O ) ,  the particle does not absorb energy from the field. 
Absorption is associated with damping of the oscillations, 
which is caused by the scattering of the particles. Here the 
absorption is weakened by a factor of ( ~ l v ) ~  in comparison 
with the case of a low-frequency field. Similarly, the absorp- 
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tion of the wave energy by trapped carriers in the nonlinear 
regime should decrease by a factor of (oo/ vo12. Therefore, 
an expression for the nonlinear conductivity can be obtained, 
if the local conductivity a 0  = noe2/mo vo is multiplied by the 
fraction of trapped carriers w/uo  and by the factor v i lw i ,  
which describes the decrease in the efficiency of absorption 
by the trapped particles. Thus, to within a factor of order 
unity, the contribution of the carriers with open orbits and 
the conductivity in the case of strong nonlinearity 
( o o %  vo) is given by 

A comparison of (39) with (18) reveals that in the nonlinear 
regime the absorption decreases in proportion to vo 1 f iwo .  
This result is similar to the results for the nonlinear magnetic 
Landau damping of helicon waves in metals: for the nonlin- 
ear cyclotron damping of hole dopplerons in cadmium? and 
for the nonlinear anomalous skin effect.' 

Hence it follows that the decrease in the efficiency of the 
absorption of energy by trapped conduction electrons can be 
described, if the following replacements are made in the sec- 
ond formula in (28) and in (31): 

Here 

where woe and woh are the oscillation frequencies of the 
trapped electrons and holes, respectively. To find woe and 
woh , (15) and (14) must be plugged into (6) ,  and the value of 
p:, must be found from the conditions for cyclotron absorp- 
tion by electrons and holes, which have the form 

In strong fields, where qG I ,  this leads to the following ex- 
pression: 

The equality between the numerical coefficients in the ex- 
pressions (43) for electrons and holes is accidental. Substi- 
tuting (40)-(43) into (31), taking into account the relation 
between n,  , nh , and no ,  and setting 

we write the expression for the damping K of a helicon wave 
in the nonlinear regime in the form 

NG. 1. Calculated plots of R ( H )  for a copper slab and various amplitudes 
of the exciting field: solid curve-200 Oe, short dashes-4 Oe, long 
dashes- 0.1 Oe. 

The damping K as a function H has a minimum at 
Hm= 1.8H . When the frequency of the wave field equals 
5 MHz, H I  -- 15 kOe, and the damping minimum is located 
at a field of 27 kOe. For a wave amplitude H= 200 Oe and 
a collision frequency v=3 X 10' s-', the damping at the 
minimum amounts to about 6 cm- '. 

The incidence of a large-amplitude radio wave to a semi- 
infinite metal occupying the half-space z>0 excites a heli- 
con wave, whose field has the form 

% exp ( i kH-  K ) Z ,  

where kH and K are defined by Eqs. (30) and (44), respec- 
tively. The character of this distribution is the same as in the 
linear regime. The role of the nonlinearity reduces to the fact 
that the Landau damping caused by the carriers in open or- 
bits is drastically reduced, and helicon-wave propagation be- 
comes possible. The helicon spectrum and the harmonic 
character of the distribution of the wave field at the values of 
% achievable in metals remain the same as in the linear 
regime. Therefore, the field in a metal slab will be the result 
of the superposition of harmonic waves that have been re- 
flected repeatedly from its surfaces. In other words, when 
there is only one mode in a metal slab, its impedance under 
antisymmetric excitation is given by the expression [see, for 
example, Eq. (4.26) in Ref. 31 

where k = kH + i K and d is the thickness of the slab. When 
~ d 4 1  and kHd=.rr(2n+ 1 ) ,  where n=1,2,3,. . . , the func- 
tion R ( H )  =ReZ has sharp peaks, which are caused by the 
excitation of standing helicon waves in the slab. The results 
of the calculation of R for a frequency of 5 MHz, a collision 
frequency v= 3 X 10' s-', and a slab thickness d=0.02 cm 
are presented in Fig. 1. The curve depicted by the long 
dashes corresponds to the linear regime. 
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4. NONLINEAR NONLOCAL WAVE 

Let us now examine the wave properties of copper for 
the opposite circular polarization. It is known that a dopple- 
ron, i.e., a wave caused by the Doppler-shifted cyclotron 
resonance of electrons undergoing minimal displacement 
during a cyclotron period, exists in this polarization over a 
fairly broad vicinity of the helicon threshold. In strong fields 
doppleron damping is caused by the collisions of resonant 
electrons, and in weak fields it is caused by the collisionless 
absorption of the wave by holes and carriers with open or- 
bits. The latter increases with decreasing H and prevents 
doppleron propagation in weak fields. We shall consider just 
this range of magnetic fields in this section. Since 5 is much 
greater than unity at small H, we can use the asymptotic 
expressions for F ,  and Fh at large q ,  which have the form 

The coefficients of the first and second terms in the expres- 
sion for F h ( v q )  in (46) in the model under consideration 
differ from unity by several percent. However, since this 
model correctly describes the properties of copper only on a 
qualitative level, but not on a quantitative level, we neglect 
these differences. 

There is no imaginary term containing - i l q  in the ex- 
pression for F , .  This is because the displacement of the 
electrons during a cyclotron period, which is proportional to 
dS, (p , ) ldpz ,  has a minimum. Therefore, at short wave- 
lengths ( q >  1) the cyclotron absorption condition is not sat- 
isfied for electrons. As a result, F ,  is a real function. In 
addition, it is important that F ,  changes sign and becomes 
negative when q >  1. In fact, the quantity in the denominator 
in the integrand in (16), which can be written in the form 

is negative when q  > 1. Physically, this means that in the 
short-wavelength range the Doppler frequency shift for all 
electrons exceeds their cyclotron frequency o,. As a result, 
the contribution of electrons to the nonlocal Hall conductiv- 
ity changes sign. 

Substituting (46) into (19) and neglecting the small 
terms of the order of y, we write the nonlocal conductivity 
for plus polarization and q% 1 in the form 

Despite its numerical smallness ( n h  and no are small in com- 
parison with n , ) ,  the real term in (47) is not small in com- 
parison with the imaginary term. Therefore, the roots of the 
dispersion equation (3) are essentially complex, i.e., there are 
no propagating modes in the q% 1 region in the linear re- 
gime. The capture of holes and carriers with open orbits by 
the magnetic field of a large-amplitude rf wave, as in the case 
of helicon-wave damping, results in a decrease in collision- 
less absorption, and w+ consequently becomes almost purely 

imaginary. An expression for the conductivity in the case of 
strong nonlinearity ( o O h %  vh  , oO% v 0 )  can be obtained by 
making the following replacement in (47): 

The calculation of o O h ( q )  for q 9  1 gives 

When (48), (49), and (37) are taken into account, the expres- 
sion obtained for the nonlinear conductivity is 

where 

and, as before, we set mhvh=movo=  m v .  
Substituting (50) into the dispersion equation (3), we 

rewrite it in the form 

where .ff is defined by an expression which is obtained from 
(26) when (n,- n h )  is replaced by nf . Henceforth we shall 
disregard the difference between tf and 5. 

In the range of magnetic fields in which the inequalities 

v m c  (2) 'I8 (; ) 'I4 
0.04 - - -el4 - , 

em 

hold, the roots of Eq. (51) with a positive imaginary part 
have the form 

The root q ,  , which has a small imaginary part, corresponds 
to a nonlinear nonlocal wave similar to the mode (9) in an 
alkali metal. However, unlike the latter, the nonlinear wave 
in copper has much weaker damping and a much broader 
range of magnetic fields (because of the small numerical co- 
efficient and the small value of v ,  the imaginary term in the 
parentheses in (53) is two to three orders of magnitude 
smaller than the corresponding quantity in the case of an 
alkali metal). The spectrum of this wave, which does not 
have analogs in the linear regime, is determined by all the 
carriers, and its field rotates in the sense opposite to the 
direction of rotation of the helicon wave field. The wave 
vector and the damping (the reciprocal damping distance) in 
the region (52) are given by 
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FIG. 2. 

where l = p l m v  is a quantity of the order of the electron 
mean free path. In fields H - H I  the nonlinear wave trans- 
forms into a familiar d ~ ~ ~ l e r o n . ~  Also, nonlinearity does not 
influence the spectrum of the doppleron, but diminishes its 
damping. 

Let us now consider the excitation of a nonlinear wave 
in copper. We assume that the excitation of a metal slab is 
antisymmetric with respect to the electric field. The formula 
for the impedance Z of a slab in the case in which the field in 
the metal is the result of the superposition of two eigen- 
modes has been given, for example, in Ref. 3 (Eq. (3.1 1)). 
Taking into account the second relation in (53), the inequal- 
ity q,+ 1, and the fact that the mode q, ,  is strongly damped, 
we can bring the expression for the impedance of a slab 
when there is diffuse reflection of the carriers from its sur- 
faces into the form 

where k =  k , + i ~ ,  . The results of a calculation of 
R = Re Z +  for a frequency of 5 MHz, a slab thickness of 0.2 
mm, and v =  3 X 10' s are presented in Fig. 2. Instead of the 
smooth curve in the linear regime, the plot of R ( H )  consists 
of a series of sharp peaks, which correspond to the excitation 
of standing waves with the spectrum (54). Although the 
wave damping given by (55) is a decreasing function of H, 
the height of the peaks has a maximum at a fairly low field 
strength. 

5. NONLINEAR WAVES IN ALUMINUM AND INDIUM 

In conclusion, we discuss the possibility of the existence 
of waves with the spectrum (54) in group-I11 metals. Unlike 

the noble metals, in these metals there are no open orbits, 
and the derivative dSldp,  does not tend to infinity at any 
p , .  The hole Fermi surfaces of aluminum and indium are 
such that in the H11[100] geometry, the areas of their cross 
sections are maximal for p,=O and decrease monotonically 
with increasing p ,  . Also, I dSldpzl varies in a complicated 
nonmonotonic manner. It increases very sharply near the 
central cross section, reaches a maximum, then decreases a 
little, has a broad minimum, increases a little again, reaches 
a second maximum, which essentially coincides with the first 
in height, and thereafter decreases monotonically. According 
to this behavior of ~ d S l ~ ~ , l ,  all the holes (the majority car- 
riers in group-I11 metals) can be divided into three different 
groups. The first group corresponds to cross sections near the 
central one, for which IdSldp,l increases from zero to its 
maximum value. Although the areas of the corresponding 
cross sections of the Fermi surface are large, the range of 
p ,  in which they exist is very small. Therefore, the relative 
concentration of holes from this group is small and does not 
exceed 0.2. The main group is the second group of holes, for 
which Id~ ldp , l  varies from the first maximum to the second. 
This group of holes plays a role similar to the role of elec- 
trons in noble metals: they do not contribute to cyclotron 
absorption when 9% 1 (weak fields), and their contribution to 
the nondissipative part of the nonlocal conductivity is pro- 
portional to l / q 2 .  The holes of the first and third groups 
mediate cyclotron absorption when q +  1 ; however, because 
of their relatively small concentration, this absorption, as in 
the noble metals, is weakened in comparison with the alkali 
metals. In addition, the oscillation frequencies of the 
"trapped" holes wol and W 0 3 ,  which are given by expres- 
sions similar to (6), are large. In the first group S  and 
d 2 ~ l d p t  are large, and in the third group the cyclotron mass 
m is small, since the areas of the corresponding cross sec- 
tions are several times smaller than that of the central cross 
section. Therefore, it would be expected that nonlinear non- 
local waves should also be observed in aluminum and in- 
dium at fields below the helicon threshold. 
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