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In the Hubbard model with infinite repulsion, the energy spectrum and wave functions are 
studied for an NXN cluster in a system with one hole and one flipped spin. The calculation is 
made for given values of the total quasimomentum a of the system. A system of four 
nonlinear algebraic equations for determining the energy levels of the system is obtained. The 
analysis is restricted to the simplest case ax= a, = ( 0 , ~ ) .  For these states, the energy 
levels are situated between the free-quasiparticle levels ck . The states with spin S =  S,,- 1 are 
situated above the Nagaoka level c = - 4t; however, the difference A between the energy 
of the ground state with spin S=S,,- 1 and the Nagaoka level is microscopic. It is to be 
emphasized that this applies both to states with quasimomentum (0,O) and to states with 
quasimomentum (P,P). In the macroscopic limit, the level distribution density for both ax= a, = 0 
and ax= a, = P is identical to the density of single-particle excitations of a spinless Fermi 
gas. The solution obtained is used to calculate the level shift when a finite Hubbard interaction is 
turned on. It is shown that the critical level U, of the Hubbard energy below which the 
Nagaoka ferromagnetic state is not the ground state has macroscopic order. O 1996 American 
Institute of Physics. [S 1063-776 1 (96)02203-X] 

1. INTRODUCTION 

Since the discovery of high-temperature superconductiv- 
ity, there has been increased interest in the Hubbard model as 
the simplest model that describes the properties of high-T, 
superconducting compounds. The Hubbard model, which 
was originally introduced to explain ferromagnetism, has at- 
tracted interest as a limiting case of a model corresponding 
to the description of high-temperature superconductors. The 
large value of the Coulomb repulsion U per site compared 
with the hopping energy t gives grounds for believing that 
the case U = can be regarded as a zeroth approximation to 
the real model. However, as yet comparatively few theoreti- 
cal or numerical results have been obtained. 

Given the lack of a small parameter in this problem, only 
one rigorous result is so far known: Nagaoka's theorem on 
the ground state with one hole.' For a two-dimensional 
square lattice in three cases-1) a free boundary, 2) an even 
number of sites along each direction, 3) t>0-it follows 
from Nagaoka's proof that the ground state has maximum 
spin. At low hole concentration in the gas approximation for 
a cubic lattice, an expression was obtained in Ref. 1 for the 
ground-state energy of a system with one flipped spin at 
finite U, and from this expression it follows that the ground 
state has maximum spin at a concentration of holes lower 
than a certain limiting value. This result cannot be directly 
extended to the two-dimensional case, since the integral ex- 
pressions employed by Nagaoka diverge in the two- 
dimensional case. Since it is precisely the two-dimensional 
model that is interesting for the majority of high-temperature 
superconducting compounds, it is necessary to consider the 
two-dimensional case in more detail. 

In this paper, we study the energy spectrum and wave 
functions in the Hubbard model with infinite repulsion for an 
NX N cluster in a system with one hole and one flipped spin. 

Calculations are made for given values of the t0ta1'~uasimo- 
mentum a of the system. We obtain a system of four non- 
linear algebraic equations that determines the energy levels 
of the system. In this paper, the analysis is restricted to the 
simplest case: a;= a, = ( 0 , ~ ) .  

It follows from our calculation that the energy levels are 
situated between neighboring levels of the free quasiparticles 
on the interval [ -  4t,4t]. The states with spin S=S,,-  1 
are situated above the Nagaoka level c = - 4t, but the differ- 
ence A between the energies of the ground state with spin 
S =  S,,- 1 and the Nagaoka state is microscopic. We em- 
phasize that this applies to states with all values of a. Thus, 
for states with quasimomentum (0,O) 

and for states with quasimomentum (P,P) 

We use our solution to calculate the level shift when a 
finite Hubbard interaction is turned on. We determine the 
critical level of the Hubbard energy U, below which the 
Nagaoka ferromagnetic state is not the ground state. We 
show that U,lr has macroscopic order of magnitude (order 
N ~ ) ;  this agrees with numerical cluster calculations of Ref. 2. 

2. BASIC EQUATIONS 

Suppose we have a rectangular NxXN lattice. We de- 
note by M = Nx.N, the number of sites, by 2: (6,) the cre- 
ation (annihilation) operator at site i of a particle with spin 
up, and by 6; (6;) the creation (annihilation) operator at 
site i of a particle with spin down. We assume that the sys- 
tem possesses translational invariance, and we consider 
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states with given quasimomentum a = (a,, a,), 
a x = ( 2 ~ l N x ) i x ,  i x = 0 l  N -  1 a y = ( 2 ~ l N y ) i y ,  
iy=O,l ,..., Ny- 1. 

For such states, we can give a complete orthogonal set: 

where k, (k,) is the translation operator through one site 
along x (y), and @o=$:ci:...ci&l...), I...) is the empty 
state. The function ai is a translationally invariant state with 
fixed distance between the hole and the flipped spin (which 
is equal to the distance between the first site and site i). The 
translation operators K, (K,) are defined as follows: 
K,@i=exp(-ia,)@i; Ky@i=exp(-iay)@i. 

As basis functions, we take 

the set k=(k, ,k,) being identical to the set of quasimomenta 
a= (a ,  ,ay)  except for the case k,= k, = 0. The vector k can 
be interpreted as the momentum of a hole in the system in 
which the flipped spin is at rest. 

Thus, an obvious requirement is satisfied: for given qua- 
simomentum a, we have M- 1 independent functions 
@(k). We note some helpful relations: 

where the sum over k is taken over the M - 1 functions. 
The energy spectrum A is found by solving the Schro- 

dinger equation 

H w = x q ,  (3) 

where H = H~ is the Hubbard Hamiltonian for U = w : 

where iuo t i o u )  are Hubbard operators. The summation in 
(4) and (5) is over nearest neighbors. 

We seek the wave function q in the form of an expan- 
sion with respect to the set 

After the substitution of (6) in (3), we obtain for the coeffi- 
cients 

exp( - ik,) - 1 exp(ik,) - 1 
Ck= 

A + & k  *'+ h + e k  q2 

exp(- ik,) - 1 exp(ik,) - 1 + 
A + ek I,+ A + & t  q 4  - (7) 

Here ck  is the energy of a free quasiparticle: 

E ~ = ~ ~ ( c o s  ~ , + C O S  ky), (8) 

and the constants qi are 

Thus, the nontrivial solutions of Eq. (3) can be divided 
into two classes. In the first class we have solutions with 
q l=q2=T3=q4=O,  and in the second, solutions with a 
nonvanishing set of lIri . 

As can be seen from (7), solutions of the first type have 
the form 

At the same time, there always exists the solution 

which corresponds to the state with maximum possible spin, 
as follows from the symmetry of the corresponding wave 
function (6). Solutions different from (14) and of the type 
(13) exist only if the level E is degenerate. It is natural to 
pose the question of the minimum degeneracy at which such 
solutions appear. A simple calculation shows that for degen- 
eracy 2 there are no such solutions. Because of the presence 
of the natural degeneracy associated with the substitution 
k-+-k ,  the level degeneracy is always even. Therefore, the 
next degeneracy will be 4. Degeneracy 4 is achieved for an 
NxX N, cluster with N,#N, for the states (k, ,k,), 
(k,,- k,), (-k, ,k,), (-k, ,-k,) and for Nx=Ny for the 
states (kx,kx), (kx,-kx), (-kx,kx), (-kx,-kx). In both 
cases, a necessary condition for the existence of solutions of 
the type (13) is 

Therefore, if the degeneracy of the level of the free qua- 
siparticles is L, it is reduced to L- 3 if the condition (15) is 
satisfied and to L - 4 if the condition (15) is not satisfied. 

In what follows, we shall restrict ourselves to the case of 
an equal even number of cells in each direction, i.e., 
N,= N , = 2 N .  

For what follows, it is more convenient to use the vari- 
ables y , = @ , + @ , ,  y - ( - )  z , = @ ~ + @ ~ ,  
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- z2= -i(Q3-(P4), c : = c ~ + c - ~ ,  ck = c ~ - c - ~ .  Then. Eqs. 
(7) and (9)-(12) can be rewritten in the form 

2(coskx-1) 2(cosky-1) 
c: = 

A + ek Z l  9 

- 2 sin k, 2 sin k, (7') 
Ck =- 

h + ck y2+ z2. 

1 
y l = ~  F [c:(l-cos k, cos a,)-c; sink, sin a,], 

(9') 

1 
y 2 = ~  F [ - C: cos k, sin ax+ c; sin k, cos a,], 

(10') 

1 
ZI=G F [~ [ ( l - cos  k, cos ay-c; sink, sin a,], 

(1 1') 

1 
z2=- 2 [- C: cos k, sin a, + c; sin k, cos a,]. 

M k 

(12') 

Substituting the expressions (7') for c t  in (9')-(12'), 
we obtain self-consistency equations in the form 

[ ~ I - , ( ~ + c o s  ( ~ , ) - r ~  COS a x - i ~ y , + [ 2 r 1 ( i  

-COS a x ) - r 3  cos ax]zl+y21'2 sin ax=O, 

-(T2-2T,)y, sin a,-(1 +r2 cos ffX)y2-(r3 

+2 r1 )z l  sin a,=O, 

[ 2 r 1 ( 1 + c 0 ~  (Y,)-T~ COS a,- 1 1 ~ ~ + [ 2 r ~ ( 1  (16) 

-cos a,) - r3 cos ay]y + z 2 r 2  sin a,= 0, 

(T2-2rl)z1 sin a, - ( I  +r2 cos ffy)z2-(r3 

+ 2 r l ) y l  sin a y = O .  

In Eqs. (16), we denote by Ti the quantities 

1 cos k,- 1 2 cos2 k,- 1 
~ I = M  F A + ck 

2 (cos k,- l)(cos k,- I )  (17) 

r3=M 7 
The quantities Ti usually appear in the study of Hubbard 

systems with given hole concentration. It is interesting to 
note that summation over one of the components of the vec- 
tor k can be performed for all values of A (the corresponding 
calculations are given in Appendix A). This makes it pos- 
sible to simplify the calculations, especially in computer cal- 
culations of cluster systems. In the one-dimensional case, the 
summation can be done completely, and this naturally sim- 
plifies the problem. 

The condition of solvability of Eqs. (16) is the vanishing 
of a determinant, which can be expressed as follows: 

A(ff,)A(ff,) -B(ff,t)B(ffy)= 0, ( 1  8) 

- 2 r 2  COS a ,  

The solutions of Eq. (15) have the following property: 

A(a, , ay)  = - A(T+ a, ,T+ a,). (20) 

The proof of the relation (20) is given in Appendix B. In 
addition, it is obvious that 

Equations (20) and (21) make it possible when determin- 
ing the energy spectrum to consider just the region of quasi- 
momentum values m/2> a,>O, T> a,>O. 

Note also that for a,= a,= a Eq. (18) decouples into 
the two equations 

3. ENERGY SPECTRUM 

In accordance with Nagaoka's theorem, for a system 
with one hole and with U = w the state with a,= a, = 0 and 
the maximum possible spin S = (M - 1 )/2 has the lowest en- 
ergy. In this paper, we consider in more detail the energy 
spectrum for values of the quasimomentum a,= a, = 0 and 
ax=a =T. Y 

As follows from Eqs. (20) and (21), the energy spectrum 
of states with a,= a, = T can be determined from the states 
with a,= a y = O .  AS an illustration of this proposition, we 
give in this paper a parallel description of these two cases. 
As follows from what is given below, the equations for de- 
termining the spectrum correspond to the symmetry (20), 
(21), and the minimum of the energy of the states with 
ax= a, = 0 corresponds to the maximum energy for the 
states with a,= a, = T. 

In the case considered, each of Eqs. (19) decouples fur- 
ther into two equations, and this makes it possible to simplify 
the calculation of the energy spectrum. 

For a,= ay = 0 Eqs. (22) decouple into the four follow- 
ing equations: 

2t sin2 k, 
- 1 (two equations), M F  h+~l- 

t (cos k,-cos ky)2 -' M k A+ek = - 1. 

In this case, it follows from (14) that there is also a solution 
with vanishing qi : 

where For ax= a,= T, we have the following four equations: 
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2t sin2 kx 
- - 1 (two equations), M F  K- 

t  (cos kx-cos k,)' 
A + e k  

= - 1.  
M k 

(29) 

In this case, it follows from (14) that there is also a solution 
with vanishing qi : 

As we have already noted, the solutions of Eqs. (14), i.e., 
the values A= - 4 t  for a,=a,=O and A=4t  for 
a,= a,= T ,  correspond to the state with the maximum pos- 
sible spin. The remaining values of the energy determined by 
Eqs. (23)-(25) and (27)-(29) correspond to the spectrum 
with spin smaller by one unit. 

Each of Eqs. (23),  (25), (27), and (29) has a number of 
roots equal to the number of different values of e k .  Equa- 
tions (24) and (28) have two fewer roots. In the NX N lattice, 
the free quasiparticles have a natural degeneracy associated 
with sign reversal of k,  or k,  and also replacement of x by y. 
For definiteness, we shall in what follows consider lattices 
with even number of sites in each direction ( N =  2 k ) .  For 
such a lattice, the free quasiparticles with quasimomenta 
(0,O) and (T,T) are nondegenerate; those with quasimomenta 

bution density identical to the density of the single-particle 
excitations of a spinless Fermi gas. For the states with qua- 
simomentum (0,O) 

A 2 r 2  InM -=-+ 
4t  M 4 7 ~ ~ ~ ~ '  

and for the states with quasimomentum (IT,=) 

The Hubbard interaction reduces the energy of the states 
with spin S=S,,-1 without changing the energy of the 
states with S=S,, .  At the same time, the ground state 
ceases to correspond to the spin S= S,, beginning with the 
Hubbard energy levels U = U ,  . To estimate the value of U ,  , 
we write the Hamiltonian of the Hubbard model to terms of 
order tl U .  Then 

where 

We obtain a lower bound for the level shift A ,  by calculating 
the diagonal matrix element of H I  with respect to the func- 
tion qo that corresponds to the ground state for S = S,, - 1. 
For quasimomentum (0,0) ,  we have the obvious inequality 

(O,k,), (kx,O), (O,k,), (k,$) (kx# 0 ,  k, # 0 ) ,  &d with quasi- A , < - 4 l t l 2 / ~ .  (33) 
8 %  , , 

momenta (=,k,) ,  ( kx  ,=), (O,k,), ( k ,  ,=I, (kx# =, ky# =) 
have degeneracy equal to four (the total number of such lev- Therefore, for u I ~ < M / ~ T ~  the ground state does not 

els without allowance for degeneracy is N/2-  ); those with have the maximum possible value of the spin. Therefore, the 

quasimomenta ( 0 , ~ ) ~  (=,O) are doubly degenerate; the quasi- critical value of the Fhbbard energy corresponding to cross- 
particles with quasimomenta ( k , k )  for k+ 0 and k+ = have ing of the lowest ferromagnetic level and the ground-state 

degeneracy four (the total number of such levels without level with S =  Smax-l has of magnitude. 

allowance for degeneracy is N12- I ) ;  the quasiparticles with u < u c - r ~ Z ~  the ground state in the system with One 

quasimomenta (k ,  ,k,) for k,# k, have degeneracy eight [the is ferromagnetic. 

total number of such levels without allowance for degen- 
eracy is ( N / 2 -  1 ) (Nl2- 1 ) /2] .  

Therefore, Eqs. (23) and (27) each have (Nl2-  1 )N/4  
roots, Eqs. (24) and (28) each have ~ ~ / 8 + 3 N / 4 -  1 roots, 
and Eqs. (25) and (29) each have (N12- 1 ) (N/4 -  1 )  roots. 
All these roots are nondegenerate. In total, the number of 
states for spin S= S,,- 1 must be N~ - 2 .  As follows from 
the expressions (7)-(12), the remaining energy levels coin- 
cide with quasiparticle levels having degeneracy greater than 
2; for the fourfold degenerate states, the degeneracy is re- 
duced by one, and for the eightfold degenerate states by four. 
These solutions are valid for all Qi=O.  

As follows from Eqs. (23)-(29), the energy levels are 
situated between neighboring quasiparticle levels on the in- 
terval [- 4 t ,4 t ] .  The states with spin S= s,,- 1 are situated 
above the Nagaoka level e = - 4 t ,  but the difference A be- 
tween the energies of the ground state with spin S= S,,- 1 
and the Nagaoka state is microscopic. We emphasize that 
this applies both to states with quasimomentum (0,O) and to 
states with quasimomentum ( w , ~ ) .  In the macroscopic limit, 
the levels for both ax=ay=O and ax=a,=.rr have distri- 

4. CONCLUSIONS 

The aim of this work was to study changes in the energy 
spectrum that arise in a system with one hole when one spin 
is flipped. We find that to the levels of the system that cor- 
respond to the maximum possible state there are added the 
levels of states with spin reduced by one. As follows from 
Nagaoka's proof, all these levels are situated within the in- 
terval [ -  4 t ,  + 4 t ] .  It follows from our study that at least for 
states with total quasimomenta ax= a, = 0 and ax = a, = T 

of the system the energy levels are situated between the lev- 
els e k  of the free quasiparticle. Therefore, the density of 
states AnlAA of such a system with given value of the qua- 
simomentum at values of Ah exceeding the difference of the 
neighboring levels of the free quasiparticles ceases to depend 
on the value of the total quasimomentum a. In contrast, in 
the opposite limiting case of zero Hubbard energy the depen- 
dence of An1 AX on cu is quite strong. 

It follows from the calculation that in the present case, 
the energy levels are so close to the corresponding energies 
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of the free quasiparticles that the ratio of the distance be- 
tween them to the difference between the neighboring levels 
of the free quasiparticles is microscopically small. 

The expressions obtained in this study for the wave 
functions and energy spectrum of the Hubbard system with 
one hole and one flipped spin can be used for numerical 
calculations of the correlation functions, spin susceptibility, 
and the specific heat. 

This work was supported by the International Science 
Foundation (Grants MSAOOO and MSA300). 

APPENDIX A 

For definiteness, we sum the expressions for ri over k, . 
Let 8=A/2+cos ky , z=exp(ik,). Then the denominator of 
the expressions in the sum vanishes for z = - 6 * d m .  
Therefore, for lq>l the summation is readily performed, 
and for ro we have [in the expression (A.l), we denote by z1 
the root with largest absolute value, i.e., = - 8 
~(81 )e1 )  J-] 

(Al) 

Thus, for N ,  even or z > 0 

and for N, odd and z < 0 

If lq<l ,  we have l z l l =  1, i.e., z,=exp(i6). For r o ,  we 
obtain 

- exp( - i 6 )  

exp( ik,) - exp( - i 6 )  

The sum can be calculated, for example, by expanding 
the trigonometric functions in infinite products. As a result, 
we obtain 

So= cot(Nx6/2). (A51 

APPENDIX B 

To prove the relation (20), we represent the expressions 
for A(a) and B(a)  in the form 

A(a)=C1+C2 cos a ,  B ( a ) = D ,  +D2  cos a ,  (Bl) 

where 

Therefore, Eq. (18) has the form 

c;- D;+(COS a,+cos ay)(CLC2-DID2) 

+ cos cr, cos aY(c;- D;) = 0. 033) 

Replacing the coefficients Ci and Di by their expressions 
(B2), we obtain 

Here, we have introduced the notation 

and therefore TI = 114- (A/4+ 1)ro. Since A =  -4 is not a so- 
lution of Eq. (18), we obtain for the determination of A, 
canceling the factor A/4+ 1, an equation that is invariant un- 
der the substitution A-+-A, ax-+ .rr- a,, cry-+m- ay (at the 
same time ro4 -To, r2-+ -r2). 
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