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One-loop corrections to the effective action in three- and four-dimensional electrodynamics in 
external magnetic field H at a chemical potential p and zero temperature are discussed. 
Exact expressions for the oscillating component of the thermodynamic potential of relativistic 
electrons have been obtained in both cases at H , p  # 0. Unlike the nonrelativistic case, 
the oscillation frequency is w= ( p 2 - m 2 ) l ( 2 e ~ ) ,  where m and e are the electron mass and 
charge. The exact solution allows us to calculate corrections to magnetic oscillations of higher 
orders in magnetic field. O 1996 American Institute of Physics. [S1063-7761(96)01903-81 

1. INTRODUCTION 

Studying condensed matter is an important branch of 
physics.1 Most parameters of matter are weakly affected by 
changes in external agents, such as temperature, pressure, 
electromagnetic field, etc., when they vary within ranges far 
from extreme values, i.e., under laboratory conditions. 
Therefore, each event when a small change in external pa- 
rameters leads to a considerable response is remarkable and 
means a discovery of a significant effect. We can mention as 
examples the quantum Hall effect2 and oscillations of mag- 
netic moment predicted in 1930 by ~ a n d a u ~  and experimen- 
tally observed by de ~ a a s . ~  

Sixty years have passed since the discovery of this ef- 
fect, but to this day the problem of quantum oscillations 
solved in the nonrelativistic case (in the main asymptotic 
approximation)3 has been discussed  extensive^^.^-^ We 
should note that most attention of researchers dealing with 
oscillations of magnetic moment is focused on the relativistic 
problem since results of these studies may be applied to cos- 
mology and astrophysics. 

In solving the relativistic problem some authors5 have 
overlooked oscillations, whereas solutions derived by others6 
only contain formulas equivalent to the nonrelativistic oscil- 
lating solution; and the specific nature of the relativistic 
limit had not been assessed. ~ r e v i o u s l ~ ~ ~ ~  a strict mathemati- 
cal procedure for calculating the thermodynamic potential of 
relativistic electron-positron gas in magnetic field has been 
developed to calculate the thermodynamic potential in all 
ranges of fields and temperatures. As a result, a new param- 
eter of oscillations, Tim, was de r i~ed .~  The structure of 
formulas in Refs. 7 and 8, however, is such that thermody- 
namic parameters are easily calculated only at p-m, where 
m is the electron mass, and if p S m ,  a power series in the 
parameter plm, which is not small, should be summed. This 
procedure is labor-consuming, therefore we proposed a new 
method in this paper to get around this difficulty. 

In order to solve the problem in the four-dimensional 
quantum electrodynamics (QED), i.e., to obtain an exact os- 
cillating solution at all magnetic fields and chemical poten- 
tials, we shall first consider the three-dimensional case. 
Thereby we shall demonstrate merits of low-dimensional 
models (earlier similar models were used in the Yang-Mills 

theory to construct solutions of field equations1@). In the sec- 
ond section we shall obtain exact expressions for the one- 
loop correction to the effective action in QED3 at zero tem- 
perature within the formal model to derive oscillations of 
magnetic moment at all p and H. In the third section we 
shall derive from this solution an exact expression for the 
oscillating part of the effective action in QED4 at T= 0 and 
p,H # 0. 

2. MAGNETIC MOMENT OSCILLATIONS IN QED, 

As we noted above, the calculation of the effective ac- 
tion in QED3 at T=O and nonzero chemical potential and 
magnetic field is an auxiliary problem in our study, nonethe- 
less, this problem is interesting in itself because the QED3, 
along with other three-dimensional theories, can be used to 
describe various planar systems. Therefore we consider in 
this section the formal QED3 model to derive oscillations of 
magnetic moment of an ideal electron gas. The model La- 
grangian in both three- and four-dimensional space-time has 
a form 

In the three-dimensional case we use a formalism with four- 
component Dirac's spinors + and 

Here uk are the Pauli matrices, and the electromagnetic field 
tensor F,,= d,A .- d,,AP. 

Equation (1) has been discussed in detail.7"1-13 In some 
previous studies QED3 problems were investigated under 
nonzero magnetic field H , ' ~  temperature T, and chemical 
potential p.13 ~ a r l i e r ~  we calculated the effective action in 
QED3 in the one-loop approximation at T,,u,H # 0. Now let 
us assume that the temperature is zero and investigate in 
detail the one-loop correction to the QED3 effective action at 
p , H  # 0, which can be derived from Eq. (17) in Ref. 7 by 
tending the temperature to zero. As a result, we have 

where 
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is the thermodynamic potential of the ideal relativistic elec- 
tron gas under magnetic field at p # 0, an= 2 - an, , 
v=Jd3x,en= \I-, @(x) is the theta function, and 

is the one-loop correction at p= 0, H # 0.7,12 
Equation (2) is only convenient in the range of high 

magnetic field. Really, if e ~ > G = p ~ - m ~ ,  only the first 
term in Eq. (2) is not zero, at 2 / 2 < e H < $  the second 
term should be added, and so on. 

But in the range of small magnetic fields the parameter 
fi3(p,H,m) is an oscillating function of H,I4 which cannot 
be easily derived from Eq. (2). Equations (2) and (3) are not 
quite convenient to extract relevant physical information. In 
order to resolve this problem, let us apply Poisson's summa- 
tion formula3 to Eq. (2): 

In this case O (n) = O ( p  - en) ( p - en), therefore integration 
in Eq. (5) is easy, and the thermodynamic potential takes the 
form 

where u = m 2 / ( e ~ ) , u  = p2/(eH),  Ll  ( p )  is the one-loop 
correction to the effective Lagrangian of the model at 
H=O,p # 0: 

and the functions C(x) and S(x) are Fresnel's integrals15: 

Then we use the following representations15: 

1 
c (x)=  -+ 2 JA 27r [P(x)sin x+Q(x)cos XI, 

(8) 

= 2 - & [P(x)cos r-  Q(x)sin x], 

where the functions P and Q have known asymptotics at 
~ 4 ~ 0 ~ ~ :  

Given the thermodynamic potential in Eq. (6), we can easily 
separate its oscillating component using Eq. (8): 

which is a periodic fur.cdon of the parameter 
o=(,u2-m2)l(2eH) with the unit period. This is the exact 
relativistic formula for the oscillating component of the one- 
loop effective action valid at arbitrary p and H. The first 
terms of the sum in Eq. (10) can be found using Eq. (9) at 
e H 4  0 and fixed p and m: 

Here Bi(x) are periodic functions with the unit period pre- 
sented on the interval x E [0,1] by Bernoulli polynomials15: 

Note that Eq. (9) is identical to the respective equation in 
Ref. 7 at p-m. Finally, we present an exact expression for 
the monotonic part of the thermodynamic potential: 

Given the exact expression for Sl (p,H),  one can easily 
derive the magnetization M-dSl ldH, which is obviously 
an oscillating function of o (the van Alphen-de Haas 
effe~t) . ' .~ .~ 

3. MAGNETIC OSCILLATIONS IN QED4 

Now we shall consider the one-loop correction to the 
effective action in four-dimensional electrodynamics. Let us 
temporarily introduce the temperature T= 1/P, then we have 
(V is the system volume): 
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In Eq. (13) R 4  is the density of the thermodynamic po- (20) 
tential of ideal relativistic electron-positron gas under mag- 
netic field, which can be presented as8'I7 QOSC= p @ ( p - m ) g  (2) - 3'2[Q(nku)cos(2?rkw 

4,r3I2 k = ,  
m 

eHT 
fi4(p9T,H)= - d p 2  %In{[ 1 +exp( -P(sn + ~ / 4 ) +  P(.rrkv)cos(2,rkw- 7r/4)]. 

n=O 
(21) 

The parameters v and w are the same as in Eqs. (6) and (10). 
-PI)][ 1 + ~ ~ P ( - ~ ( E , + c L ) ) ] ) .  (14) Equation (21) is an exact expression for oscillations of 

the magnetic moment of ideal electron gas generalized for 
Here J m 2 + ~ 2 + 2 e ~ n *  an are the same as in Eq. (3). the relativistic case at T=O. The main difference of the rela- 
BY tending the temperature in '(4. (14) '0 zero, we obtain tivistic case from the nomelativistic approximation is the 0s- 

rn cillation frequency w= (p2-  m 2 ) l ( 2 e ~ )  (in the nonrelativ- 
eH 

f i d P 9 ~ ) = - % I 0  ~ P C  n=O an@(~-en ) (p - rn )  istic case the frequency is wo=m(p-m)l(eH)). It was 
calculated at arbitrary p and H and at H-+O, p-m it, natu- 

1 rally, coincides with the nonrelativistic expression.376 Since 

= -J d~fi,(p,~,-),  (15) properties of the functions P(x) and Q(x) in Eq. (21) are 
.r o well known'5 (see Eq. (9)), Eq. (21) allows one to calculate 

where the thermodynamic potential O3  is defined in Eq. (3). 
Our task is to derive from Eq. (15) an exact expression for 
the oscillating component of the thermodynamic potential at 
eH--+O. With this end in view, we substitute R3 from Eq. (6) 
to Eq. (15) and integrate with respect to the momentum tak- 
ing into account Eq. (7). As a result, we have 

where 

- eH@(p-m) P xdx 7~ 
fi =-  

mon 2 ?r3 
-(P-x)~(P I, I/-{ 3eH 

Note that 6,,, contains not only the oscillating component of 
the thermodynamic potential, but Eq. (18) also includes a 
monotonic component. It is evident that Go,, in Eq. (17) does 
not oscillate at eH-+O.  In order to separate the oscillating 
component in Eq. (18), let us first separate in the explicit 
form oscillating components in Fresnel integrals C(x) and 
S(x) using Eq. (8). After substituting Eq. (8) into Eq. (18), 
we have 

Here 

corrections of higher orders in H to the oscillating part of the 
thermodynamic potential, unlike the cumbersome procedure 
proposed earlier778 (but field corrections to the oscillating 
component at T f 0 can be calculated presently using only 
this procedure). 

4. CONCLUSION 
In our study we have derived and analyzed the thermo- 

dynamic potential of ideal electron gas under magnetic field 
at zero temperature in both three- and four-dimensional 
cases. In both cases exact expressions for the oscillating part 
of the thermodynamic potential at e H 4 O  have been ob- 
tained. The feature of our study is the analysis of the wide 
range of chemical potential p ,  as a result we obtained the 
frequency of osciIlations w=(p2-m2) l (2e~) ,  which is 
different from that derived in the nonrelativistic approxima- 
tion, oo=m(p-m)l(eH),  at p-m.7.8 

In terms of QED, our results correspond to the one-loop 
correction to the effective action. Therefore the range of its 
applicability is defined by that of the one-loop approxima- 
tion, which is determined by the condition that the two-loop 
correction, given in Refs. 18 and 19, is small. Note, however, 
that the oscillating component in Ref. 18 also refers to the 
case p-m. 

Thus we can see that the exact calculation of the ther- 
modynamic potential at zero temperature yields different fre- 
quencies of magnetic moment oscillations. Although the 
model considered in this paper is rather formal, the calcula- 
tion technique and solution may be useful for studies of real 
physical systems. 
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