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A simple model of a two-dimensional superconductor is considered in which superconductivity is 
suppressed by ordinary impurities, with the appearance of a gapless region. Equations are 
derived for the order parameter in a magnetic field in the Ginzburg-Landau approximation near 
the critical impurity concentration at absolute zero and finite (low) temperatures. A 
characteristic feature of these equations is the coupling of the different components of the order 
parameter. Without a magnetic field there remains only one component, a situation that 
leads to the appearance of an isotropic gap in the Fermi spectrum. Because of such coupling, 
there is a rise in the transition temperature near the critical concentration and emergence 
of superconductivity in the supercritical region in the presence of a magnetic field. This 
enhancement and stimulation of superconductivity by a magnetic field occur within a 
narrow range of impurity concentrations: estimates set this range at about 1% of the critical 
concentration. O 1996 American Institute of Physics. [S 1063-776 1 (96)01803- 11 

1. INTRODUCTION parameter. The conditions are such that the Ginzburg- 

Paramagnetic impurities, which lead to electron scatter- 
ing with spin flip, are known to suppress superconductivity 
in ordinary superconductors (with  airin^ in^).' The same is 
true of ordinary impurities if Cooper pairs are formed with 
nonzero moments (see, e.g., Ref. 2). One of the most inter- 
esting properties of such systems is the emergence of a gap- 
less region near the critical impurity concentration.' 

In high-T, superconductors such phenomena as super- 
conductivity suppression and the gapless mode probably also 
occur. Experiments have that these phenomena do 
not depend on whether the impurity has spin. If this is so, it 
is natural to assume that Cooper pairs are formed in a state 
with a nonzero moment. 

An interesting question in this connection is what other 
consequences, in addition to those just mentioned, are pos- 
sible and how they be manifested in experiments. This re- 
quires adopting a certain model and examining the results 
that the model produces. It appears that new properties for 
nonzero moments do exist. 

In this paper we adopt a model discussed in Ref. 5. The 
model contains polarons with attraction that emerges because 
of the presence of a bipolar quasilevel. What is important is 
that there exists a one-component system of Fermi particles 
(a single projection of the "spin") or that only one compo- 
nent undergoes a superconducting transition, while the origin 
of the attraction is unimportant. 

Thus, we are dealing with a one-component system. In 
such a system in the two-dimensional case, a Cooper pair 
must have an odd projection of the moment on the normal to 
the plane (e.g., + 1, which is assumed from now on). The 

Landau approximation is applicable. The study is done for 
the case of absolute zero and for finite (low) temperatures. 
The results differ dramatically from those of Abrikosov and 
~or 'kov:  ' 

1. There is coupling between the + 1 -components in the 
equations of the Ginzburg-Landau type, and this coupling 
cannot generally be ignored despite the fact that without the 
magnetic field there remains only one component. 

2. The kinetic energy (at fairly low temperatures) con- 
tains contributions of the 9 21n(l/9 2, type in addition to 
the ordinary contribution -9 2, where 9' is the momentum 
of a Cooper pair as a whole. 

3. In addition to the ordinary contribution - 9 ,  the ex- 
pression for the flux density contains a contribution 
-[a], where n is the unit vector normal to the plane, and 
the value of this contribution depends on the phase differ- 
ence between the two components. 

4. Finally, an external magnetic field raises the transition 
temperature for impurity concentrations close to the critical 
value (enhancement of superconductivity); more than that, at 
higher concentrations, when there is no superconductivity in 
the absence of a magnetic field, the magnetic field induces 
superconductivity (stimulation of superconductivity). These 
effects can also be explained by the coupling of the 
+ 1 -components. 

The latter features, enhancement and stimulation of su- 
perconductivity by a magnetic field, point to experimental 
possibilities, although they emerge over a relatively narrow 
range of impurity concentrations (approximately 1% of the 
critical concentration). 

reaction of this system to ordinary impurities is a drop in the 
transition temperature and the appearance of a gapless re- 2. THE MODEL 

gion. This may be the simplest model that works with the This section is of an auxiliary nature. In addition to 
"boundary" conditions specified by the e ~ ~ e r i m e n t . ~ , ~  specifying the model, we discuss the definitions and relation- 

The present paper is a study of how the gapless region ships needed for deriving the equations. 
behaves in an external magnetic field for a fairly small order The Hamiltonian of the model is 
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where A is the vector potential multiplied by e l c ,  and 
W(r) is the potential of the interaction with impurities: 

with u(r-Rn) representing the interaction with the nth im- 
purity positioned at the point R, . It is postulated that there is 
attraction U between the particles, but the origin of this at- 
traction is assumed unimportant. We also assume that this 
interaction is weak, and we allow for it only to the extent that 
it leads to superconductivity. This means that H, can be 
written as 

d r d r 2 { ( r )  r 2 r 2  r )  + h..} (2.3) 2 

(to within an unimportant constant term). Here by definition 

A(r2,r1)=U(r, -rz)((*(rz)*(r1))). (2.4) 

This quantity is the order parameter. The averaging in (2.4) 
consists in Gibbs averaging (over the ground state at absolute 
zero) and averaging over the impurity positions.6 The nota- 
tion (2.3) for H ,  stems from the self-consistent field approxi- 
mation, which produces accurate results in our case. 

We start with the case of absolute zero (the temperature 
correction will also be found) and employ the appropriate 
diagrammatic technique.7 As usual, we introduce the func- 
tions 

where x=(r , t )  and x '=( r t , t ' ) .  Here we assume that there 
is ground-state averaging. 

The equations for these functions have the ordinary 
form. In the frequency representation we have 

~ + ( w ;  1,2)= - i  d r 3 d r 4 ~ ( 0 ) ( -  o ;3 ,1)~*(3 ,4)~(w;4 ,2) ,  I 
(2.7) 

where G(O) is the normal-state Green's function, and the 
numbers stand for the respective coordinates; for example, 

G(w; 1,2)=G(w;r, ,r2).  (2.8) 

Equations (2.6) and (2.7) are the input equations. They 
form a complete system if we atld the definition (2.4), which 
for the conjugate quantity A* can be written as follows: 

The angle brackets stand for averaging over the impurity 
positions (the notation coincides with that used in (2.5), but 
this should not lead to a mix-up). 

What happens in the homogeneous case (without a mag- 
netic field)? The corresponding equations after averaging 
over the impurity positions are given in Ref. 7. Our analysis 
follows that of Abrikosov and ~or'kov. '  The only difference 
(unimportant here) is that the order parameter exhibits an 
angular dependence. In the homogeneous case the order pa- 
rameter A*(1,2) depends only on the relative coordinate 
p= r, - r2 ,  and we can write the following expression for the 
Fourier component A+(p) for the +. 1 moment: 

where cp is the angle of the vector p in the plane, and A and 
A2 are independent of the direction of p. In the homoge- 
neous case only one harmonic, A, or A,, remains, so that 
the gap in the spectrum is isotropic. All results for the order 
parameter and the gap in the spectrum are the same as in Ref. 
1, but the mean free time with spin flip, T, , of Ref. 1 must be 
replaced by 2 r ,  where r is the mean free time. For isotropic 
scattering by impurities in the Born approximation for the 
two-dimensional case we have the following expression for 
7: 

where n is the impurity concentration, and uo is the zeroth 
Fourier harmonic of the impurity potential, 

Here are some results. The gapless region lies in the 
interval 

T,< r< 70. (2.13) 

For smaller values of T there is no superconductivity. At r0 
and 7, we have 

1 1 
-=2A0 e x p ( - ~ / 4 ) ( 2 1 A 1 ~ ~ =  1), -=A0, (2.14) 
70 7, 

where A. is the gap width in the Fermi spectrum for a pure 
superconductor at absolute zero. Near rc we have the follow- 
ing expression for the order parameter: 

(provided that 2 1 A 1 re 1 ) . 
What happens when there is angle-dependent scattering? 

In this case we must replace r specified by Eq. (2.11) by the 
transport time T,, : 

This would seem to be a natural result. Note, however, that 
the fact that cos cp appears in the definition of the relaxation 
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time in the final result is closely linked to the angular depen- 
dence exp(2icp) of the order parameter; if there were another 
angular dependence exp(ivcp)'(v= 2 3 , .  . . ), this would in- 
volve another time variable in which coscp would be replaced 
by cosvcp, rather than the transport time, as expected. 

Now let us turn to the problem of allowing for a mag- 
netic field in deriving the equations. On the whole this is 
done in same way as in Ref. 6, but in our case the situation 
is somewhat more complicated, since the order parameter 
depends on two coordinates. For this reason a brief discus- 
sion is in order. 

In the presence of a magnetic field the equation for the 
normal-state Green's function G(O) has the form 

where p is the Fermi energy, and the coordinate r2 acts as a 
parameter. 

For a slowly varying weak magnetic field the approach 
is as follows. We expand the vector potential near the point 
r2: 

where rI2=r2-r,, and A2=A(r2). It is now convenient to 
"introduce" a gauge in the vector potential and include all 
that is possible in a phase factor, i.e., 

with a phase 

where r12=(x12 ,y  12), and r2= (x2 ,y2). The equation for 
G' has the same form (2.16) as for do) but with the follow- 
ing substitution: 

where Hz is the magnetic field at the point r2. In view of the 
weakness of the magnetic field, the contribution of A' can be 
taken into account by perturbation-theory techniques as an 
addition to Go, the normal-state Green's function without a 
magnetic field. However, it was found that this addition has 
no effect on the equation for the order parameter. Therefore, 
in (2.18) instead of G' we can simply put Go, the normal- 
state Green's function without a magnetic field, so that the 
final expression is 

The contribution with the magnetic field (that appears 
through A') could manifest itself as the energy of the intrin- 
sic degrees of freedom (the intrinsic magnetic moment) of a 
Cooper pair in a magnetic field. The fact that this possibility 

is not realized means that this energy is low (in comparison 
to the energy of the motion as a whole) and is not felt in the 
employed approximations. 

We also write the equation for the order parameter in a 
pure superconductor at absolute zero: 

where Uq is the Fourier component of the interaction poten- 
tial, &, is the energy of a particle in the normal state mea- 
sured from the Fermi surface, and A. is the width of the gap 
in the spectrum (the gap is isotropic). This equation is for 
one component (see Eq. (2.10)), while the other component 
is zero. 

3. THE EQUATIONS 

We start with the linear part of the equations, for which 
Eqs. (2.9) and (2.7) (with G(O) substituted for G) yield 

where G?)=G(O)(- w). We assume averaging over the im- 
purity positions. First we discuss the dependence on the 
magnetic field. 

In Eq. (3.1) we introduce new coordinates, the relative 
position vector p and the center-of-mass vector R: 

According to (2.20), the phase factor in Eq. (3.1) contains 
the phase 

In terms of the new coordinates (R' and p' for the r3 ,  r4 
pair) we have the following expression for @: 

@=(Rf  -R)[A(R) + A(R' )] +af ,  (3.4) 

where @ ' contains various bilinear combinations of the com- 
ponents of p and p' multiplied by derivatives of the vector- 
potential components. This part of the phase is unimportant 
since it contributes nothing to the equation in the employed 
approximations, and we will not write the corresponding ex- 
pression. 

As a result Eq. (3.1) assumes the form 

x (G,(3,1)G0(4,2))exp(i(Rf - R) 

x [A(R) + A(Rf)I). (3.5) 

Note the gauge invariance of (3.5). Indeed, if we perform the 
substitution 
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with x(R) an arbitrary function, then the addition 6@ to the 
phase in (3.5) is 

6@-2[x(R1) -x(R)I 

to within second-order terms in the difference of coordinates, 
which is the accuracy with which the phase was taken into 
account. Thus, the order parameter is transformed as follows: 

after which the equation assumes its initial form. 
Averaging over the impurity positions is done as usual.7 

Here it is convenient to employ the momentum representa- 
tion 

(S is the surface area of the system). As is known, the aver- 
age of a single Green's function has the following form: 

where 6, is the energy measured from the Fermi surface. 
The average of the product of two Green's functions has 

the form 

where r( 1,2) is calculated in the ladder approximation and 
can be found by solving the following equation: 

Here u(q) is the Fourier component of the impurity poten- 
tial, and P = p l  +p, is the total momentum. The numbers in 
(3.8) stand for the respective momenta (rather than for the 
position coordinates, as in (2.8)). 

In what follows we assume that scattering by an impu- 
rity is isotropic. Then r depends only on the total momen- 
tum. We are interested in the expression for I' in the limit 
where 

with 1 = u T the mean frec path (v is the Fermi velocity). In 
this limit 

According to (3.8), the average of the product of two 
Green's functions consists of two parts, and the contributions 
of these parts were found to differ considerably. For this 
reason we study them separately. 

The contribution of the first term on the right-hand side 
of Eq. (3.8) is analyzed as in Ref. 6. We write the order 
parameter in the general case as a function of the center-of- 
mass vector: 

A + ( R , ~ )  = A , ( ~ , p ) e ' ~ +  A2(~,p)e- 'q  (3.12) 

(see Eq. (2.10)). The quantities Al (Rf)  and Az(R1) in the 
integrand in (3.5) can be expanded near the point R up to the 
second order inclusive, and the same can be done with the 
phase factor. 

The zeroth term in the expansion can be transformed by 
a calculation procedure involving Eq. (2.2). After this for 
A+ we have an integral equation (in the relative position 
vector) with a kernel as in (2.21) plus an inhomogeneous 
term, to which contributions are provided also by the second 
term in (3.8) and certain nonlinear terms discussed below. 
The inhomogeneous term can be calculated explicitly and 
contains the value of A+ (together with derivatives with re- 
spect to R) with the relative momentum on the Fermi sur- 
face, so that only integration over the angles is needed. After 
integrating it is convenient to write Up_,, in the form of a 
harmonic expansion (in the angle between p and p'). The 
above-mentioned integral equation can be solved only if the 
inhomogeneous term is zero. This provides the sought equa- 
tion for the order parameter, which we write in the form 

where X 1 A +  stands for what remains in the inhomogeneous 
term from the first term on the right-hand side of Eq. (3.8), 
.%Y2A+ is the contribution of the second term, and VA+ is 
the contribution of the inhomogeneous term. 

As it turns out, the harmonics A and A2 are coupled. It 
proves convenient to write the order parameter as a column 
vector 

and Bl , .B2, and V in the form of 2-by-2 matrices that act 
on this vector. 

As a result for S1 we can write 

where I is the identity matrix. Here we have used the nota- 
tion 

The result (3.15) is obtained after separating out an insignifi- 
cant common factor in the inhomogeneous term, 

&I da cos aU(cos a ) ,  

where a is the angle between p and p'. 
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The harmonics are coupled because the isotropy of the 
system breaks down if the order parameter is coordinate- 
dependent. The coupling proceeds through two intervals, a 
fact formally related to the second order of the above expan- 
sion (the first order contributes nothing). Hence theoretically 
the harmonics exp(23icp) do appear, but they enter with a 
small coupling constant. The physical reason for the cou- 
pling is obvious: it corresponds to the coupling of compo- 
nents with the same total angular momenta if, as usual, we 
assume that the total momentum is the sum of the orbital 
angular momentum (in R) and the intrinsic angular momen- 
tum (in p). This can be verified directly if we introduce cy- 
lindrical coordinates (in the absence of a magnetic field). 

Now let us study the contribution of the second term in 
(3.8). Gor'kov's approach6 is inapplicable because of the 
logarithmic divergence that appears in integration with re- 
spect to frequency (see Eq. (3.1 1)). Therefore, a different 
approach is necessary. 

We start with the plane-wave case without a magnetic 
field: 

After performing simple calculations and extracting the com- 
mon factor (3.17) we get 

where cp, is the angle of the vector P in the plane. If we 
return to position coordinates, we can write 

where 

The expression (3.20) is valid if condition (3.10) is met. The 
meaning of the operator form of (3.20) is clear without fur- 
ther explanation. 

Generalization to the case of a magnetic field by going 
from operators (3.21) to operators (3.16), which appears 
natural due to the gauge invariance of (3.5) noted earlier, is 
difficult because of the logarithm, since the different compo- 
nents of the operator 6 are not commutative. Another ap- 
proach might be to leave B 2 A +  in integral form, but this 
also fails. Hence in what follows we use the above form of 
B2 and its possible generalizations-all the more so, as not 
many alternative generalizations exist, and all yield approxi- 
mately the same results, with the results coinciding in some 
cases. 

What is unusual in (3.19) is the appearance of a loga- 
rithm, caused by the low-frequency behavior of r [Eq. 
(3.1 I)]. This is quite natural, since if pairing with a zero 
moment (spins t and 1) is possible, ordinary impurities have 

no effect (in the sense of suppressing Cooper instability) and 
hence the logarithmic divergence at T=O remains, which is 
evident in the behavior of T: Here the divergence would be 
in the leading contribution to the equation (at 9= O), while 
in our case due to the angular dependence of the order pa- 
rameter the logarithm appears only when @ # 0. 

Finally, some remarks about nonlinear contributions to 
the equations are appropriate. The contributions can be found 
by following the approach developed in Refs. 6 and 1. After 
separating the factor (3.17), the result can be written as 

We note in passing that the form of this contribution implies 
that without a magnetic field the state with only one compo- 
nent corresponds to the ground state. The results agree with 
(2.15). 

Thus, the equations at absolute zero have been obtained 
to within the uncertainty that emerges in connection with the 
generalization of (3.20). We return to this problem in Sec. 4. 
No such uncertainty exists at finite temperatures (and fairly 
weak magnetic fields). This case is studied here. 

Fluctuation effects can present certain difficulties for a 
two-dimensional system. However, in real high-T, supercon- 
ductors at low temperatures this, apparently, is not true be- 
cause of the coupling between the planes and the effective 
three-dimensional system. We do not study this problem 
here, but we assume that the appropriate conditions are met 
and that the self-consistent approach still works (as it does at 
absolute zero). 

We consider low temperatures: 

Temperature corrections are essential in two places: we must 
establish what replaces (7 -  r,.)/r, in (3.15) and what re- 
places the logarithm in (3.19). 

Here we use the temperature diagrammatic technique.7 
Without going into details of the corresponding calculations, 
we restrict our discussion to the example of modifying 
(3.15). 

The integral in the equation (3.1) for the.order parameter 
is replaced by a sum s over the frequencies, which for the 
first contribution has the form 

where w, = rT (2n  + 1 ). We use the ordinary rules to trans- 
form this sum into integrals along contours in the complex 
w plane encompassing the poles of tanh(w12T) and then into 
integrals along the real axis, so that 

where TR ant1 :@,, are the retarded and advanced Green's 
functions. Using the well-known relationship between these 
functions and thc causal function (3.7), we find that 
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4. THE PROPERTIES 

We substitute (3.26) into (3.25) and write tanh(wI2T) as an 
identity: 

W 
tanh - = sign w + 

2T 
sign w ) . (3.27) 

The integral (3.25) with the first term on the right-hand side 
of Eq. (3.27) yields the former result (at T=O), while with 
the second term on the right-hand side of Eq. (3.27) it yields 
a temperature correction, which can easily be calculated if 
the condition (3.23) is met. As a result we arrive at a gener- 
alization of (3.15) that reduces to the substitution 

We can proceed in the same manner in the generaliza- 
tion of (3.19). As a result we arrive at the same expression 
but with the substitution 

For A% 1 this leads to the former result with small correc- 
tions, and for A 4 1 we have 

Here we used the value of the integral given in Ref. 8 (p. 
585). 

Now, since instead of the operator i in Eq. (3.20) we 
have a constant, 59, there is no problem generalizing to a 
nonzero magnetic field. Collecting all the results, we arrive 
at an equation for the order parameter at a finite (low) tem- 
perature and a fairly weak magnetic field (the precise mean- 
ing of this is given below), which we write as 

where 97 is specified by (3.30) and V by (3.22). The condi- 
tion that the magnetic field be weak, which corresponds to 
the condition A< 1 for which (3.30) is valid, can be written 
as 

Below we state why precisely this condition is required. 

We restrict our analysis to a linear equation for the order 
parameter; this proves sufficient, say, to establish the effect 
of the magnetic field H on the transition temperature Tc . We 
set V=O in Eq. (3.31). We are interested in the lowest level 
Emin of the equation 

since the transition point is determined by the relationship 

We use a gauge in which 

and look for the solution of Eq. (4.1) in the form of a plane 
wave in x: 

After this it is convenient to introduce the creation and an- 
nihilation operators a+ and a of the Bose type by the ordi- 
nary formulas for a harmonic oscillator: 

We can express M in terms of these operators as follows: 

This is true for H >  0, while for H < O  we must simply inter- 
change the off-diagonal elements. As expected, symmetry is 
present: a change in sign in the magnetic field interchanges 
the role of the components A ,  and A 2 .  

Equation (4.5) shows that two oscillator states are 
linked. The minimum energy is achieved for states with 
numbers 0 and 2. For these numbers we have 

Interestingly, for large values of 97 this level is negative, i.e., 
for 

which corresponds to 

This means that according to (4.2), in a weak magnetic field 
the transition temperature grows to such values (enhance- 
ment of superconductivity). We also see that the transition 
temperature T ,  can be much higher than the transition tem- 
perature in the absence of a magnetic field, TIP) [the reader 
will recall the applicability condition (3.32)]. In addition, a 
transition occurs in the supercritical region T< 7,  (stimula- 
tion of superconductivity). 
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The explanation of all this lies in the coupling of the 
components A, and A2. As in any two-level system, because 
of the coupling the minimum value of the energy decreases, 
but no one could anticipate that this value would become 
negative, which is what matters. This is the property of the 
model employed in the present investigation. For other mul- 
ticomponent models this effect can remain (and even get 
stronger), but it can also disappear-there is no way to know 
beforehand. In any case, this is a situation in which an ex- 
periment could be the decisive factor in choosing the model. 

Thus, a weak magnetic field raises the transition tem- 
perature to the value 

(see the condition (4.7)), which corresponds to a mean free 
time 

(we have used (4.2) at Emi,=O), and at this point a weak 
magnetic field has no effect on the transition temperature. 

Note that the smallness factors in (4.8) and (4.9) are 
numerical rather than parametric (no parameters correspond 
to them); the same was the case (to a lesser extent) in defin- 
ing the width of the gapless region. 

It would be interesting to establish the limit values 
T< 7, at which stimulation of superconductivity is still pos- 
sible. For this we take the limit opposite to (3.32): 

where the logarithm is an operator rather than a number. The 
equation has the same form (4.1) but with another "Hamil- 
tonian": 

where & differs from 3%' in that 9 is replaced by an opera- 
tor &, which according to the results of Sec. 3 has the form 

where some ordering scheme for the operators must be cho- 
sen. 

If we do not touch the logarithm in (4.12), the following 
alternatives are possible. For the diagonal elements in a, 

For the off-diagonal elements, say, for the second element in 
the first row, 

Here we have chosen the ordering that satisfies the above- 
mentioned symmetry property when H is replaced by - H. 
Of course, linear combinations of these variants are also pos- 
sible. 

After we have selected an operator-ordering scheme, we 
proceed as in the previous case, i.e., we express all quantities 
in terms of the creation and annihilation operators a+ and 
a. For instance, for the operator 2% of (4.12) we have 

FIG. 1 

It appears that the different alternatives lead to roughly 
the same results, since the logarithm is a rather slowly vary- 
ing function. Here is the result for the first variants in (4.13) 
and (4.14) (as before, for oscillatory states with numbers 0 
and 2). For Emin we have 

where h=12(HI is the dimensionless magnetic field strength 
(the ratio of squares of two lengths, the mean free path and 
the magnetic length), with h G 1 .  

In the logarithmic approximation Iln hl% 1 this equation 
yields 

In this limit, we have a constant instead of the operator 
(4.15), and no problem of operator ordering in 5% arises, so 
that there cannot be the slightest doubt in this result. 

Figure 1 depicts a phase diagram in the 7,h plane at 
absolute zero (Eq. (4.2) at T=O). The curve represents the 
h-dependence of Emi, specified by (4.16). The superconduc- 
tive state is above the curve. Clearly, for r< 7, there are two 
critical values of the magnetic field, and only between these 
values is there superconducting ordering (presumably as an 
Abrikosov lattice). The lowest boundary (in 7) of this region 
is 

7,- 7 
-=4.6X (4.17) 

7, 

Together with (4.9) this provides the total interval of en- 
hancement and stimulation of superconductivity by a mag- 
netic field, and in impurity concentration the interval 
aniounts to about 1% of the critical concentration. 

Note that the second variants in (4.13) and (4.14) do not 
lead to dramatic changes in the results. For instance, the 
point of intersection of the curve in Fig. 1 with the horizontal 
axis shil'ts to the right by only 10%. 
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Let us estimate the transition temperature T ,  at 7= 7 , .  
This quantity depends on the magnetic field strength. The 
peak value of T , ,  obtained from (4.2) and (4.16), is reached 
at h-0.02 and amounts to 

TC~,-2.64X (4.18) 

This is only an estimate, since the value is obtained at the 
limit of applicability of the result (4.16), which is valid if the 
condition (4.10) is met. 

This ends the discussion of the properties of the model. 
Some aspects, for instance items 2 and 3 in the Introduction, 
have been left out. Together with an estimate of the contri- 
bution of the intrinsic degrees of freedom, these aspects re- 
quire a separate study. 
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