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The cross section for scattering of slow particles by thin films is obtained in the framework of 
the quantum theory of multiple scattering by systems of bound particles in the quasielastic 
approximation. The results are discussed, and in particular, it is shown that if the wavelength X 
of the incident particles becomes much greater than the thickness d of the target and at 
the same time the cross section for scattering by one nucleus, uo, satisfies the inequality 
~ ( n d ) ~ u ~ X ~ >  1 (n is the number density of nuclei in the target), the total cross section for 
scattering by the complete target becomes universal and does not depend on uo. O 1996 
American Institute of Physics. [S 1063-7761 (96)01603-91 

1. INTRODUCTION 

Extensive monographs (see, for example, Ref. 1) have 
been devoted to the physics and optics of slow and ultracold 
neutrons. There have been detailed investigations of the re- 
flection and refraction of neutron waves in matter, and the 
details of their dispersion law have been studied (see, for 
example, Ref. 2). In general, the eikonal approximation has 
been used to study the passage of ultracold neutrons through 
matter. However, when the wavelength X of the particle be- 
comes comparable with or greater than the diameter of the 
scatterer then, as Goldberger and Watson showed? the eiko- 
nal approximation may be invalid. It is therefore of interest 
to consider the scattering of ultracold neutrons by thin films 
(XS-d, where d is the film thickness) without using the ei- 
konal approximation. 

It should be mentioned that an analogous problem of the 
passage of resonance gamma rays through matter was con- 
sidered in Ref. 4. In time-dependent quantum mechanics, it 
was shown in this study that the eikonal approximation holds 
only when certain conditions are satisfied. First, the wave- 
length of the gamma ray must be much less than the thick- 
ness of the target [dl(2X)S I ]  and, second, the medium 
must be sufficiently tenuous (7rnX36 1). If these conditions 
are satisfied, the quantum-mechanical treatment is identical 
to the classical description of the passage of electromagnetic 
waves through matter that is characterized by an ordinary 
refractive index. If the conditions are not satisfied, the 
quantum-mechanical treatment may differ appreciably from 
the classical one. 

2. THE STATIONARY CASE. STATEMENT AND SOLUTION 
OF THE PROBLEM 

Let a stationary flux of particles (neutrons) be incident 
on a target in the form of a thin plate. Our problem is to find 
the amplitude for scattering of the particles by this target 
and, therefore, the cross section. We shall use the method of 
multiple scattering. It was developed and justified by Gold- 
berger and Watson (Ref. 3, Chap. 11, §3), and the following 
approximations were used: 19 R , 1 9  filp, 19 R, . Here 
I= ll(nuo) is the mean free path of :L particle in the scatter- 
ing medium (n is the number density of the nuclei of the 

target, and uo is the mean cross section for scattering by a 
free particle of the target), R is the radius of the scatterer, p 
is the momentum of the scattered particle, and R ,  is the 
correlation radiw3 As is shown in Ref. 3, the amplitude for 
scattering by a system of N centers with allowance for mul- 
tiple scattering can be represented in the stationary case for 
the quasielastic approximation in the form (see Ref. 3, Eq. 
(305119 

where ri is the position vector of scattering center i, fi is the 
amplitude for scattering by center i (for simplicity, we as- 
sume that the scattering amplitude does not depend on the 
scattering angle or on the spin variables), p and k are the 
initial and final momenta of the particle, and Q(rj) is the 
function determined by the equation (see Ref. 3, Eq. (303)), 

The system of equations (1) and (2) completely determines 
the scattering cross section in the quasielastic approximation 
for a target consisting of N scattering centers. For slow par- 
ticles, when the wavelength X = Alp is much greater than the 
separation a between centers, it is possible to go over in Eqs. 
(I) and (2) from a sum over centers to integration over the 
coordinates. If we introduce the number density n(r) of the 
target nuclei, then from (2) we obtain 

For definiteness, we direct the z axis along the normal 
into the target. Then we write n(r)=n for all x and y when 
O <  z< d, where d is the thickness of the target, and n(r) =O 
for all remaining points of space. Note that the number 
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density of the nuclei can be regarded as constant only if 
p d 4  1 and (p- k la4  1. Obviously, Q(r) cannot depend on x 
or y. Integrating Eq. (2') over x and y ,  we obtain 

Similarly, for f N )  we can obtain the expression 

To find Q(z), it is convenient to go over from the inte- 
gral equation (2") to a differential equation. Differentiating 
(2") twice with respect to z, we obtain 

The solution of Eq. (4) has the form 

Here 0 is the angle between the momentum p and the z axis, 
and 

ff1,2= (6) 

The coefficients A and B are determined by substituting the 
expression (5) for Q(z) in Eq. (4) for z = 0 and z= d. The 
differential scattering cross section can be obtained from (3): 

daldCl= ( f N ) I 2 .  (7) 

The total scattering cross section is readily obtained from the 
optical theorem: 

where fN)(0) is taken at k=p. 
The expressions (3)-(8) completely determine the mul- 

tiple scattering cross section in the quasielastic approxima- 
tion. However, in the general case the expressions for the 
coefficients A and B are extremely cumbersome, and we 
therefore consider two limiting cases. In the first case, we 
impose on d the conditions IRe aid+ 1 and IIm aid< 1. 
These conditions can be satisfied for ultracold neutrons. If 
for the target nuclei we have 

then, bearing in mind that I R ~  f 1 ~ 1 m  f,') we obtain 

a,,,= t J m ( 2 + i p ) ,  (10) 

where P= Im flRe f .  
For p-  lo5 cm-' and I R ~  fl-10-'~ cm, the condition 

(9) is satisfied: 4 m l ~ e  fllp2- lo* 1. Then the condition 
for a thin target can be written as 

For a target of thickness d- lop6 cm, this condition is sat- 
isfied: 47rnIRe f Id2- 0.1. In this case, we obtain for flN) the 
expression 

For normal incidence of the particles (p=p,), using (8) 
and the optical theorem for the amplitude f ,  we find the total 
cross section: 

where a. is the total cross section for scattering of a neutron 
by a nucleus of the target. Taking into account the orders of 
magnitude of n, d ,  and p found above, we conclude that 
7rndlp2+ 1,  and therefore 

Since a. = 4 z-1 f 1 2- cm2, the two terms in the denomi- 
nator have the same order of magnitude. If a. is somewhat 
smaller, then 

a - 2 a n ~ d a ~ l ~ ~  for ~ ~ ~ < ~ ~ / [ z - ( n d ) ~ ] ,  (14) 

while if a. is somewhat larger, 

a=2Nlnd= 2 s  for ao>p2/[7r(nd)2], (14') 

where S is the area of the target. In this case, the cross 
section does not depend on the cross section for neutron 
scattering by a nucleus and is twice the geometrical area of 
the target! 

It can be shown that in the case of a thick target, i.e., 
when ]Re a,,,)d+ 1, for normal incidence (p=p,) and for- 
ward scattering (k=p) the total scattering cross section to 
accuracy [~e(cr)d]-~<l  is 

where 

is the linear absorption coefficient. Thus, in the approxima- 
tion of a thick target the solution of the equation for the total 
scattering amplitude is identical to the expression obtained in 
the usual eikonal approximation and differs significantly, at 
least functionally, from the solution for the case of a thin 
target (see Eq. (12)). 

3. TRANSMISSION COEFFICIENT AS A FUNCTION OF TIME 

Before we turn to a discussion of the results obtained in 
the thin-target approximation for resonant scattering of slow 
particles, we obtain an expression for the transmission coef- 
ficient as a function of time. In the resonance approximation, 
the wave function of the neutron-target system can be writ- 
ten in the form 
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Here A(t) is the amplitude of the state of the system in 
which the source is in an excited state with energy co and the 
target nuclei are in the ground state; Bp(t) is the amplitude 
of the state in which the source is in the ground state and 
there is one neutron with momentum p and energy cp ;  
Cpl(t) is the amplitude of the state in which nucleus 1 of the 
target is in an excited state and the source is in the ground 
state. Using Heitler's method for the Fourier transforms of 
the amplitudes, we can write down the system of equations 

( o -  wA+iy,/2)Cl(o)= 2 Hp exp(ipxl)Bp(o), 
P 

where Hk is the matrix element for interaction of a nucleus 
with the neutron, and yc is the partial width of the excited 
state of the nucleus not associated with emission of a neu- 
tron. We set the thickness of the target equal to d and take 
the area of the target to be s=L'. If the neutron source is 
sufficiently far from the target, neutrons incident on the tar- 
get can be described by plane waves propagating in the posi- 
tive z direction. In this approximation, 

( o -  op+ic)Bp(o)=Hp* 
o- 0 0 + i r / 2  

where r = yc+ yn is the total width of the nuclear level from 
which the resonant neutron is emitted. Substituting the ex- 
pression (17) for Bk(u) in the equation for Cl(o),  we obtain 

As we did above, we can obtain for C(z,w) the expression 

In the thin target approximation, when pd< 1, we obtain 
a solution of the equation for C(z,o) in the form 

where 

Substituting the resulting expression into (18), we find 
Bk(w): 

From (16), (17), (21), and (23), we obtain for the wave func- 
tion the expression 

Hz exp[i(kz - fdkt)] 
X 

(w- w~+~E) (w-oO+i r /2 ) (w-oA+ i r /2+ iD ) '  

The integrals are calculated in the same way as in Ref. 4 (see 
Eqs. (39)-(41)). At the same time, we take into account the 
fact that 

where m,  uo, and p are, respectively, the mass, velocity, and 
momentum of the incident neutron.' As a result, we obtain 

where 

Finally, the ratio of the flux transmitted through the film 
to the density of the incident neutron flux can be written in 
the form 

4. CONCLUSIONS AND DISCUSSION 

In conclusion, we discuss the results. As our calculations 
show, for any finite thickness of the target, multiple scatter- 
ing within the target gives rise to two waves with complex 
wave vectors a, and a2. The + sign of the real part of the 
wave vector a, corresponds to a wave propagating along the 
z component of the wave vector of the incident wave, and, 
accordingly, the wave with wave vector a, propa- 
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gates in the opposite direction. The amplitudes of these 
waves depend heavily on the values of the parameters 1 a l ld 
and Ia21d. 

For I a1,21de I ,  the amplitudes of the two waves have the 
same order of magnitude, and in this case, as was shown in 
(12)-(14'), the quasielastic scattering cross section becomes 
universal, given a certain relationship between the amplitude 
for scattering by an individual center, the number density of 
the target nuclei, and the wavelength of the incident parti- 
cles, i.e., it does not depend on the amplitude for scattering 
by an individual target nucleus. This effect, which was first 
obtained by Foldy for the two-center problem, can, in our 
view, explain the reduction in storage time of ultracold neu- 
trons in traps made of different materials. Since thin films of 
oxides, carbides, etc., are essentially always formed on inter- 
nal walls of traps, it follows that if (9), (1 I), and (14') are 
satisfied, the scattering cross section will be universal and 
will not depend on the material of which the trap walls are 
made. An indirect confirmation of this conclusion may be 
provided by experiments on the determination of the coeffi- 
cient of transmission of ultracold neutrons through films of 
frozen heavy water? which showed that the transmission co- 
efficient changes abruptly when the thickness of the film is 
increased from a value comparable with the neutron wave- 
length to a value much greater than the wavelength. 

For la1,,ld+1, the amplitude of the wave with wave 
vector al becomes much greater than the amplitude of the 
wave with wave vector a2, and therefore to accuracy 
la,dl-2, the macroscopic scattering cross section is essen- 
tially always described by the usual expressions with the 
complex wave vector a,. However, in experiments on the 
change in phase of the wave function of neutrons after pas- 
sage through films of finite thickness, it is necessary to take 

into account the two waves, with a, and a2, and there are 
then corrections to the phase shift determined for just the 
wave with a,. Phenomenologically, these corrections can re- 
duce to corrections to the refractive index, allowance being 
made for different approximations (see, for example, Ref. 7). 
Indeed, the physics is such that, as follows from the resulting 
solution, two waves are formed in the medium, and these are 
responsible for the correct relationships between the phases 
of the particle incident on the target and leaving the target. In 
the general case, errors will arise if these phase relationships 
are described by a refractive index. 

Finally, as is shown by calculations of the transmission 
coefficient as a function of the time, for sufficiently thin 
targets (I a d< 1) a universal expression also arises, and it 
differs strongly from the expression for thick targets. 

We thank V. I. Morozov for helpful discussions that 
stimulated the completion of this work. 
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