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We develop a rigorous electrodynamic theory of the natural oscillations of a two-dimensional 
(2D) electron plasma in a semiconductor heterostructure with a lateral metallic strip 
array in the presence of an external magnetic field directed at right angles to the electron 2D- 
layer. Oscillations with a wave number corresponding to the center of the Brillouin zone 
of the periodic structure are accompanied by emission of a homogeneous electromagnetic wave 
perpendicular to the 2D-layer. We find the frequencies and the dissipative and radiative 
damping of the cyclotron and magneto-plasma oscillations. The shift of the cyclotron oscillation 
frequency increases with magnetic field strength. This effect results from electric-field 
coupling between the cyclotron and plasma motion in the array. We show that the polarizing 
activity of an array whose period is much shorter than the electromagnetic wavelength 
halves the radiative damping of the cyclotron oscillations in comparison to the case of 
homogeneous cyclotron resonance, which explains in full the experimentally observed narrowing 
of the cyclotron resonance line in a structure with an array. Comparison of our theoretical 
results with the experimental data suggests that the time of electron relaxation of magneto- 
plasma oscillations in a GaAsIAlGaAs heterojunction in strong magnetic fields is roughly 
half the time of electron relaxation of cyclotron oscillations. O 1996 American Institute of 
Physics. [S 1063-776 1 (96)O 1303-XI 

1. INTRODUCTION 

Experiments in one-photon absorption1 and emission2 of 
electromagnetic waves by two-dimensional (2D) plasmons in 
a semiconductor GaAsIAlGaAs heterostructure require a 
metallized array with a period L < A. on the structure's sur- 
face, where ho is the electromagnetic wavelength, to ensure 
that the electromagnetic and plasma oscillations are coupled 
(Fig. 1). The array provides the coupling between the field of 
the incident or emitted transverse electromagnetic field, 
which is homogeneous in the plane of the array, and the 
longitudinal inhomogeneous electric fields of the plasma os- 
cillations with wave numbers kn= 2rrnlL (n = 1,2,3, . . . ). 
The position and width of the absorption (or emission) line 
provides information about the frequency and damping of 
the plasma oscillations. 

The periodic screening of the electric field of the plasma 
oscillations by the conducting strips of the array usually 
leads to a shift in the oscillation frequency in comparison to 
the frequency of plasma 2D-oscillation in a surface- 
homogeneous structure. Without an external magnetic field, 
the latter frequency is given in the electrostatic limit and the 
local approximation for the electron 2D-plasma by the well- 
known 

where w p  and k are the plasmon frequency and wave num- 
ber, N ,  is the two-dimensional electron number density in 
the 2D-plasma, e and m* are the electron charge and effec- 
tive mass, e0 is the permittivity of free space, and E is the 

effective dielectric constant, which depends on the geometry 
of the structure. If, for instance, the plasma 2D-layer sepa- 
rates two half-spaces with relative dielectric constants e l  and 
c2 .  then4 

For a structure with a perfectly conducting solid screen po- 
sitioned at a distance d from the 2D-plasma layer? 

E= coth (kd)]. 

Without a screen: 

E 3 +  &2  tanh (kd) 

E ~ + E ~  tanh (kd) I ' 
In an experimental ~ituation,',~ the quantities E , ,  E,, 

and c3  in Eqs. (2) and (3) are the relative dielectric constants 
of GaAs, AlGaAs, and the vacuum, respectively. Since in 
this case E = c 2  and E 1 , 2 S ~ 3 ,  instead of (3) we can, to high 
accuracy? write 

& = ~ E ~ + E ~  tanh (kd)], (4) 

where d is the thickness of the AlGaAs layer. 
For a structure with a metallized strip array (Fig. I), a 

rigorous thermodynamic theory of plasma 2D-oscillations 
has been developed in Refs. 6-8 for perfectly conducting 
strips. The results imply that in the presence of an array, each 
plasma oscillation with wave number k, = 2 m l L  splits into 
two modes with distinct frequencies win ,  the modes being 
characterized by opposite parities of the longitudinal electric 
field distribution about the center of the gap between the 
conduct- 

471 JETP 82 (3), March 1996 1063-77611961030471-08$10.00 @ 1996 American Institute of Physics 471 



ing strips. The values of win monotonically decrease as the 
array filling factor wlL grows, where w is the conducting 
strip width. Naturally, when wlL+ 1 and wlL-0, the fre- 
quencies and wpn merge, and coincide with the frequen- 
cies determined from Eq. (1) at k =  kn= 2 rn lL ,  provided 
that we take E in the form (2) or (3), respectively. 

The conclusions drawn from the theory of Refs. 6 and 8 
are supported by experimental data.'32 Batke et al.' found 
that the frequency of an observed plasmon with wave num- 
ber k = 2 r l L  coincides, to within the experimental errors, 
with the frequency specified by Eq. (1) if E is chosen in the 
form (2), which agrees with the value of the array filling 
factor wlL+ 1 in their experiments. On the other hand, the 
plasmon dispersion law extracted from the experimental data 
of Okisu et ~ 1 . ~  agrees better with the dispersion law (1) 
if E is taken in the form (4) for an open structure, which 
suggests that the gap width in their array was wider. 

In addition to the frequency being shifted, the plasma 
oscillations in an open structure with an array experience 
additional damping due to radiative decay. Here radiative 
decay, i.e., interaction of the radiation with transverse elec- 
tromagnetic fields, is possible only in the plasma mode, 
which has an antinode of the longitudinal electromagnetic 
wave (even symmetry) at the center of the array gap. Clearly, 
only this mode can be observed in experiments'.2 on the 
absorption or emission of electromagnetic waves by 2D- 
plasmons. 

In Refs. 6 and 8 it was demonstrated that radiative 
damping can contribute significantly to the observed emis- 
sion (absorption) linewidth. The size of this contribution is 
comparable to that of dissipative damping determined by 
electron scattering in the 2D-layer. An explanation for the 
total linewidth of the plasmon resonance observed by Batke 
et al.' was given in Ref. 9 with allowance for electron scat- 
tering in the 2D-layer, radiative damping of plasmons, and 
dielectric losses in the layers of the heterostructure. 

In the presence of a constant magnetic field Bo directed 
at right angles (along the y axis) to the plane of the hetero- 
structure layers, the surface conductivity tensor of the elec- 
tron 2D-layer at the frequency w of the external electric field 
E exp [i(ot-h)] in the local approximation (the Drude 
model) has the form 

with elements 

where 

e 2 ~ , r  
u* = 

m*[l + i ( o 2 w C ) r l 9  

w , = l e l ~ ~ l m *  is the cyclotron frequency, and r is the phe- 
nomenological relaxation time of the electron momentum in 
the 2D-layer. 

If the conductivity tensor is taken in the form (5) and (6), 
a surface-homogeneous structure can exhibit two types of 
resonance: homogeneous cyclotron resonance with k = 0 at 
the frequency w= w, , and magneto-plasma resonance with 
k Z 0, which corresponds to excitation of inhomogeneous 
magneto-plasma oscillations at a frequency specified by5 

Nonlocal effects excite cyclotron-resonance harmonics 
in a 2~-s~stern."  The coupling of magneto-plasma oscilla- 
tions and cyclotron-resonance harmonics splits the magneto- 
plasma resonance line near the frequencies w=nw,, with 
n= 2,3, . . . (see Ref. I). 

Homogeneous electron cyclotron motion with a fre- 
quency w, in the plane of the 2D-layer is accompanied by 
electromagnetic emission of cyclotron currents into the sur- 
rounding medium. As a result, due to radiative damping, the 
cyclotron resonance line broadens. For instance, for an elec- 
tron 2D-layer with conductivity (9, (6) in an infinite me- 
dium with a relative dielectric constant &, the equations of 
electrodynamics make it possible to obtain the following rig- 
orous expression for the complex-valued natural frequency 
of a homogeneous cyclotron oscillation: 

where ye = 117, and Zo= 377 ohm is the wave impedance of 
the vacuum. The first term in parentheses in Eq. (8) corre- 
sponds to dissipative electron damping, and the second rep- 
resents the radiative damping of the cyclotron mode. 

Magneto-plasma oscillations in a homogeneous structure 
are nonradiative excitations, with their electron damping 
varying from ye= 1/27 at Bo=O to ye= 117 at BO+m. 

The presence on the surface of the GaAslAlGaAs het- 
erostructure of a coupling array in the experiment of Batke 
et al.' narrows in the cyclotron resonance line by approxi- 
mately 30%. Zheng et al." explained this fact by the action 
of the array as a linear polarizer for the radiation fields, but 
they were unable to achieve quantitative agreement with the 
experimental data of Batke et al.' 

The observed linewidth of the magneto-plasma reso- 
nance in a structure with an array1 changes nonmonotoni- 
cally with the magnetic field strength in the region where 
there is interaction with the cyclotron resonance harmonics. 
However, in strong magnetic fields far from the interaction 
region (where the local approximation holds), the linewidth 
of magneto-plasma resonance is almost three times the value 
related to the electron contribution, 2 ye=2/r, with the value 
of r determined by fitting the experimental and theoretical 
curves of the cyclotron resonance line in a structure with no 
array for the same values of the magnetic field strength. The 
broadening of the magneto-plasma resonance line in a mag- 
netic field has yet to find a physical explanation. 

To theoretically study the experimentally observed fea- 
tures mentioned above of the excitation of cyclotron and 
magneto-plasma resonances in the GaAsJAlGaAs hetero- 
structure with a coupling array, we expand the theory devel- 
oped in Ref. 8 to incorporate a constant magnetic field di- 
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is the amplitude of the spatial Fourier harmonics, and 

FIG. 1 .  The structure under investigation and the coordinate system: 
I--GAS, 2-AlGaAs, 3-vacuum, 4-metallized array, and 5-two- 
dimensional electron-plasma layer. 

rected at right angles to the plane of the electron 2D-layer. In 
Sec. 2 we describe the theoretical approach and give the 
main relationships. In Sec. 3 we discuss the results of calcu- 
lations and compare them with the experimental data. Sec- 
tion 4 is devoted to concluding remarks originating from our 
results. 

2. STATEMENT OF THE PROBLEM; BASIC RELATIONSHIPS 

To rigorously solve for the electromagnetic spectrum of 
magneto-plasma oscillations in a structure with an array (Fig. 
1) we must find a self-consistent solution of the Maxwell 
equations with allowance for the response of the electron 
2D-plasma in an external magnetic field directed along the 
y axis. The array is considered to be an infinite periodic 
sequence of perfectly conducting strips of zero width located 
in the plane y  = d  and having infinite length in the z direc- 
tion. In accordance with the conditions of the experiment of 
Batke et al.,' we assume that the desired electric and mag- 
netic fields are constant along the array strips (in the z direc- 
tion). 

In the absence of a magnetic field, transverse electric 
(TE) and transverse magnetic (TM) waves can exist indepen- 
dently in the structure. Since TE-waves have a vanishing 
Ex-component, they cannot interact with longitudinal plasma 
oscillations in the x-direction, which were observed at 
Bo=O in the experiments described in Refs. 1 and 2. 

In the presence of an external magnetic field, the TM- 
and TE-waves become coupled due to Hall currents in the 
electron 2D-layer. Here we must consider a hybrid electro- 
magnetic field with six nonzero components of the electric 
(E,) and magnetic (Hi) fields (i  = x , y  ,z). 

Using Floquet 's theorem for fields in a periodic struc- 
ture, 

we write the following expression for the z-components of 
the electric and magnetic fields: 

where 

with k the wave number reduced to the center of the first 
Brillouin zone. We represent the amplitudes of the Fourier 
harmonics in the media 1, 2, and 3 (see Fig. 1) in the form 

where (a;) = /I2 - kie j ,  ko = 6 6 ,  po is the magnetic 
constant, e j=  EJ - ie; is the complex-valued relative dielec- 
tric constant of the jth medium ( j =  1,2,3), and A,, A;, 
B,, B ; ,  Cm , C;, D m ,  and DL are constants. In accor- 
dance with Maxwell's equations with the time dependence of 
the fields given by exp (ia) the x-components of the electric 
and magnetic fields can be written as 

Now we write the boundary conditions at the surfaces: 

E!;=E~, H L ~ - H ~ ~ = - ~ ~ ~ ( o ) ,  

(1)-E(2) Hg)- (1) -  
Ezm - zm , HZm -jxm(0), 

(14) 

at y=0,  and 

(2)- (3) HLg- (2)- Ex, - Ex, , Hxm - -jzm(dI3 

(2)- (3) H(3)- (2)- 
Ezm -EZm zm Hzm - jxm(d), 

(15) 

at y=d ,  where jxm(0), jZm(O) and jxm(d), jzm(d) are the 
spatial Fourier harmonics of the components of the surface 
current density in the planes y = O  and y  = d, respectively. 
For the current density in the plasma 2D-layer we have 

where E,,(O) and Ezm(0) are the spatial Fourier harmonics 
of the components of the electric field in the plane y  = 0, and 
the elements of the surface conductivity tensor & are ex- 
pressed by Eqs. (6) with & replacing w.  

Performing lengthy but otherwise simple transforma- 
tions involving Eqs. (10)-(16), we arrive at the following 
relationship between the electric field and the surface current 
density in the lattice plane y = d: 

The surface impedance tensor 
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Gmxx Gmxz 
G m = (  Gmzx Gmzz ) 

has the following elements: 

( 2 )  
f f m  

Gmxx= iZo - @ l m  

k 0 ~ 2  @ l m @ ~ m + & ~ @ ~ m  ' 

where 

@3m=axzZ0@3m 9 

with 

coth2(a;d) - 1  
0 - 

3 m - ( a x z z O ) 2 + ~ l m @ 2 m & 2  ' 

Allowing for (17), we can write an expansion like (9)  for 
the electric field in the lattice plane as 

where 

with j x (x ,d )  and jz (x ,d)  the components of the surface cur- 
rent density in the plane y = d .  Obviously, 
jx (x ,d)= jz (x ,d)  = 0  for w/2< 1 x 1 ~ ~ 1 2 ,  where w  is the 
width of a conducting strip in the array. 

Substituting (20) into the expansion (19) and using the 
boundary conditions E,(x,d) = Ez(x ,d )  = 0  at a perfectly 
conducting strip for I x (swI2 ,  we arrive at the following 
system of two integral equations for the components of the 
surface current density of the array strips: 

j X ( x 1  4 )  C exp ( -  ipmX)!lvR E,[ ] m = - m  - ~ 1 2  j Z ( x r  ,d)  

X exp ( iPmxr )dxr  = 0. (21) 

To solve this equation numerically, we approximate the dis- 
tributions of the components of the surface current density 
on the interval - ~ 1 2 6 ~ ~ ~ 1 2  by the following expansions: 
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where 

p,  and q,  are unknown constants, and Tn(2x lw)  and 
U n ( 2 x l w )  are, respectively, Chebyshev polynomials of the 
first kind of order n ,  and of the second kind of order n - 1 .  
The weighting functions [ 1  - (2x1 w12]' ' I2  explicitly allow 
for the specific features of the distribution of the surface 
current density at the edges of a perfectly conducting strip 
(the Meixner conditions): l 2  

as 1x1 -) wI2 .  After substituting the expansions (22) into Eqs. 
(21), we can use the standard Galerkin procedure13 with (23) 
and (24) taken as the basis functions. This makes it possible 
to go from the system of two integral equations (21) for the 
functions j ,(x,d) and jz (x ,d)  to the following system of 
2 N  homogeneous algebraic equations for the coefficients 
Pn and 9n : 

N N-  1 

where 

m (26) 
Gmzx 

Ckn=nin  2 - 
m = - m  P m  Jk-N- ( y) J n ( y )  

The nth Bessel function of the first kind Jn(Pmw/2)  emerges 
in Eqs. (25) as a result of using explicit expressions for the 
Chebyshev polynomials,13 

T n ( 5 )  = cos (n  arccos [ ) ,  

sin (n  arccos 5 )  
Un(5)  = G - P  , 

in the expansions (22) and their subsequent integration when 
substituted into Eqs. (21). 
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The dispersion relation, which establishes the relation- 
ship between the frequency and the reduced wave number of 
the natural oscillations of the system, is determined by set- 
ting the determinant of the system of homogeneous linear 
equations (20) to zero. For a fixed real value of the wave 
number, the roots of the dispersion equation yield the 
complex-valued frequencies G= w + i y, where the real part 
w corresponds to the natural oscillation frequency, and the 
imaginary part y is the damping coefficient for these oscil- 
lations, the latter generally being related to dissipative pro- 
cesses in the system and to the electromagnetic radiation 
emitted by the structure. Obviously, if we ignore all dissipa- 
tive damping mechanisms, then y= y,, where y, is the ra- 
diative damping coefficient. 

The Galerkin procedure and the series in (26) both con- 
verge. Below we present the results of numerical calculations 
in which N = 5 and only terms with 1 m 1 G 100 are retained in 
the series in (26). This ensures that the error in the natural 
frequencies is no higher than 1%. 

3. RESULTS OF CALCULATIONS; DISCUSSION 

In this section we give the results of numerical calcula- 
tions of the natural frequencies and damping coefficients of 
the magneto-plasma and cyclotron modes for a vanishing 
wave number k ,  which corresponds to the center of the first 
Brillouin zone for the periodic structure depicted in Fig. 1. 
These excitations were manifested as magneto-plasma and 
cyclotron resonances in the experiments of Batke et al.' 

As in a vanishing magnetic field? the presence of an 
array splits each magneto-plasma oscillation with wave num- 
ber k,= 2 m l L  (n = 1,2,3), which corresponds to k=O in 
the reduced band structure, into two oscillations with distinct 
frequencies w,' . As noted in the Introduction, at Bo= 0 one 
oscillation is nonradiative, since one node of the amplitude 
distribution of the longitudinal electric field Ex is at the cen- 
ter of an array gap. Since an external magnetic field lowers 
the symmetry of the problem in comparison to the geometric 
symmetry of the lattice, for B # 0 the distribution of the field 
of the natural oscillations cannot be characterized by a sym- 
metry with a definite parity in relation to the center of the 
array gap. The two oscillations, with frequencies w l  and 
- 

w, , can therefore theoretically experience radiative damp- 

FIG. 2. Aw (a) and y, (b) for magneto-plasma 
oscillations (curves 1 )  and cyclotron oscillations 
(curves 2) as functions of the magnetic field 
strength in the structure depicted in Fig. 1 with the 
following parameters:' E ,  = 12.8, E,= 11.0, 
c 3 =  1 ,  N,= 6.7X 10"cm-~, L= 8.72X cm, 
wlL=0.9, d = 8 X  ~O-~crn, m*=0.071me ; 
c = I I 6 is the speed of light. 

ing. However, calculations with parameters with characteris- 
tic of the experiment of Batke et al.' have shown that radia- 
tive damping of the "nonradiative" mode is several orders 
of magnitude weaker than that of the "radiative" mode, so 
that the former has essentially no effect on the position and 
shape of the magneto-plasma resonance line in Ref. 1. Fur- 
thermore, radiative damping of magneto-plasma oscillations 
drops dramatically as n increases, so that magneto-plasma 
resonances with n 2 were weak in the experiments of Batke 
et al.' For this reason we restrict our discussion to the "ra- 
diative" magneto-plasma mode n = 1, and drop the subscript 
1 for the sake of simplicity. 

We start by discussing the results obtained without al- 
lowing for electron scattering ( 7 4 0 )  and dielectric losses 
( E ;  = 0). Figure 2(a) depicts the frequency variation 
A w = o - w, for the magneto-plasma and cyclotron oscilla- 
tions as a function of the external magnetic field strength. 
The magneto-plasma oscillation frequency varies with the 
magnetic field strength in good agreement with (7) if w, in 
that formula is interpreted as the frequency of plasma oscil- 
lations in an array structure in zero magnetic field. The fre- 
quency shift A w  of the cyclotron mode in the array structure 
grows with magnetic field strength, but proves to be a factor 
of 100 smaller than for the magneto-plasma mode in the 
given range of magnetic field strengths. As Fig. 2(b) implies, 
the radiative damping of magneto-plasma oscillations is es- 
sentially independent of the magnetic field, while the radia- 
tive damping of cyclotron oscillations decreases only slightly 
in strong magnetic fields. 

The nature of the dependence of the frequency and ra- 
diative damping of cyclotron oscillations on the magnetic 
field strength can be explained as follows. In a structure with 
a periodic array, a homogeneous cyclotron oscillation is ac- 
companied by higher spatial harmonics of the electric field, 
which excite forced plasma oscillations with wave numbers 
k= 2 m l L .  As a result, an additional "restoring force" act- 
ing on the electrons appears that is related to the induced 
separation of charge in the plasma 2D-layer, which leads to 
renormalization of the cyclotron oscillation frequency. As 
the magnetic field strength grows, the cyclotron frequency 
approaches the natural frequency of magneto-plasma oscilla- 
tions. In this connection the intensity of excitation of forced 
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plasma oscillations and, hence, the variation of the cyclotron 
oscillation frequency increase. Since in strong magnetic 
fields an appreciable fraction of the cyclotron oscillation en- 
ergy is contained in nomadiative forced plasma oscillations, 
the radiative damping of cyclotron oscillations decreases. 

The assumption of a role for forced plasma oscillations 
in the renormalization of the cyclotron oscillation frequency 
is supported by the curves in Fig. 3(a). As the surface elec- 
tron number density grows, the 2D-plasma becomes more 
"rigid," which increases the cyclotron oscillation frequency. 
A strong (essentially linear) dependence of the radiative 
damping coefficient on N ,  [Fig. 3(b)] indicates that the ho- 
mogeneous component of the cyclotron current provides the 
dominant contribution to radiative damping, in accordance 
with Eq. (8). As in the case with Bo=O, the frequency and 
radiative damping of magneto-plasma oscillations increase 
with N ,  (Fig. 3). 

Note that for the characteristic values of the parameters 
in the experiment of Batke et al.' the shift in the cyclotron 
oscillation frequency due to variations in Bo or N ,  in an 
array structure proves to be of the order of the measurement 
errors and so were not observed by Batke et al.' The physi- 
cal reason for the effect being so small lies in the fact that in 
the system considered here, the electron 2D-plasma is sepa- 
rated from the array by a layer of insulator, so that the spatial 
harmonics of the array field have a small effect on homoge- 

wlL 
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FIG. 3. Ao (a) and y, (b) for magneto-plasma 
oscillations (curves 1 )  and cyclotron oscillations 
(curves 2) as functions of the surface electron 
number density N, at B,= 6 T. T%e other pa- 
rameters of the structure are the same as in 
Fig. 2. 

neous cyclotron oscillations. The situation changes little if 
the thickness d of the insulating layer is made smaller, be- 
cause here the perfectly conducting array strips have a strong 
screening effect on the tangential electric fields associated 
with charge separation in the plasma 2D-layer. It stands to 
reason, however, that in other structures with strong time- 
dependent modulation of the surface charge density in the 
plasma 2D-layer, the above renormalization of the cyclotron 
oscillation frequency due to perturbations of homogeneous 
electron motion caused by the time-dependent potential of 
forced plasma oscillations can be much more pronounced. 
For instance, Kotthaus et al.14 observed an increase in the 
positive shift of the cyclotron resonance frequency with 
magnetic field strength in an electron 2D-system with a pe- 
riodically modulated equilibrium density. In this case the 
higher spatial harmonics of the field appear directly in the 
plasma 2D-layer because of the interaction of an external 
homogeneous electric field and the steady-state periodic pro- 
file of the electron number density. Existing approximate 
theoretical models15 do not explain the increase observed by 
Kotthaus er al.14 in the shift of the cyclotron resonance fre- 
quency with magnetic field strength. 

Figure 4 depicts the frequency shift and radiative damp- 
ing of magneto-plasma and cyclotron oscillations as func- 
tions of the array filling factor wlL.  The frequency of 
magneto-plasma oscillations behave in the same way as in a 

FIG. 4. A o  (a) and y, (b) for magneto-plasma 
oscillations (curves I) and cyclotron oscillations 
(curves 2) as functions of the array filling factor 
w l L  at B,= 6 T. The other parameters of  the 
structure are the same as in Fig. 2. 

y, 12 nc, cm-' 
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zero magnetic field, decreasing from 9 at wlL=O to W at 
wlL= 1, where o and W are the frequencies of magneto- 
plasma oscillations with a wave vector k =  27rlL in surface- 
homogeneous structures with, respectively a free interface 
and a perfectly conducting screen in the plane y = d .  Radia- 
tive damping of magneto-plasma oscillations, as for the case 
where Bo = 0, increases dramatically as wlL --+ 1 because of 
the growing coupling of the field of these oscillations and the 
homogeneous electric field of the emitted electromagnetic 
wave. 

The shift in the frequency of cyclotron oscillations 
changes sign at wlLz0.5. In other words, it can be said that 
the "cyclotron oscillator" considered here becomes 
"softer" (for wlL<0.5) or more "rigid" (for wlLB0.5) 
than the "cyclotron oscillator" with purely homogeneous 
electron motion due to the coupling of the homogeneous 
motion and the plasma oscillations in the electron 2D-layer. 
A change in the sign of A w indicates a change in the phase 
relationship between the homogeneous cyclotron moj;on and 
the additional "restoring force" caused by the- motion of 
electrons in the 2D-layer in the time-dependent Coulomb 
potential of the plasma oscillations. Indeed, calculations 
show that the phase shift between the homogeneous compo- 
nent of the field and the total field of the higher spatial har- 
monics at each point in the plane of the electron 2D-layer 
changes by r as the array filling factor varies from 
wlL<0.5 to wlL>0.5. 

The radiative damping coefficient for cyclotron oscilla- 
tions is essentially independent of the value of wlL [see Fig. 
4(b)], which supports the conclusions of Ref. 11 that the 
width of the cyclotron resonance curve is independent of the 
array parameters for L Xo and amounts to half the radiative 
damping coefficient for a homogeneous cyclotron oscillation 
in a structure without an array. Such a decrease in radiative 
damping is caused by the fact that for L 4 X o  and d< L the 
array acts mainly as a linear polarizer. The conducting strips 
of the array effectively screen the z-component of the circu- 
larly polarized electric field accompanying the homogeneous 
cyclotron oscillation, and the z-component of the cyclotron 
current in the electron 2D-layer is balanced by the 
oppositely-directed longitudinal image current in the per- 
fectly conducting array strips. This results in emission of a 
linearly polarized homogeneous wave with its electric field 
directed transversely to the array strips. 

Homogeneous cyclotron motion in a structure without an 
array can be represented by a sum of homogeneous linear 
currents having the same amplitude, flowing in the z- and 
x-directions, and shifted in phase relative to one another by 
d 2 .  Here the radiative damping of the cyclotron oscillations 
in (8) is related to the electromagnetic emission by both cur- 
rent components. The presence of an array hinders emission 
by currents flowing in the z-direction, and lowers radiative 
damping by a factor of two. 

Allowing for electron scattering in the 2D-plasma, di- 
electric losses in the layers of the GaAsIAlGaAs heterostruc- 
ture, and radiative damping, we calculated the frequency and 
the width of the cyclotron resonance curve for characteristic 
values of the parameters of the experiment conducted by 
Batke et al.:' m*=0.071me, NS=6.7X 10"cm-~, E =  12.8 

(GaAs), e2=  11.0 (AlGaAs), e =  1, L= 8.72X 10-~cm, 
d =  8 X 1oP6cm, and wlL- 1 in a magnetic field Bo= 5 T. 
Dielectric losses were taken into account by introducing 
imaginary parts E:,~ into the dielectric constants The 
quantities ~ ' ; ,~=0.27 were obtained by fitting the experimen- 
tal and theoretical widths of the plasma resonance curve in 
zero magnetic field.8 For the phenomenological relaxation 
time in Eq. (6) we took the value r= r,= 4.5X 10-l2 s, ob- 
tained by Batke et al.' by fitting the experimental and theo- 
retical cyclotron resonance curves in a surface-homogeneous 
structure without an array. 

When calculated with the above values of the param- 
eters, the frequency and total linewidth of the cyclotron reso- 
nance in the GaAsIAlGaAs heterostructure with a metallized 
array were found to coincide with the experimental values to 
within the experimental errors. Note that Zheng et al." 
achieved agreement between the experimental and theoreti- 
cal data by using the value r=5.5X lop2 s in their calcula- 
tions. Our results appear more realistic from the physical 
standpoint, since we believe that it is improbable that the 
presence of an array can change the electron relaxation time 
of cyclotron oscillations. 

The experimentally observed' linewidth of a magneto- 
plasma resonance in strong magnetic fields (6-8 T), when 
the interaction between magneto-plasma oscillations and 
cyclotron-resonance harmonics can be ignored, exceeds the 
plasma-resonance linewidth at Bo= 0 by a factor greater than 
two. The above results [see Fig. 2(b)] show that radiative 
damping of magneto-plasma oscillations is essentially inde- 
pendent of the magnetic field strength. It is natural then to 
assume that E:,~ are also essemtially independent of the mag- 
netic field. Note that here the dissipative damping yd of 
magneto-plasma oscillations, related to dielectric losses, de- 
creases as Bo (or the oscillation frequency) grows. Here the 
broadening of the magneto-plasma resonance line can be re- 
lated only to the increase in electron damping of the 
magneto-plasma oscillation. As noted earlier, the electron 
damping ye of such oscillations, related to electron scattering 
in the 2D-plasma, increases with the magnetic field strength, 
in an approximation in which the relaxation time is 
Bo-independent, from ye= 1/27 at Bo=O to ye= 117 as 
BO-+ a. Consequently, the experimentally observed broad- 
ening of the magneto-plasma resonance line by a factor 
greater than two cannot be explained entirely by this effect, 
since electron damping determined only one-third of the 
magneto-plasma resonance linewidth at Bo=O (see Ref. 8). 
A rigorous calculation of the damping y= ye+ yd+ yr for a 
structure with the above values of the parameters has shown 
that the best agreement between our theoretical value of the 
damping coefficient for magneto-plasma oscillations and the 
experimental value of the halfwidth of the resonance line 
observed by Batke et al.' in strong magnetic fields (6-8 T) is 
achieved when the value r= rm,=2.2X 10-l2 s is used in 
calculations. Here the calculated frequency of magneto- 
plasma oscillations was found to coincide, to within the ex- 
perimental errors, with the experimental value of the fre- 
quency of magneto-plasma resonance. The above value of 
rmp , which can be named the magneto-plasma relaxation 
time, is approximately half the cyclotron relaxation time r, 
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less than one-third the dc electron-momentum relaxation 
time rdc=7X 10-l2 S. In our theory the quantity r is purely 
phenomenological, so that it is impossible to establish the 
physical reason why r,,,, differs so markedly from rc and 
rdc . 

4. CONCLUSION 
We have developed a rigorous electrodynamic theory of 

electromagnetic emission of magneto-plasma and cyclotron 
oscillations in a semiconductor heterostructure with a cou- 
pling array. 

We found that the frequency of radiative magneto- 
plasma oscillations in a structure with an array increases with 
magnetic field strength in good agreement with Eq. (7), 
which was obtained for a surface-homogeneous structure, if 
w, is interpreted as the frequency of plasma oscillations in a 
structure with an array but without an external magnetic 
field. 

The frequency shift A w = w - wc for the cyclotron mode 
increases with magnetic field strength, but the shift is small. 
For characteristic values of parameters of previous 
cyclotron-resonance experiments involving a GaAsIAlGaAs 
heterostructure with an array, the resonance frequency shift 
was found to be of the same order as the measurement errors. 
We suggest a physical picture of this phenomenon that ex- 
plains the cyclotron-resonance frequency shift in a structure 
with an array as caused by electrodynamic coupling of ho- 
mogeneous cyclotron motion and inhomogeneous forced 
magneto-plasma oscillations. We propose a hypothesis ac- 
cording to which the effect consists of an increase, experi- 
mentally observed by Kotthaus et a1.,14 in the shift of the 
cyclotron resonance frequency as the magnetic field becomes 
stronger in a heterostructure with modulation of the equilib- 
rium electron number density. We also note that the existing 
approximate theoretical models provide no explanation of 
the magnetic-field dependence of the shift in the cyclotron 
resonance frequency. 

The radiative damping of magneto-plasma oscillations 
grows considerably as the array spacing becomes narrower 
because of the increasing coupling of the oscillation field and 
the homogeneous electric field of the emitted electromag- 
netic wave. When the array period is much shorter than the 
electromagnetic wavelength, the radiative damping of cyclo- 

tron oscillations is essentially independent of the array filling 
factor wlL and amounts to half the radiative damping of 
homogeneous cyclotron motion in a structure without an ar- 
ray. This is because such an array acts as an effective linear 
polarizer for the radiation fields. 

Using our theory, we calculated the total cyclotron reso- 
nance linewidth for the characteristic values of the param- 
eters of well-known experiments.' The derived value of the 
linewidth was found to coincide with the experimental value 
to within the experimental errors. 

The calculated and experimental values of the total line- 
width for magneto-plasma resonance in strong magnetic 
fields (wCz2w,) coincide only if we assume that the effec- 
tive electron relaxation time for magneto-plasma oscillations 
is approximately half the cyclotron relaxation time, and less 
than one-third the dc electron-scattering time. 
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