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1. INTRODUCTION Sl+ElE;+E2ET,  S2=i(E1Ez-E2ET),  

As is well known, the observation of solitons in stimu- S3=E1ET-E2E; 
lated Raman scattering (SRS) is accompanied by major ex- 

(1) 

perimental difficulties, since these solitons propagate on top and pass from the retarded time t '  = t -x lc  (where x is the 
of a longer Raman-wave pulse and disappear at one of its coordinate along which the waves propagate and c is their 
ends. Increasing the intensity and duration of the pump group velocity in the medium) to the variable 
pulses leads to the formation of a periodic nonlinear wave.' 
Periodic oscillations as the pump pulse depletes were also 
observed in the experiments of Ref. 2. This makes a descrip- 

(2) 

tion of the creation of a sequence of solitons at the leading 
edge of the pump pulse problematic. In this case, solitons are 
produced by the modulation instability of a constant- 
amplitude wave, which transforms the pulse front into an 
ever-widening region of nonlinear oscillations. This process 
can be treated by using the Whitham method, which has been 
used previously to deal with waves described by the nonlin- 
ear Schrijdinger waves in one-dimensional 
magnets? and self-induced transparency waves (sTw).~,~ 
However, the nonuniform state that appears is a modulated 
nonlinear periodic wave with time-dependent and 
coordinate-dependent parameters. For a complete description 
of this state, it is first necessary to find a way to cast this 
periodic solution in some efficient form. In this paper this 
problem is solved by using a modification of the well-known 
method of finite-band integration8 for the case where the 
Lax-pair operators of the corresponding integrable equations 
are not self-adjoint. This modification was proposed in Ref. 9 
and has been applied to a rather large number of equations of 
immediate physical i n t e r e ~ t . ~ ' ~ " ~ - ' ~  In this paper we apply 
this method to the SRS equations.') 

2. PERIODIC SOLUTIONS OF THE SRS EQUATIONS 

The SRS equations describe the propagation of two 
waves with frequencies o, and o2 and electric field enve- 
lopes E, and E ,  in a medium with a resonance at the differ- 
ence frequency o, - 02. The derivation of these equations 
has been discussed many times in the literature (see, e.g., the 
review Ref. IS), so we will not pause to discuss it here. As 
shown by ~ t e u d e l , ' ~ . ' ~  the equations acquire a symmetric 
form if we construct a vector S from the amplitudes E ,  and 
E2 wit11 Cartesian components 

where I ( t )  = EIET + E2E; is the total field intensity, and k 
is a constant that measures the dipole interaction of these 
waves with the medium. Introducing the corresponding di- 
mensionless coordinate 5 along which the wave propagates, 
and the Bloch vector R that describes the state of the me- 
dium (R * = R ' + iR2 corresponds to the off-diagonal ele- 
ments of the density matrix of the two-level medium, R3 to 
the population difference between the upper and lower lev- 
els), we are led to the SRS equations in the following 
fom15-'7. 

where S, = S, t i s 2  and A is a parameter that characterizes 
the dynamic Stark effect. The vectors R and S are here nor- 
malized to unit length: 

In Ref. 17 it was shown that the system of SRS Eqs. (3) is 
integrable by the inverse scattering method, which enables us 
to study both single-soliton and multisoliton solutions.* The 
specifics of formulating initial conditions for this system, 
which arise from the nontrivial connection2 between the 
physical time r and the "time" coordinate 7, were discussed 
in Ref. 19. In this paper we find a periodic solution to the 
system (3). 

The integrability of the SRS Eqs. (3) by the method of 
inverse scattering is based on the possibility of expressing 
these equations in the form of compatibility conditions for 
the two linear 
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where , ~ , b ~ ) ~  is a two-component "spinor" of solu- 
tions to system (5). The general Ablowitz-Kaup-Newell- 
Segur (AKNS) scheme2' leads to Eqs. (3) if we take the 
following quantities as the coefficients of the system (5)17: 

F =  - A S 3 ,  G =  ( i a +  A)S+ , H =  ( i a -  A)S- , (6) 

where the parameter a is related to A by 

and A is an arbitrary spectral parameter. 
The system (5) has two basis solutions and 

SO that we can construct a "vector" out of them 
with the spherical components 

i 
f= -  y (*1(~2+*2(Pl), g=*l(Pl, h=-*2(P2. (9) 

which satisfy the linear systems 

It is easy to verify that the length of the vector (9) 

does not depend on r or 6. Periodic solutions are identified 
by the condition that P(A) be a polynomia12'-24 in A. For our 
purposes it is sufficient to know the simplest nontrivial 
single-phase solution, where P(A) is a fourth-degree polyno- 
mial 

Then from the system (10) with coefficients (6), (7) we find 
easily that the functions (9) have the form 

f = s 3 A 2 -  f l A +  f2 ,  g=( ia+A)S+(X-p) ,  

h= ( i a -  A)S-(A-p*), (13) 

where f l ,  f2 ,  p ,  and p* by virtue of (1 l), (12) must satisfy 

2 f l s 3 + ( 1 - ~ ; ) ( p + p * ) = ~ l ,  

and, in addition, 

Setting the spectral parameter A equal to ,u in Eqs. (10) for g ,  
we obtain the equation of motion for p: 

Let us rewrite Eq. (16) in the form 

R +  - 
R- 

- - - - R3 2 =- -  
(p+A/2)S+  ( p *  +A/2)S- 2 f ( -  A/2) V ' 

(18) 

where V, as we will now verify, is the nonlinear phase ve- 
locity of the wave. From (18), 

Substituting A= -A12 into (1 I), and taking into account (8) 
and (13), we obtain 

so that from the previous equation, 

Note that this kind of relation is very general in character: 
the phase velocity of the nonlinear wave is determined by the 
value of the polynomial that specifies this wave at the point 
where the coefficients of the Lax pair have a pole as a func- 
tion of the spectral parameter A. (This question is discussed 
in more detail in the Appendix.) 

Thus, as follows from (17)-(19), the parameter p de- 
pends only on the phase W: 

The last equation of system (3) can also be transformed with 
the help of (15) and (16): 

i.e., S3 also depends only on the phase W. 
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As W varies, the parameter ,u describes some curve in 
the complex plane; the initial data for Eq. (20) should be 
chosen such that (1 1) is satisfied. Therefore, it is convenient 
to introduce a coordinate on this curve in such a way that 
(1 1) is satisfied automatically (see Ref. 9). From the system 
of Eqs. (14) it follows that it is convenient to take the com- 
ponent S3 as the coordinate that parametrizes the points of 
the curve along which ,u moves, so that ,u is expressed as a 
function of S3. The system (14) coincides, save for changes 
in notation, with the analogous system of Ref. 11, where 
periodic waves were studied in a magnet with uniaxial an- 
isotropy, so that we can make use of the solutions found 
there. Then for the coefficients f l  and f 2  we have 

where 
4 

p2(a2)=  n (a2+X?). 
i =  1 

The sign off, that must be chosen in extracting the root from 
(21) is determined by the condition for a stable solution, 
S3 = R3 = - 1 (see Ref. 17). As we will confirm, we obtain 
the required stable solution when the negative sign is chosen, 
i.e.,fl = - fl. 

The equation of motion (3) for S+ gives, instead of (IS), 
and (221, 

where g+ depends only on the phase W and is determined by 
the equation 

The parameter ,u can be expressed in terms of S3 (see 
Ref. 11) as follows: 

FIG. 1 .  Dependence of the zeroes of the resolvent vi ( i =  1,2,3,4) on the 
parameter o2 (which, according to the definition (8) can be either positive or 
negative). The figure is schematic because the scale of the curves is changed 
in order that these zeroes might be plotted on a single figure. The symmetry 
of the curves with respect to the replacement d-- t -d(u,  ,v,) or relative to 
the coordinate origin (v, ,v4) is due to the fact that the chosen values of Xi lie 
on bisectrices of the first and fourth quadrants: A ,  = A: = 1 + i and A, 
= A: = 2 + 2i. For other values of Xi the curves are deformed; however, 
their ordering with respect to magnitude (see (31) and the text) is the same 
as that shown in the figure. 

where 

v2 and v3 are obtained from v, by exchanging the indices 
36-34 and 3 ~ 2  respectively, while 

From Eqs. (15) and (25) we find an equation for S3: 

where The variable S3 is real, and by virtue of (4) it can oscillate 

s3-s1a2 between the two zeroes of the resolvent, which lie between 
R(v)=  v4+ v 2 - 7 S2 v2+ v - 1 and 1. We can verify that the zeroes vi are real if the 

flu2 a zeroes Xi of the polynomial P(X) separate into two complex- 

4s2-4f;-s:-4a2 conjugate pairs + 
4a2  (26) X , = a + i y ,  h2=P+iS ,  X3=a- iy ,  A4=P-is.  

is a polynomial that is the algebraic resolvent of the original (30) 

polynomial P(X). Its zeroes vi ( i= 1,2,3,4) are related to the As an example, Fig. 1 shows schematically the dependence 
zeroes Xi (i= 1,2,3,4) of the polynomial P(X) by rather coni- of the zeroes on 2 (if the plots were truly to scale, v, and v2 
plicated symmetric expressions obtained in Ref. 11: woultl be too small) for X,=l+i ,  X2=2+2i. As we see, 
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when d > 0  the zeroes of the resolvent are ordered according 
to the inequalities ul< - 1 <v2< u3< 1 < v4, and S3 oscillates 
within the interval 

- 1 < u2<s3< v3< 1 ,  (3 I 1  

where R ( S 3 ) 2 0 .  For 2<0 we have u4<v1<- 1<u2<v3<1 
and S3 oscillates within the same interval (31), where now 
R(S3)aO; however, the radicand in (29) remains positive. 

Equations (20) and (29) enable us to compute the period 
of oscillations T of the nonlinear wave by two methods: 

1 d v  

which leads to equality of the parameters of the elliptic inte- 
grals in terms of which T is expressed in both cases: 

m =  
( ~ 2 -  ~ 3 ) ( ~ 1 -  ~ 4 )  - (h l -k3) (h2-h4)  

( u 1 - u 3 ) ( ~ 2 - u 4 )  - (h1-X4)(A2-h3) ' 
(32) 

and to the useful relations 

u 2 ( u 1 -  v 3 ) ( v 2 - v 4 ) = ( h I - ~ 4 ) ( k 3 - h 2 )  

= ( a - ~ ) ~ + ( y +  8)2, 

u 2 ( v 1  - v4)(u2-  v 3 ) = ( k I  - h 3 ) ( k 4 - h 2 ) =  4 y 8 .  (33) 

The periodic solution to Eq. (29) yields the required ex- 
pression for S3:  

where the initial value of the phase has been set equal to @(p)=e3+u2(v l -  v 3 ) ( ~ 2 -  ~ 3 1 ,  
zero. 

Let us now compute S+ . Substituting (25) and (29) into u 2 ( v ~ - v 3 ) ( v 2 - v 3 ) ( 1 - ~ 4 )  
(24), we find @(K)=e3+ 1 - Vg 

7 

The integration can be carried out with the help of the ex- 
In order to calculate the integral, it is now convenient to pression 
transform to the Weiers~ass elliptic functions 

el -e3 
loW ,":;;I;::; dW 

sn2(Ju2( u1 - u3)(u2-  u4)w,m)= 
@ ( W )  - e3 ' 

=W+ 
U ( K -  W )  

where 

e l =  - s 2 / 3 - u 2 ( u 1 ~ 4 + v 2 ~ 3 ) ,  

e2= - s 2 / 3 - u 2 ( v l v 3 + ~ 2 ~ 4 ) ,  

The integrand in (35) can be written in the form 

where 5 ( ~ )  and U(K) are Weierstrass functions. As a result, 
we find after some simple calculations 

Equations (34) and (38) yield expressions for the vector S in 
p, K,  and where the parameters K are determined by the the general periodic solution to the SRS equations. The com- 
expressions ponents of R can be obtained by using Eq. (18); in particular, 
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(39) 

Let us discuss the soliton limit of these solutions as the 
wavelength goes to infinity, i.e., when 

A I = h 2 = a + i y ,  h3=X4=a-iy.  

In this case s ,=4a,  s 3 = 4 u ( d + ~ ) ,  f ,=-2a,  and Eq. (39) 
yields 

where the velocity of the soliton is now 

The general solutions (27) and (28) for the zeroes of the 
resolvent lead to 

Taking into account (see (35)) that 

and 

we find that 1 + v3 and 1 + v4 are the roots of a simple qua- 
dratic equation, which leads to the expressions 

in agreement with (42). 
Expression (34) in the soliton limit becomes 

which yields 

If d > 0 ,  we can introduce a parameter 8 such that 

tanh 2 8 = 
2 y u  

a2+ y2+u2 '  

and the soliton solution then takes the form 

2Y sinh 28 
I +S3=V(1 +R3)=- 

a cosh(4 yW) +cosh 28' (46) 

For 2= -(p2 we introduce the parameter 6 such that 

tan 2 6 =  
~ V Y  

a 2 +  y2- q 2 '  

so that 

2Y sin 2 6  
l+S3=V(1+R3)=-  

cp cosh(4 yW) + cos 2 6  ' (48) 

Expressions (45)-(48) coincide (up to notation) with the 
single-soliton solution of ~ t eude l . ' ~  

As yet another limiting case we discuss a wave with 
6=0. The character of the solution in this case depends on 
the parameter 2 ,  which characterizes the dynamic Stark ef- 
fect (see (8)). Analytically it is easiest to investigate this 
function by setting a=O, so that h l  = A; = iy ,  X2=h4=3. 
Then the zeroes of the resolvent are given by simple expres- 
sions. For d>$ we have 

for -p2<2<$, 

v1= 
p m + r m  

ff2 
, v2= v3=0, 

and for d<-p2,  

As we see, when 2>-@ the zeroes v2 and v3 coincide, 
which after substitution into the general solution leads to a 
plane wave with constant amplitude. Here we write out the 
solution (49a) for 2 > $ :  

However, for $<-p2 zeroes vl and v4 coincide, so that 
although the parameter of the elliptic functions vanishes, the 
solution still remains a periodic wave with variable ampli- 
tude: 

where we have denoted the negative quantity $ by - J ( J  
>0) to avoid misunderstanding. For a + O  the character of 
the solutions remains as before. This is confirmetl I ly Fig. 2, 
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I . , . . , . , . .  

FIG. 2. Dependence of zeroes of the resolvent vi ( i= 1,2,3,4) on the param- 
eter 2 for A ,  = A T  = 1 + i and A,=A,=2. Thecurves are deformed in a way 
analogous to the CUNeS in Fig. 1 as we go from S=2 to S=O. 

which shows the dependence of the zeroes of the resolvent 
on c? for a= y= 1, P=2, S=O. These curves may be viewed 
as distortions of the curves in Fig. 1 as we go from S=2 to 
6=0. As we see, the zeroes v2 and v3 coincide once more for 
d > - 4  (i.e., @=4), while for d < - 4  the zeroes vl and v4 
coincide. In the first range of 2, the periodic solutions be- 
come a plane wave with constant amplitude, while in the 
second case they become a periodic solution in which the 
elliptic functions in the limit m =O become elementary func- 
tions. It is important that the parameters of the wave in both 
cases are expressed in terms of the spectrum X i ,  whose com- 
plex nature leads to modulation instability of these solutions. 
This question will be discussed in the next section. 

3. CREATION OF SOLITONS AT THE PULSE LEADING EDGE 

The modulation of the periodic solutions we have found 
is described by Whitham's theory: which leads, as is well 
known, to a diagonal form of the Whitham equations for the 
Riemann invariants X i  (i = 1,2,3,4). Their complex nature im- 
plies modulation instability of the solution. In the special 
case of solution (50), we can confirm this directly by limiting 
ourselves to the linear approximation. In this case, let us 
modulate solution (50): 

FIG. 3. Trajectory of  the Riemann invariants A, and h, in the coniplcx A 
plane corresponding to the self-similar solution to the problem of soliton 
generation at the pulse leading edge. 

I . .  .. 

Substituting these expressions into system (3), we linearize 
the latter with respect to the amplitudes s,sr , r , r ,  . Assum- 
ing these amplitudes are small, we obtain a linear homoge- 
neous algebraic system of equations for them.- The require- 
ment that the determinant of this system vanish leads to the 
dispersion relation for the modulation waves, which after 
some rather lengthy calculations can be written in the form 

As we see, solution (50) is unstable against modulations with 
frequency R<2y, which is completely analogous to the case 
of the nonlinear Schrodinger equation: the uniaxial magnet: 
the AB system? and the STW equatiom6 

The modulation instability of these waves leads to 
growth of any perturbation with harmonics such that R<2y. 
In particular, the leading edge of the pulse is transformed 
into an inhomogeneously broadened region, one end of 
which corresponds to solitons and the other end to modula- 
tion waves traveling along the pulse with a certain group 
velocity. The entire region can be viewed as the modulated 
nonlinear periodic wave we found in the previous section, 
with parameters hi ( i =  1,2,3,4) that are slow functions of the 
spatial coordinates and time. Averaging over the fast oscil- 
lations of the wave leads to the Whitham equations for X i ,  
which turn out to be Riemann invariants of these equations. 
Derivation of the Whitham equations is completely analo- 

FIG. 4. Dependence of the parameter of the elliptic functions m on (=[IT 
for a= y=l ,  A=0.4. The minimum vclocity m+l corresponds to the soli- 
ton velocity (64) (v,=9.76 for the parameter values chosen) and the maxi- 
mum velocity nr-+O corresponds to the group velocity u,=dQldK for 
propagation of small modulations (u,=85.15 in our case). 
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gous to the derivation used in Refs. 5, 7, 12, and 26 (see, 
also, Refs. 13, 14). Therefore, we will state only the result 
here. The Whitham equations for Xi have the diagonal form 

where the Whitham group velocities vi are given by 

the period T is determined from the expression 

K(m) is the complete elliptic integral of the first kind, and V 
is defined in (38). (Note that these equations were obtained 
from the STW equations by replacing A by -N2, which 
corresponds to changing the position of the Lax-pair singu- 
larities in the complex A plane; see also the Appendix.) 

As an application of these equations, let us consider the 
evolution of a step-function pulse at t =0: 

where v3 corresponds to the values X I  = Xi(: = a + i y, 
A2=A,=P, i.e., the limit of zero modulation (S=O) of a plane 

wave (we assume that 2 is sufficiently small in absolute 
value that for S=O, the zeroes v2 and v3 of the resolvent 
coincide). Since in this problem there is no characteristic 
length, all the parameters Xi depend only on the self-similar 
variable 5=5/r. By virtue of the complex conjugation rela- 
tions X = A f and A, = A; , it is sufficient to consider only 
two of the Whitham equations (52), which in our self-similar 
case take the form 

As we will verify, the initial conditions (55) correspond to 
the solution A, =const, V2=5=07, Or 

2 i q a - P + i ( y -  6)]K(rn) 
X 

[a- p+ i (y -  S)]K(rn) - [ a - p + i (  y+ 6)]E(rn) 

where and E(m) is the complete elliptic integral of the sec- 
ond kind. Expanding the real and imaginary parts in (58), we 
obtain 

where, together with a=const, y=const, and (32), we specify the dependence of /3 and Son [=@T implicitly. 
As the authors of Ref. 6 have already noted, in the limit &O Eqs. (59) and (60) become the solution7 of the AB system, 

while for S t m  we recover, after suitable transformation of the space and time variables, the solution for the focusing 
nonuniform Schrodinger equation and for one-dimensional 

It is convenient to express p and 6 in this solution as functions of rn (see Refs. 3, 7, and 8): 

where 

The trajectories of the Riemann invariants A2 and X4 are 
(62) shown in Fig. 3. for values of the parameters a= I ,  y= I ,  

A=0.4. The pair of complex-conjugate Riemann invariants 
starts at A2=A4=2.57 (for m=O, 6=0) on the real axis, after 
which they move in the complex A plane as a function of m 
and merge with A,= l + i  and A,= I-i respectively when 

(2-m)E(rn)- 2( 1 - m ) K ( ~ n )  rn= 1. Substituting these expressions for /3 and 6 into (60) 
A(m)= 

n12~(nr) (63) gives us the dependence of l=@r on rn. An example of such 
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I . .  

0.6 w 1 . O  m 

FIG. 5. Dependence of the zeroes v, , v2, v, of the resolvent on m (the zero 
v,> 1 is much higher up, and is not shown in the figure). Merging with the 
plane wave and with the soliton front corresponds to merging of the pair of 
zeroes v2 and v, at the boundary with the plane wave, and the pair v, and v, 
at the boundary with the region S,=- 1. 

functions, Fig. 4, shows the behavior for our values of a and 
y. Let us investigate this region of rapid oscillations at both 
of its ends. As m -+ 1 we have 

so that according to (60) this point moves with the soliton 
velocity 

If m-+O, then /3 and S reduce to the values 

and (60) takes the form 

In this limit of small modulation, the Whitham theory should 
reproduce the linear approximation, i.e., u should coincide 
with the corresponding group velocity of the modulation 
waves. From the general periodic solution (34), (38) we 
know that the phase of the modulation wave when S=O, 
taking (33) into account, has the form 

i.e., the frequency R and wave number K are expressed in 
terms of the parameters a, p and y as follows: 

It is easy to verify that in the special case a=O these values 
of R and K satisfy the dispersion relation (51). From (66) we 
can obtain the dispersion relation for the modulation waves: 

which generalizes (5 1) to the case of nonzero a. Calculation 
of the group velocity v g =  ( d K l d R ) - '  for values of $2 from 
(66), leads, as we might expect, to the solution (65) of the 
Whitham equations in the limit of weak modulation. We can 
show that v,> us for all values of a and y. The dependence 
of the zeroes v, , v2, v3, on m in the region of oscillations is 
shown in Fig. 5. For m =O (the end with the plane wave) the 
zeroes v2 and v3 merge, while for m= 1 (the boundary with 
the region where S3= - 1) zeroes vl and v2 merge. The de- 
gree to which this figure agrees with the behavior of the real 
Riemann invariants in problems of the Gurevich-Pitaevskii 
type is especially n o t e w ~ r t h ~ . ~ . * ~ - ~ ~  In the very strong dy- 
namic Stark effect, when 62<-@, where /3 is the point of 
origin of the pair of complex-conjugate Riemann invariants 
X2 and X, for prescribed values of the parameters a, y, (3, 
the modulated wave for m =O matches the limiting periodic 
solution discussed at the end of the previous section of the 
article. 

As we see, a sharp front evolves into a broadening re- 
gion of field oscillations. The slow edge of this region moves 
with the soliton velocity and consists of a sequence of soli- 
tons. The fast edge propagates along the pulse with the group 
velocity of the weak modulation wave. The entire region can 
be described as a modulated nonlinear periodic SRS wave. In 
Fig. 6 we show the region of oscillations for two values of 
the "time" T. The transformation to physical time is accom- 
plished by using Eq. (2). In these figures we see clearly the 
process of soliton creation at the trailing edge of a long 

4 
FIG. 6. Dependence of the variable S,, 
which describes the field, on the coordinate 
[ at two time points: a) r-2,  b) 7=4. The 
calculations were made using Eq. (34), 
where a= 1, y= I ,  p and 6 depend on the 
parameter m according to (61) and (62) and 
the dependence of ( on m is dete~mined by 
Eq. (60). 
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pulse. Note the relative narrowness of the region of small 
modulation. We expect that in experiments with pulses of 
finite width, this region will disappear after reaching the 
leading edge of the pulse, so that the pulse will be trans- 
formed into a finite sequence of so~itons.'.~ 

4. CONCLUSION 

The case we have discussed in this paper is in 
some sense a generalization of problems discussed 
previously .3-7'9-12 In fact, the resolvent, which appears in 
our description of the periodic solution, depends on the pa- 
rameter A in the same way as for a uniaxial ferromagnet.ll 
As A 4 0  we return to the simple cubic resolvent of the iso- 
tropic Heisenberg model? which is gauge-equivalent to the 
nonlinear Schrodinger equationg with a different form of cu- 
bic resolvent, which also arises in the theory of STW.'~ On 
the other hand, the Whitham equations that describe the 
modulation of SRS waves coincide in essence with the cor- 
responding equations for the STW case, which is due to the 
identity of the pole behavior of the coefficients of the Lax 
pair (see the Appendix). As A+a these Whitham equations 
recover the modulation theory of periodic solutions of the 
nonlinear Schrodinger equation, while for A d 0  they recover 
the modulation theory for the AB system.7 Thus, the theory 
set forth in this paper provides the machinery for solving a 
very wide class of problems described by integrable equa- 
tions in the AKNS scheme.20 

I am grateful to F. Zhinovar, A. L. Chernyakov, and H. 
Steudel for useful discussions. 

5. APPENDIX 

As was noted above, Eq. (19) for the phase velocity is 
general in character. Its importance stems from the fact that 
expressions (53) for the Whitham velocities also hold in the 
general case, since in essence they express the conservation 
of the "wave numbers" of the modulated wave.30731 There- 
fore, if we know how to express the phase velocity V of the 
nonlinear wave in terms of the Riemann invariants Xi, we 
immediately obtain the Whitham modulation equations. Here 
we show how the derivation of Eq. (19) can be generalized 
to a wide class of equations described by the AKNS scheme. 

Let the coefficients in A,B,C in the AKNS problem (5) 
have a pole as a function of X at the point p, i.e., 

where we write out only the singular part of A(X) required 
here. We assume that the solution of Eq. (10) has the form 

and f(X) is a second-order polynomial in A. Substituting 
(A.2) into (10) for X = p  gives an equation for ,u(x,t) (com- 
pare with (17)): 

and the same substitution for X=p* leads to analogous equa- 
tions for p*(x, t). Both p(x, t) and ,u*(x,t) depend only on 
the variable x-  Vt, so that the phase velocity we are looking 
for is 

Cancellation of the singular terms in (10) leads to three re- 
lations, two of which can be written in the form 

and the third is a consequence of them. From (A.4) and (AS) 
we find 

Now we substitute (A.2) into (11) and set X=p: 

This equation, together with (AS), gives 

so that we are led to the required expression for the phase 
velocity 

V = Q ~ ,  (A7) 

where 

Although the expression for Q appears rather complicated, in 
practice it is easily calculated for each specific case. In par- 
ticular, we verify quickly that for the case of SRS, when 
p= -A/2, we have Q =4, which returns us to Eq. (19). Tak- 
ing into account that the zeroes Xi of the polynomial P(X) are 
Riemann invariants (see, e.g., Ref. 26), we are led by a very 
simple path back to the Whitham equations. 

"1n recent A. A. Zabolotskii investigated an analogous problem. 
However, the special periodic solutions he found for the SRS equations 
were in an ineffective form, which was inadequate to describe the pro- 
cesses of soliton creation within the framework of the SRS modulation 
theory. 
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