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A study is made of acoustooptical interaction in a strongly nonlinear regime. It is shown that the 
presence of multiple wave reflection, which plays the role of delayed feedback, gives rise 
in the system to soliton dynamics that lead to the formation of spatially inhomogeneous structures 
and to periodic fluctuations of the amplitudes at the output. An increase in supercriticality 
leads to the generation of an appreciable nonsoliton part and, accordingly, to the formation of 
regions of wide-band irregular oscillations. It is found that modulation of the pump wave 
amplitude plays an active role in the formation of chaotic regimes. O 1996 American Institute 
of Physics. [S1063-7761(96)00503-61 

1. INTRODUCTION 

In recent years, effects associated with the phenomenon 
of self-organization have attracted much attention in the 
study of nonlinear wave systems.'-4 The main interest at- 
taches to systems in which both coherent and chaotic re- 
gimes can arise from variation of external parameters as a 
result of space-time evolution. A typical situation occurs in 
the investigation of the transition of a nonlinear medium that 
is above the instability threshold to different spatially inho- 
mogeneous states. In the general case, the controlling param- 
eter changes in time (or in space) as a result of external 
factors. If as a result the range of its values passes through 
the critical zone, the external influences begin to play an 
active role, since the dynamics of the system at different 
instants of time may become either regular or chaotic. 

The study in Refs. 3 and 4 of a single-mode laser with 
delayed feedback revealed the presence of complicated dy- 
namics that lead to the formation of spatial structures of 
phase defects. An output signal taking the form of regular 
oscillations with constant amplitude and constant phase was 
studied in the case of subcritical conditions. However, in the 
above-threshold regime losses of phase coherence in the os- 
cillations are observed, their number increasing rapidly with 
increasing supercriticality. 

In the analysis of this phenomenon, the time series of the 
output channel (one-dimensional) is transformed by means 
of the well-known procedure to a quasi-space-time represen- 
tation (two-dimensional). Analysis of this representation led 
to conclusions about the details of the space-time dynamics 
in the system. 

At the same time, in interpreting the observed depen- 
dences, the authors of Ref. 3, using the criticality of the 
phenomenon, invoked the spatially homogeneous version of 
the Ginzburg-Landau model augmented with a term corre- 
sponding to delayed feedback. However, it is clear that such 
an approach does not always give sufficient accuracy. 

First, it can at best give only qualitative agreement, since 
in such a case the parameters of the model are not readily 
related to the physical parameters of an experiment. Second, 
the actual space-time dynamics of the nonlinear process, the 
details of which determine its fundamental properties as a 

whole, here escape consideration. Third, it is necessary to 
investigate the possibility of such a phenomenon in the 
framework of a model of the resonant interaction of light 
with matter, which is closer to the physics of the 
phenomenon.5 

We note that at the present time the properties of 
bounded systems with allowance for soliton dynamics, wave 
absorption, and delayed feedback have not been sufficiently 
~tudied. ' ,~ Moreover, it is important to investigate not only a 
model problem but also a very simple system that possesses 
the indicated properties and admits experimental realization. 

In this paper, we have investigated nonlinear acoustoop- 
tical interaction in a crystal in the soliton regime with allow- 
ance for reflection from the boundaries, which plays the role 
of delayed feedback. We show that a steady state is estab- 
lished in the system at low supercriticalities. However, above 
a certain threshold a new dynamical state arises that does not 
evolve to any steady-state distribution. When the threshold is 
slightly exceeded, the generated solitons form a dynamical 
structure that gives rise to periodic oscillations at the output. 
Farther above the threshold, the soliton trajectories are dis- 
torted, and the periodic regime becomes more complicated. 
A further increase of the supercriticality leads to the occur- 
rence of dynamical chaos. However, if the parameters of the 
system, for example the modulation of the pump wave, vary 
in time, then in the interaction process transitions between 
these regimes are possible. 

2. BASIC EQUATIONS 

We consider parallel acoustooptical interaction in an op- 
tically anisotropic crystal of the type of LiNbO,. Suppose 
that along the z axis ordinary and extraordinary electromag- 
netic waves propagate and interact with a longitudinal acous- 
tic wave at the difference frequency fl= w,  - w2, K = k , - k2. 
It was shown in Ref. 6 that a soliton regime can arise in the 
presence of such an interaction in a partially unbounded 
crystal. In Ref. 7, localization of a coupled optical compo- 
nent of acoustooptical solitons was observed. 

The equations of motion consist of Maxwell's equations 
and the equations of elasticity theory. 

We consider a bounded crystal OF length L with coeffi- 
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cients of reflection of sound R,,, at z=0,  L, respectively. 
For simplicity, we shall in what follows neglect the reflection 
and absorption of the electromagnetic waves, which is weak 
in the transparency region. The system of equations obtained 
by the usual method for slowly varying wave amplitudes is 
augmented by the equation for the backward (reflected) 
acoustic wave, which by virtue of the conditions of mode 
locking does not interact with the field. The dynamics of the 
process is studied on the acoustic time scale, and therefore 
we ignore the time derivatives in the equations for the elec- 
tromagnetic amplitudes in accordance with the parameter 
SIC- 1, where s and c are the speed of sound and 
light in the crystal. In what follows, we shall use the dimen- 
sionless form of the equations. As space and time scales, we 
choose 1, = and l,ls, respectively, where Eo is 
the amplitude of the pump wave at the input, and a depends 
only on the parameters of the material. We also use a dimen- 
sionless coordinate and dimensionless time: C=zll, and 
7=tsIln, l=LIl,. 

The equations of motion for the dimensionless ampli- 
tudes (A, and A, are the amplitudes of the pump and idler 
electromagnetic waves, respectively, and A, and A; are the 
amplitudes of the direct and reflected acoustic waves, respec- 
tively) have the form 

with boundary and initial conditions 

where f 1 ,2 ,3(~)  are the input signals. From the final equation 
in (I), we can find the amplitude of the reverse acoustic wave 
in the form 

where y= TI,, in which r is the coefficient of absorption of 
sound. 

With allowance for the relations A:+A; = g2(r) 
=f;(r)+f$(r), A1=g(r)  cos 9, A2=g(7)sin cp, A3 
=dq ld l ,  the order of the system (1) can be reduced. After 
elimination of the amplitude A; of the reverse wave, the 
closed system of equations for cp and A3, and also the bound- 
ary and initial conditions for them take the fonn 

p=Io'A3(~,7)d[+ tan-' - (;::I* 
where A~(o ,T)= f 3 ( 7 ) + ~ ,  exp(- yl)A3(1,r-1), A3([,0) 
=A3,([), R~=R,R ,S  1. It is important that the boundary 
modulation of the electromagnetic waves has directly entered 
Eq. (2) as a variable coefficient of the nonlinearity. This 
opens up the possibility of controlling the regimes of the 
nonlinear system. 

Note that by the substitution 

we can reduce the system (2) to an equation of sine-Gordon 
type: 

FlG. 1 .  Dependence o f  the amplitude A , ( 1 , ~ )  at 
the output on the time for y=0.3, R2=0.022 (a), 
y=0.3, R2=0.95 (b), y=0.2, ~ ' = 0 . 9 5  (c), 
y=0.105, R2=0.95 (d), and 1= 10. 
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FIG. 2. Different regimes of the space-time dy- 
namics of A3(r ,7 )  for y=0.3, R2=0.022 (a), 
y=0.3, ~ ' = 0 . 9 5  (b), y=0.2, R2=0.95 (c ) ,  
y=0.105, ~ ' = 0 . 9 5  (d), y=0.077, R2=0.95 (e), 
y=0.05, R2= 0.95 (0; 1 = 10. 

and thus interpret the stable excitations in the medium as 
solitons. 

However, in a bounded medium such a transition does 
not lead to a simplification, since the boundary conditions in 
such a case must be satisfied at traveling boundaries. More- 
over, the presence of absorption and nonideality of the re- 
flection means that we cannot exploit the properties associ- 
ated with the complete integrability of this equation.598 
Nevertheless, in the case of weak absorption, y < l ,  we 
note the single-soliton solution of (2)-(3) of the form 
A3=b sech u, which reflects the specific nature of soliton 
formation. In the unmodulated case (g2 = 1 ), we obtain for 
the soliton velocity the expression I - llb2, from which it 
follows that at small amplitudes (I bl< 1) the peak of the 
soliton moves to the left (this is due to the displacement of 
the depletion front of the pump wave), while at larger am- 
plitudes (b> 1 ) the soliton moves to the right. For Ib 1 = 1, 
the soliton will be decelerated until its amplitude is changed 
as a result of the evolution. Therefore, if a linear pulse is 
trapped into the soliton regime, the corresponding segment 
of its trajectory in the 57 plane will have a characteristic 
S shape. We found such trajectories in all dynamical re- 
gimes, but it was only in the regular cases that these seg- 
ments formed structures. 

3. HIGH-FREQUENCY PUMPING 

We consider first the case when the powerful wave has 
the higher frequency, the relations f, ( 7) = I and f2(7) = 0 

holding (the wave at the frequency o+ is generated in the 
course of the interaction). In this case, the system (2) ac- 
quires the form 

From (4), we determine the conditions of instability, 
making the assumption that 1 ~ ~ 1  and I q ~ l  are much less than 
unity and proportional to exp[i(wr- kl)]. After simple cal- 
culations, we can write the threshold condition in the form 
y < yth = -0.75P + 0.25 Im a, where P= -1n R ~ / z > o ,  
~ = ( 2 n . r r l l + i ~ ) ~ - 8 ,  n=0,1,2, ... For small P e l ,  we 
must have t/21/.rr>n. The minimum threshold is possessed 
by the mode with n= 0 (aperiodic instability), and when 
P e l  we have ylhW0.707 for it. For the general case when 
n=O, we write the threshold condition in the dimensional 
form 

It follows from (5) in particular that the threshold will 
increase with decreasing reflection or decreasing length of 
the region. Note that for RoRl<O (antisymmetric reflection, 
i.e., phase shift through .rr upon reflection by one of the 
boundaries) it is necessary to make the substitution n j n  
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FIG. 3. Space-time trajectories of defects [the 
zeros of A3((,7)] in the dynamical regime for 
different su~ercriticalities: a) ~ 0 . 3 ;  b) y=0.2; 

+ 0.5 in the expressions given above. Then for n = 0 we have 
the condition 1 > TI&, which determines the minimum 
length 1 of the region. 

For y< Y , ~ ,  the perturbations grow exponentially, and 
the system enters the nonlinear regime. Since in the general 
case it is very difficult to obtain an analytic solution of the 
nonlinear system (4), we made a computer experiment, solv- 
ing this system numerically for various parameters. This 
made it possible to investigate in a unified framework all 
stages of the interaction from the initial instability to the 
developed nonlinear regime. For the calculations, we used 
f3( r )  =f30 exp[-(7-2)'], f30= 0.05, A30= 0 for various I,  
R', and values of the supercriticality parameter y from 0.7 to 

0.001. The calculation was made using a high-order scheme, 
and the accuracy was tested by reducing the mesh step. The 
results are presented graphically. 

We consider first the unmodulated case f = 1. 
As the calculation showed, the system exhibits very var- 

ied behavior depending on the values of y, the length I ,  and 
the reflection coefficients R' (the strength of the feedback). 
Since the small boundary or initial disturbance was taken to 
be quite localized, under subcritical conditions with y> y,h 
the system relaxes after a certain transient time to the trivial 
solution A , =  1 ,  A2,3=0. 

However, as the supercriticality is changed ( y< yth) ,  
this solution is found to be unstable, and the system goes 

FIG. 4. The Fourier spectrum (F is the Fourier 
amplitude) and the autocorrelation function (K, 
dashed curve) of A,(I.r) as a function of the >. . , 
number of the time sample for y =0.3 (a), 
y =0.2 (b), and y =O. 105 (c) for an unmodu- 
lated pump and y =0.2 for a modulated pump 
(d); R'= 0.95, 1 = 10. 

0 50 100 150 200 0 50 100 150 200 
n 
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FIG. 5. Time-averaged distribution N of de- 
fects over the length as a function of the 
supercriticality y for R ~ =  0.95, 1 = 10. 

over into a nonlinear stationary or dynamical regime of gen- 
eration of oscillations. At the same time, ~ ( 1 ) - ~ 1 2 ,  and, 
therefore, it is no longer possible to ignore the nonlinearity 
of the interaction. Typical pictures of the space-time dynam- 
ics are presented in Figs. 1 and 2. 

Figures la  and 2a show the evolution of A3 for y=0.3 
when 1= 10 and R2=0.22 (after the transient). In this case, 
stationary amplitudes are established in the system in an os- 
cillatory manner. During the transient, the solitons that have 
been formed leave the region but then are decelerated more 
and more until they come to a stop near the boundary. Such 
stationary states can also be found from (4) by setting 
dA31dr=0, as a result of which we obtain the equation of a 
mathematical pendulum with the subsidiary constraint 

However, the corresponding solutions are stable only for 
small R2. With increasing R2, there develops in the system a 
dynamical regime in which it is not possible to ignore the 
derivative dA31d7. Such a situation has a general nature. 

Figures lb  and 2b show the space-time dynamics for 
y=0.3. In the initial stage, we see here the generation of a 
soliton. As the amplitude increases, the pulse is decelerated, 

acquires a stationary form, and then rapidly leaves the re- 
gion. However, after the multiply-reflected part has arrived, 
the conditions that lead to the formation of a soliton are 
again fulfilled. Nonsoliton additions that detach themselves 
from the pulse are the first that return to the region. Since 
this part of the excitation is very nonstationary, the regime in 
which the contribution of these corrections is large acquires 
irregular features. 

In the case of weak reflection, the arriving pulses have a 
phase-matching effect on the formation of the solitons. How- 
ever, with increasing supercriticality and amplitude of the 
multiply reflected nonsoliton additions, the process of forma- 
tion becomes more and more complicated. The fluctuations 
at the output acquire a complicated time dependence. 

During the space-time evolution, and also as a result of 
the multiple reflection, which plays the role of a delayed 
feedback, the form of the excitations changes appreciably. It 
is very difficult to distinguish between amplitude and phase 
distortions of the waves. However, having in mind a com- 
parison of our data with experiment,3 we shall characterize 
the phase defects by the neighborhood of the zeros of the 
amplitude A3(5,7)=0 (at the given points, the phase 

FIG. 6. Space-time dynamics of A , ( ~ , T )  in 
the case of a large length of the region for 
y=0.1, ~ ~ = 0 . 0 0 1 ,  1=40. 
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FIG. 7. Phase trajectories in the 
I I p ( l , ~ ) , ~ 3 ( l , ~ ) (  plane for y =0.3 (a), y =0.2 
(b), and y =0.105 (c) for unmodulated pumping 
and y=0.2 for modulated pumping (d), I =  10. 

changes abruptly by m). As is shown in Ref. 3, these phase 
defects are manifested precisely in the region of small am- 
plitudes. In recent theoretical work, such points have been 
associated with space-time defects of the wave field, reflect- 
ing the specific features of dynamical processes in nonlinear 
media. 

Depending on the supercriticality, our calculations re- 
vealed the existence of richer arrangements of such defects, 
both structured (as in Ref. 3) and irregular. The disposition 
of the maxima and minima of A 3 ( 5 r )  had a similar structure. 

The calculation shows that in the case of low supercriti- 
cality, when at the output of the system periodic nearly rect- 
angular oscillations are established, the number of defects is 
small. With decreasing y, the number of defects increases, 
and at y=0.3 they are formed into a clearly distinguishable 
stationary structure (Fig. 3a). 

However, a further decrease of y to 0.2 leads to an 
abrupt rearrangement of the picture: the given structure is 
destroyed (Fig. 2b), and the oscillations at the output become 
irregular (Fig. lc). With a further decrease (y  =0.105), a 
new more complicated structure takes shape in the system 

(Fig. 3c). The oscillations at the output become quasiperiodic 
but are interrupted by random surges (Fig. Id). 

Further advance into the above-threshold region leads to 
the formation of an ever more complicated network of struc- 
tures, the rearrangement of which is accompanied by chaotic 
oscillations. At the same time, the number of defects in- 
creases, while the distance between them and, hence, the 
space-time scale of the structures, decreases. The system 
becomes very sensitive to a change in y. Note that with 
allowance for the direction of the axes Figs. 3a and 3c are 
similar to the corresponding graphs of Ref. 3. 

Since complicated oscillations accompanying the rear- 
rangement of the structures could also arise from a series of 
oscillations with incommensurate frequencies, we also ana- 
lyzed the spectrum. Figure 4 shows the Fourier spectra and 
autocorrelation functions for A (1, r )  for different y. It can 
be seen that in the ordered phase the oscillations are narrow- 
band (Figs. 4a and 4c), and it is only for y =0.2 (Fig. 4b) 
that the spectrum has a typical noise form and the character- 
istic correlation time is very short, clearly indicating chaotic 

4 
3 
2 70 
I 
0 FIG. 8. Space-time dynamics of A , ( ~ , T )  for 

the case of pumping at an intermediate fre- 
quency for y=0.002, ~ ~ ' 0 . 9 5 ,  1=30. 
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dynamics in the system. Raising the sample rate confirms 
this conclusion. 

The graphical results presented in Fig. 5 make it possible 
to trace the time-averaged distribution of the defects over the 
length as a function of the supercriticality for fixed strength 
of the reflection. For y ~ 0 . 3 ,  the defects accumulate at a 
single point -0.81. However, with increasing supercriticality 
the corresponding peak is destroyed, breaking up into two 
peaks of lower height. This corresponds to the formation of a 
new structure. This rearrangement occurs abruptly at y 0.2 
and to a certain degree is similar to a phase transition; there- 
fore, the noise is probably large here. 

What we have said above applied mainly to the interme- 
diate case, in which the length of the region was of the order 
of several half-widths of the solitons. Figure 6 presents a 
case of large length 1 = 40, which demonstrates both the soli- 
ton dynamics of the transient process and the generation of a 
region of turbulence. It can be seen from Fig. 6 that after the 
first soliton has moved away processes of creation of new 
pulses stimulated by the multiple reflection of the nonsoliton 
oscillations commence. As a result, the generation becomes 
chaotic, and the generation region becomes a turbulence 
zone. 

To elucidate the role of pump modulation, we consider 
the simplest case f l ( r ) =  1-0.2 sin[O.Ol(r-2)] for y=0.2 
and times in the range 0-1200. In Figs. 4b and 4d and 7b and 
7d, it can be seen that as a result of the modulation the 
spectrum and phase trajectory are significantly altered. De- 
pending on whether f ( r) < 1 or f ( r) > 1 , the trajectory ei- 
ther devolves into a limit cycle or acquires a very compli- 
cated form. The calculation showed that a change in the 
reflection coefficients R~ leads to a similar picture. 

The development of the chaotic regime in this medium 
probably occurs in accordance with the following scenario. 
Instability of the initial disturbances leads not only to the 
formation of a localized excitation but also to the creation of 
an extended chain of oscillations. There develops in the sys- 
tem a competition between two factors: parametric enhance- 
ment due to interaction with the pump wave and damping of 
the waves due to absorption. In a bounded medium, this 
latter circumstance also leads to damping of excitation en- 
ergy upon reflection into the reverse wave. In the case of 
strong damping, the feedback that is established plays hardly 
any role, since the nonsoliton part already becomes very 
weak after two reflections. However, this part is important if 
the signal is appreciably amplified in the forward direction 
and is not too greatly attenuated in the reverse direction. 

In the case of appreciable supercriticality, there is not 
sufficient time for the oscillator additions to be absorbed 
during the time of formation of the soliton, and the additions, 
detached from the pulse after reflection, arrive at the input of 
the system before the formation of the stationary excitation 
has been completed. As a result, the transient process begins 
with a new phase, and the resulting feedback leads to con- 
tinuous mixing of the excitations. Because of the large dif- 
ference of the phase velocities of the acoustic and electro- 
magnetic waves, the local irregularities of the sound are 
carried over the interaction region, and a region of turbulence 
is generated in the system. 

4. PUMPING AT INTERMEDIATE FREQUENCY 

We now consider the case of pumping at an intermediate 
frequency w2, and we assume that f2(r)  = 1,  f ](r) = 0 (the 
wave at frequency o, is generated during the course of the 
interaction). The system (2) takes the form 

As follows from (6), for small A3(5,r)>0 the right- 
hand side of the equation is negative. In this case, the me- 
dium is stable, and in the presence of damping or nonideal 
reflection all perturbations in the system will relax. The 
method of soliton relaxation is interesting (see Fig. 8). At 
short times, when the damping has not yet significantly 
changed its amplitude, the pulse maintains a stationary shape 
during its motion, emitting a nonsoliton part. However, as its 
amplitude decreases to a value ~ 2 ,  the soliton begins to 
spread more and more rapidly, taking the shape of a breather. 
This is in agreement with Ref. 6, which noted the possibility 
of propagation of a small-amplitude breather in a partially 
bounded medium. 

5. CONCLUSIONS 

Thus, in the system considered above, with allowance 
for absorption and multiple reflection (delayed feedback), the 
picture of nonlinear interaction is very rich. In the case of a 
stable system (pumping at w2), the soliton exists after its 
formation for a finite time even in the presence of weak 
absorption and nonideality of the reflection. In the unstable 
case (pumping at w,), the development of instability can lead 
both to the formation of localized pulses and to superposition 
of a soliton and inhomogeneous oscillator complexes. Ac- 
cordingly, in such a system both regular and chaotic oscilla- 
tions can be observed. External modulation of the pump am- 
plitude or a change in the reflection coefficients makes it 
possible to influence critically the wave dynamics, moving 
the system toward or away from some particular chaotic re- 
gime. Since the acoustic and electromagnetic subsystems are 
here coupled in a single system, from the experimental point 
of view such an effect can provide a unique opportunity to 
generate or eliminate chaotic behavior of not only acoustic 
oscillations but also of laser waves passing through a crystal. 
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