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The leading two-loop logarithmic corrections to the Lamb shift of the np levels and the 
normalized difference of shifts of the s levels, AEL( 1 S) - n 3 ~ E L ( n s ) ,  in hydrogen-like systems 
are found. The results are obtained by direct calculations involving diagrams and in the 
nonrelativistic setting via the sum rules for dipole matrix elements. New numerical values are 
given for the shift of the 2 p  , ,  level in the hydrogen atom and the normalized difference 
between the 1 s and 2s levels in hydrogen and deuterium. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

Considerable progress has been achieved lately in ex- 
perimental studies of the Lamb shift.'-' Successful compari- 
son of the theoretical and experimental data requires finding 
two-loop contributions to this quantity with fairly high accu- 
racy. Lamb-shift corrections of the second order in the fine- 
structure constant a can be written as a series: 

where, following tradition, we distinguish between the pa- 
rameter a whose power indicates the number of loops and 
the parameter Z a  related to atomic-physics effects, and use 
the relativistic system of units: f i  = c =  I. 

Nonvanishing quantities in Eq. (I) are the coefficients 
B, , BS0 (see Refs. 6- lo), B63 (see Ref. 1 1), Bs2, and oth- 
ers. Note that for s levels only the last of the four explicitly 
named coefficients depends on the principal quantum num- 

bearing in mind the standard derivation of the leading one- 
loop logarithm, we must expect doubly logarithmic correc- 
tions to their energy. The other diagrams cannot lead to cor- 
rections of the order discussed in this paper; nevertheless we 
note that for all quantities discussed earlier, diagrams with a 
vacuum polarization loop, d and e lead to corrections con- 
taining logarithms raised to a power one unit less and can 
serve as a good model problem. 

The plan of the paper is as follows. We start by exam- 
ining the logarithmic contributions of the diagrams d and e 
with vacuum polarization, in the low-energy formalism, 
which considers vacuum polarization as being an additional 
external field. In Sec. 3 the corresponding contributions are 
calculated directly from the diagrams, and the relationship 
between the different terms in the two derivations is dis- 
cussed. In Sec. 4 we return to calculating the contributions of 
the diagrams a and b. Finally, in Sec. 5 we discuss the re- 
sults. 

ber n. In states with nonzero values of the orbital angular 
momentum 1 the nonzero coefficients are B62 and the first - 

2. SUM-RULE CALCULATIONS OF THE POLARIZATION 
LOGARITHMS 

coefficient, B,, whose value is completely determined, for 
1 # 0, by thecontribution of the anomaldus magnetic mo- Here we take a model problem for the one-loop operator 
ment. of the self-energy of an electron in an external field that is 

This paper is devoted to the discussion of the contribu- the sum of a Coulomb field Vc and a delta-like potential 
tion of B62 into the shift of the energy levels with 1 # 0 and allowing for vacuum polarization, 
into the normalized difference of shifts for the s levels, 

4a (Za )  
A(n) = AEL(ls) - n3AEL(ns). (2) V V P ( ~ )  = - &r). 

The latter could be of interest in processing experimental 
data (for more details see Refs. 12 and 13). 

The two-loop correction is related to calculations of the 
self-energy of an electron in the Coulomb field of the 
nucleus, with the ten diagrams for this energy depicted in 
Fig. 1. In the Yennie gauge, the first of these diagrami, a ,  
provides a cubic logarithmic contribution of order 
a2(~cr )6m to the shifts of the s levels" and a quadratic 
contribution to the difference (2). This diagram has been 
studied in detail in Refs. 12 and 14. The contribution to 
levels with nonzero orbital angular momentum can only be 
linear in In(Za). The second diagram, b, is studied below. 
Here we only note that its imaginary part leads to a linear (in 
the logarithm) correction to the width of p  level^^^^'^"^ and, 

It is easy to show that by using the standard method of 
calculating the low-momentum contributi~n'~. '~ we arrive at 
the following expression: 

L I 
~ ~ : ~ ( n l ~ )  = B ( n l )  - In -5, 

37-r (Za)  

where 
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FIG. 1 .  The total two-loop operator of the 
self-energy of an electron in an external 
field. 

for any external field. Clearly, integration over the states of the continuous 
The leading contribution of order a ( ~ a ) ~ r n  ln(Za) is spectrum leads to a divergence caused by relativistic inter- 

determined by the quantity (6) for a Coulomb field and Cou- mediate states, but the difference (2) proves to be finite (for 
lomb wave functions. There are two corrections related to more details see Refs. 11, 12, and 14. The result is 
vacuum polarization: the additional potential Vvp and the 
perturbation of wave functions. 

32 a 2 ( ~ a ) 6 r n  
S A ( ~ ) ( ~ )  = - - 1 

45 n2 
In - 

The first contribution, ( z a I 2  

can easily be found by integrating by parts and substituting 
3. CALCULATIONS OF THE POLARIZATION LOGARITHMS the explicit expressions for the potential (3) and the Coulomb 
FROM THE 

wave functions. Clearly, for the s states there are infinities 
that emerge in terms outside the integral. These infinities As is known, the general expression for two-loop contri- 
correspond to small distances or high momenta,') in which butions has the form'9 
case the low-energy approximation (4)-(6) is inapplicable. 
However, for states with nonzero orbital momentum and for aE!?)(nlj) = (nljIx ~ ( ~ ~ i , ) G c ( ~ ~ r i ) z  I(~nl,)Inlj) 
(2), the terms outside the integral are not infinite and, more 
than that, they are equal to zero, with corresponding results: + (nljIx2(Enij)Inlj) + (nljIz ~(Eni,)Inlj) 

( 1 )  
8 n2- 1 a2(Za)% 1 where C,(E) is the r-loop single-particle irreducible opera- 

SEL (np) = - - 
135 n" n2n3 ln7' (zff) (9) tor of the self-energy of an electron in a Coulomb field, and 

At higher values of 1 the logarithmic correction (7) vanishes. 
Let us now examine the contribution related to a pertur- 

bation of the wave functions in (6): 

where @(r) is the Schrodinger wave function of the hydro- 
gen atom, and 8t,bVP(r) is the correction to this function 
related to the potential (3). The perturbation of the values of 
the wave functions at zero can now be written as 

Gc(E) is the reduced Coulomb Green's function. 
In calculating the leading logarithmic contributions it 

has proved convenient to employ the Yennie in 
which the diagrams have natural low-energy asymptotic 
b e h a ~ i o r . ~ ' - ~ ~  Within this gauge the leading polarization 
logarithms of order a 2 ( ~ a ) 6 r n  emerge only from the first 
two terms in (13), which correspond to the diagrams d and e 
in Fig. 1, respectively. 

Diagr'un d has been considered earlier118r2,14 (more pre- 
cisely, a similar diagram a). The logarithmic correction from 
the factorized diagram d introduces a quadratic logarithmic 
correction for the s levels, a linear correction for the differ- 

s@xP(o) =--c 4a(zff)  ----. &o) cnce (2), and a nonlogarithmic correction for levels with 
&LO) 15rn q + n  En-+q If 0. Itor s states, in addition to the low-momentum contri- 
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bution discussed here, there is a correction of the preceding 
order a ( ~ a ) ~ m  related to relativistic momenta, which leads 
to divergences, as in Sec. 2. 

Calculating the correction to the energy is easy. The ex- 
pression for the factorized diagram can be written as follows: 

(nlm~~~~~~l'm')(~l'rn'~~~~~nlrn) 
= 2  2 

q ~ t m f f  n lm  En- Eq 

where the reduced Coulomb Green's function is represented 
as a sum over all states ql'm' of the discrete and continuous 
spectra, and V v p  and VSE are the one-loop diagrams emerg- 
ing as a result of allowing for vacuum polarization of the 
self-energy of the electron. The first was discussed in Sec. 2, 

and the self-energy contribution is 

Substituting these expressions into (14) yields 

where for the discrete spectrum the value of q is equal to the 
principal quantum number, while for continuous states, char- 
acterized by a wave number k, it is defined as q = Zamlk. 
The sum over states includes the contribution of high mo- 
menta (k-m) of the preceding order a2(za)'m, the loga- 
rithmic integral over the continuous states with 
(Za)m@k<m, and the n-dependent contribution of atomic 
momenta k- (Za)m and the states of the discrete spectrum. 
Each of these contributions is discussed in Refs. 11, 12, and 
14. 

The result is similar to the contribution .%(2), but in its 
derivation we did not use the sum rule, so that it is applicable 
not only to the difference of contributions of s states, which 
contain (12), but also for each state separately (containing 
the square of the logarithm). 

The single-logarithmic term coincides with the corre- 
sponding expression (12), and the double-logarithmic correc- 
tion is (cf. Ref. 11) 

Another diagram that also provides logarithmic contribu- 
tions of order a2(za)'m is the vertex correction to Coulor~lb 
polarization (diagram e). At low momenta the correction po- 
tential has the form 

After averaging over the wave functions and replacing the 
infrared cutoff K by the characteristic binding energy (cf. 
Ref. 18) we again arrive at an expression for the contribution 
to the energy similar to the term with %(I). The contribution 
of the s states again proves to be divergent at small dis- 
tances, which corresponds to corrections of order 
( ~ ~ ( Z a ) ~ r n .  In the difference (2) the divergences cancel out. 
The contributions for the levels with 1 # 0 are finite from the 
start. The results coincide with (8) and (9). 

Note that in spite of the agreement of results for the 
contributions of separate diagrams and the terms obtained 
from the sum rule in Sec. 2, no direct analogy exists. To 
verify this statement one should only compare the contribu- 
tions of the diagram e for the s and p levels. The nonrela- 
tivistic interpretations of these levels are markedly different 
because intermediate states p (for the nsl12 levels) and s or 
d (for np,) appear in the sum rule (5). But the delta-like 
potential (3) can perturb only s states and, consequently, for 
the corrections to the energy of the s states the intermediate 
states are not perturbed and the diagram e contributes noth- 
ing to (5). 

This paradox is resolved in the following manner. The 
expression (5) is the total sum of the contributions of all 
diagrams, and in calculating separate diagrams additional in- 
termediate states may emerge. The sum over physical states 
appears immediately only in the Coulomb gauge, in which, 
on the contrary, in calculating the diagrams there appears a 
number of additional contribution that cancel out in the pro- 
cess of summation. In covariant gauges there is a virtual- 
photon emission vertex, and this vertex is proportional to the 
matrix yo, which allows for an s state as an intermediate 
state. Here the correction to the energy of the nsl12 level 
incorporates the following quantity: 

where integration is over all the angles of momentum k for 
which the scalar product k(r2- r l )  is positive; the absolute 
value of k is equal to the frequency o. The expression for 
the contribution of the longitudinal terms of the photon 
propagator is more cumbersome, and we do not write it here. 
For the time being the quantity EWE, is kept as a free vari- 
able. In (18) we have left only the intermediate s states, 
which are sensitive to a delta-like perturbation. 

In the logarithmic approximation, after renormalization 
we have 

2 a  m dR: 
-In-1 3.rr (AE) -x 2 n q S  (E,-E)(nsl 

where now the photon wave number in the exponential cor- 
responds to the difference E, - E ,  and the logarithm con- 
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tains the characteristic energy difference. The order of mag- 
nitude of the scalar product k r  is that of Z a  because the 
radius in the matrix elements is of the order of atomic dis- 
tances and the wave number of the photon corresponds to the 
characteristic atomic energy, so that the exponential can be 
expanded in series. The leading contribution, corresponding 
to the first term in the expansion, or unity, has the form 

where we have allowed for the fact that only one term con- 
tributes to the sum and, hence, the characteristic energy dif- 
ference in the logarithm is determined by how far we are 
from the physical value. Thus, off the mass shell an infrared 
divergence emerges. The intermediate states coinciding with 
the initial state are examined in the Feynman gauge in Ref. 
25. 

The given divergence occurs in the absence of an exter- 
nal field, and in this case it corresponds to the well-known 
infrared divergence of the subtractive constant C' (m)  (see, 
e.g., Ref. 26). When the field is taken into account, in view 
of the Ward identity the divergence for the physical value of 
the energy, E= E n ,  cancels out when the contributions of the 
free mass operator and the free vertex are added. In the Yen- 
nie gauge there are no infrared contributions in the separate 
diagrams either.2'-24 

Let us now discuss the further expansion of the 
e~~onentials .~)  The product of the matrix elements of the 
linear term in the expansion, 

provides the standard contribution to the dipole width (equal 
to zero for intermediate s states). However, there is a contri- 
bution of the same order emerging from the product of the 
matrix elements of unity and the square of the radius: 

In the problem with one-loop self-energy this contribu- 
tion vanishes in any external field. Indeed, the matrix ele- 
ment of unity leaves in the sum only the intermediate state 
coinciding with the initial state, for which the transition fre- 
quency is zero. Thus, in a pure Coulomb field and in a field 
with the perturbation (3) there is no such contribution. But in 
diagrammatic calculations the respective terms emerge at an 
intermediate stage. Indeed, the diagram d in Fig. I contains 
the perturbed initial state and unperturbed (Coulomb) inter- 
mediate states, while with the diagram e the intermediate 
states are perturbed and the initial state is a pure Coulomb 
state. Clearly, the scalar product of the perturbed state and 
the unperturbed states (i.e., the matrix element of unity) is 
finite for q Z n and is of order ~ ( z L u ) ~ .  The energy differ- 
ence in the logarithm in (19) is determined by the character- 
istic quantity (za12m, and the emerging contribution is of 
order a 2 ( ~ a ) 6 m l n ( ~ a ) .  Thus, the intermediate s states in the 
Yennie gauge provide contributions in calculations of sepa- 

rate diagrams, and it is these states that are responsible for 
the correction to the energy of the s levels originating from 
the diagram e. 

4. LEADING TWO-LOOP LOGARITHMS 

The leading logarithmic corrections of order a ( ~ a ) ~ m  
originate from diagrams a and b in Fig. 1 without vacuum 
polarization. As mentioned in the Introduction, the power of 
the logarithm they contain is one greater than the corre- 
sponding power in contributions of the diagrams d and e. 
The simplest way to obtain results is to use the diagrams 
directly (see Eq. (13)), similar to Sec. 3. 

The leading contributions of the factorized diagram a 
were found earlier and have the following form in Ref. 1 I: 

and in Refs. 12 and 14: 

The two-loop self-energy operator of the diagram b can 
be taken into account by expanding the Coulomb Green's 
function of the electron in a power series of the external 
field. The logarithmic contributions 

and 

originate from the well-known low-energy asymptotic be- 
havior of the electric form factor (see, e.g., Ref. 18), which 
leads to the potential 

DISCUSSION 

There are several different definitions of a Lamb shift. In 
this paper we assume that the Lamb shift is the correction to 
the expression 

where r ? / ~  is the reduced mass, M is the mass of the nucleus, 
and 
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is the dimensionless energy of a Dirac electron in the Cou- 
lomb field of a nucleus of infinite mass. 

The leading two-loop logarithmic corrections to the dif- 
ference (2) [see Eqs. (22) and (23)], 

and to the Lamb shift of the p levels (see Eq. (24)), 

4 n2- 1 a2 ( ~ 0 ) ~  1 
3Elog( n p  j )  = - -Z 7 m In2 7 (29) 2 7 n  r r n  @a)  

at n = 2 amount to - 10.7 kHz and 0.135 kHz, respectively, 
and lead to the following numerical results for hydrogen and 
deuterium: 

A(2,H)= - 187.233(5) MHz, (30) 

AEL(2p I,z ,H) = - 12.8360( 1 ) MHz, (31) 

and 

A(2, D) = - 187.226(5) MHz, (32) 

where we have allowed for the latest results for the correc- 
tions to r e~o i l .~~ -~O The main sources of the errors in (30)- 
(32) lie in the terms that follow the leading logarithmic cor- 
rections, and the contributions of these terms are estimated to 
be no greater than half the corresponding leading contribu- 
tions. Another part in the errors is related to the 
interpolation'2.'3 of the numerical data of Ref. 3 1. Both types 
are purely radiative and are independent of the mass of the 
nucleus, so that the isotopic shift in A(2) for hydrogen and 
deuterium amounts to 7.6 kHz with an error smaller than 
0.1 kHz. 

We did not include in the logarithmic corrections (28) 
and (29) the vacuum-polarization contributions, 

and 

since the diagrams without polarization insertions contain 
unknown contributions of the same order. In addition to the 
calculations of polarization logarithms being useful from the 
methodological standpoint, Eqs. (33) and (34) may have 
practical applications. In a recent paper, Mitrushenkov 
et ~ 2 1 . ~ ~  obtained numerical results for the Lamb shift of the 
lowest levels of hydrogenlike ions at certain large values of 
the nuclear charge Z .  If calculations with moderate values of 
Z are done and the results are compared with the known 
corrections of order tr2(%cu)'nr (see Refs. 6 and 33), then the 

logarithmic corrections (33) and (34) can be used to match 
the numerical results for different values of Z and, hence, to 
cross-check the calculations. 

The contributions of diagrams without vacuum polariza- 
tion of orders ~ r ~ ( Z a ) ~ r n  and a ( ~ a ) ~ r n  are also known?-lo 
and the corrections (28) and (29) may also prove useful in 
checking the calculations for large and moderate values of 
z. 
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' h e  appearance of such divergences is inevitable because there is the con- 
tribution of the preceding order a z ( ~ a ) 5 m .  

21~trictly speaking, we must first integrate over angles and then expand. 
However, it is easy to verify, by using the fact that the energy is real, that 
all the expansion terns discussed below appear in the more rigorous ap- 
proach, too. 
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