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A generalization of the quasioptical description of vector wave fields to arbitrary smoothly 
inhomogeneous media is proposed. A study is made of the effect of curvature and torsion of the 
propagation tracks on the focusing and defocusing properties of the equivalent quasioptical 
line and also on the polarization of the waves (pseudogyrotropy). The treatment is restricted to the 
so-called aberrationless approximation of quasioptics, taking into account field phase 
corrections of at most second order. O 1996 American Institute of Physics. [S1063- 
776 1(96)00203-71 

1. INTRODUCTION 

The term quasioptics was adopted by physicists at the 
beginning of the sixties in connection with the development 
of microwave and laser technology.' Initially it had a pre- 
dominantly "instrumental" direction and referred to devices 
similar to optical devices1) but requiring allowance for dif- 
fraction effects in the description of the wave processes in 
them (open laser resonators, mirror and lens transmission 
lines for microwave radiation, fiber optics, etc.). However, 
the generality of the methods of calculating fields in quasiop- 
tical systems based on the use of a truncated parabolic wave 
equation gradually led to an extended interpretation of the 
term--quasioptics came to describe the branch of physics 
concerned with waves of arbitrary nature (both linear and 
nonlinear) in processes with relatively narrow frequency and 
angular spectra.2) 

There exists a deep and constructive analogy between 
the propagation of wave beams and packets in smoothly in- 
homogeneous media and in quasioptical transmission lines 
(of lens or mirror type). By virtue of the transverse localiza- 
tion of the fields around "propagation paths," the inhomo- 
geneous medium can be regarded as a collection of distrib- 
uted phase correctors: linear (of prism type and responsible 
for bending of the track), quadratic (of lens type and deter- 
mining focusing or defocusing), cubic, quartic, etc. (leading 
to aberrations, i.e., distortions of the "ideal" image trans- 

gous to field mapping by an ideal thin lens6) do not depend 
on the actual structure of the beam field and can be calcu- 
lated using a rather trivial extension of the ray equations. 

With regard to arbitrary inhomogeneous media not spe- 
cially intended for the transmission and transformation of 
images, the terminology adopted in optics has become to a 
certain degree conventional. For example, in the general case 
it is not possible to regard aberrations as distortions of an 
ideal image; sometimes they completely determine the struc- 
ture of the wave field. The studies of Refs. 7-9 were devoted 
to extension of the quasioptics of two-dimensional smoothly 
inhomogeneous media to the case of strong aberrations; 
these studies also obtained criteria for the applicability of the 
so-called aberrationless approximation, which takes into ac- 
count only the quadratic distributed phase correctors. It was 
also shown in Refs. 7 and 8 that even when the aberration- 
less approximation cannot be regarded as an approximation 
to the true wave field it still remains informative and makes 
it possible to recover the correct solution by means of an 
asymptotic procedure analogous to the one developed in the 
diffraction theory of aberrati~n.~ 

In this paper, we propose a generalization of quasioptics 
to three-dimensional distributed systems and vector fields. 
We are solely concerned with the aberrationless description 
of fields, but we allow for astigmatism of the phase correc- 
tors and torsion of the transmission paths.3) 

ported by the equivalent transmission line). This similarity 
between a distributed system and a discrete transmission line 2. THE EQUATION OF QUASIOPTICS IN A SMOOTHLY 

makes it possible to generalize the quasioptical methods of INHOMOGENEOUS MEDIUM 

description of wave fields with narrow angular and relatively 
narrow frequency instantaneous spectra to smoothly inhomo- 
geneous media. 

Probably the first quasioptical description of wide wave 
beams in distributed systems was given in Ref. 3 for the 
special case of lens-type media (distributed quadratic correc- 
tors with axial symmetry). A generalization of quasioptics to 
arbitrary (two-dimensional) smoothly inhomogeneous media 
was undertaken in Refs. 4 and 5; in particular, in Ref. 5 one 
of the present authors obtained a transformation of the coor- 
dinates and fields that mapped the field of a wave beam in 
vacuum to the field of a beam in an inhomogeneous medium. 
'Lhe parameters of this transformation (which is analo- 

For definiteness, we shall consider the electrodynamic 
problem4) of the propagation of a beam of monochromatic 
electromagnetic waves in a smoothly inhomogeneous sta- 
tionary medium with permittivity ~(w,r) .  The complex am- 
plitudes of the electric, E(r), and magnetic, B(r), fields are 
described by Maxwell's equations: 

curl E= ikoB, curl B= - ik,e(r)E, (2.1) 

where ko= WIC. Equations (2.1) can be significantly simpli- 
fied if the transverse dimension A of the beam everywhere 
along the propagation path is, on the one hand, small on the 
scale L,-EIIVEI of the inhomogeneities of the medium but, 
on the other hand, large on the scale of the wavelength A. [n 
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this case, the problem contains two small parameters: the 
width v=A /A of the angular spectrum of the beam and the 
ratio p= AIL,. The aim of the paper is to construct asymp- 
totic solutions of the system (2.1) with respect to the param- 
eters v and p .  

It is intuitively clear (and this will be shown below) that 
for v, p< 1 the wave beam is localized in a certain neighbor- 
hood of the geometric-optics ray (we shall call it the refer- 
ence ray5)), the canonical equations of which have the form 

Here rO(r) is the radius vector of the points on the reference 
ray; p(r), which is normalized by ko, is the instantaneous 
wave vector (p  = l a ,  in which I is the unit vector tan- 
gent to the ray), and the variable r is related to the path 
length s of the ray by d r  = dsl m. 

The reference ray is a space curve with its principal nor- 
mal n=(dVds)lK in the plane (I,VE), while the curvature K 
and torsion T are given by 

where m=IXn is the unit vector of the binormal. The ex- 
pression for the curvature follows directly from the ray equa- 
tions, and to obtain the expression for the torsion it is nec- 
essary to differentiate the second equation of (2.2) with 
respect to 7. 

If the reference ray has nonvanishing torsion, TZ 0,  the 
curvilinear coordinate system associated with the natural tri- 
hedral (l,n,m) is not orthogonal (this follows directly from 
the Frenet-Serret formulas). As we move along the ray, the 
orthogonal basis (e,,el ,e2) is rotated through angle 8(r) rela- 
tive to the natural trihedral: 

e l  = n cos O+ m sin 0, 

e2 = m cos 6- n sin 6, (2.4) 

The unit vectors e,(r) and e2(r) are parallel-transported 
(dl.e2=e,-i2=O) in the effective curvilinear space with met- 
ric ds2 = E (r)(dx2 + dy2 + dz2), the geodesics of which coin- 
cide with the rays. The same applies to the polarization vec- 
tor e(r) of the electric field in the geometric optics 
approximation;2 therefore, the relation (2.4) is identical to 
Rytov's lawlo for the rotation of the plane of polarization in 
the case of electromagnetic waves propagating in an inhomo- 
geneous medium. 

For the quasioptical description of the field of the wave 
beam, it is convenient to go over to the curvilinear coordi- 
nate system (r,(, ,e2) associated with the reference ray: 

The Lam; coefficients of this coordinate system are 

where ~ ~ ( 7 )  are the values of the permittivity at the points on 
the reference ray. For some remarks concerning the proper- 
ties of the comoving orthogonal coordinate system, see Ap- 
pendix 1. 

The local structure of the electromagnetic field in a wide 
(on the scale of A) wave beam is always close to that of a 
plane wave, i.e., the fields E and B are almost perpendicular 
to the direction of propagation and to each other. Represent- 
ing the field in the form 

and substituting in Eqs. (2.1) as expressed in the above cur- 
vilinear coordinate system (in which the unit vectors e, and 
e2 are to be assumed to be independent of the variable r), we 
obtain 

1 d 
El,=- - div EL 

kOEO d r  

Here and in what follows, summation over repeated dummy 
indices is understood. 

A wave beam with arbitrary polarization (including the 
case of inhomogeneity over the cross sections) can be repre- 
sented in the form of a superposition of two beams with 
mutually orthogonal homogeneous polarizations (linear, cir- 
cular, or elliptic).@ For each of the "partial" beams, it is 
possible to introduce the scalar field amplitude E, 
(E, =E,e,, where e, is a unit complex polarization vector). 

In E, , we isolate a phase factor with characteristic lon- 
gitudinal scale A: 

The field amplitude W(r,E1 , t2 )  of the beam, varying 
smoothly in space, has a characteristic transverse scale ABA 
(AIR-v < 1) and characteristic longitudinal scale LII* A. In 
inhomogeneous media possessing focusing or defocusing 
properties, the longitudinal scale of variation of W can be 
determined both by diffraction effects (and then AILII-- v2) 
as well as by refraction effects (in this case AILII- vp). Sub- 
stituting (2.7) in (2.6), we obtain up to terms of second order 
(in v and p)  the equation 

The sign in front of the quadratic form in (2.8) is chosen 
in such a way that positive values of the coefficients a,, 
correspond to focusing properties of the medium. More pre- 
cisely, if the signature I: of the quadratic form is 2, the me- 
dium possesses focusing properties with respect to all direc- 
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tions; if C=O, then in one direction the medium focuses and 
in the other it defocuses; if C= -2, the medium defocuses in 
all directions. 

In actual calculations, it is more convenient to represent 
the coefficients a,, in (2.8) in terms of derivatives in the 
direction of the principal normal n and binormal m "at- 
tached" to the gradient of the permittivity in the medium: 

1 dZc cos 8 sin 8 p12= - - - R(B)= 
2 dndm ' 

. (2.9) 
-sin 8 cos 8 

The angle 8 (7) in the rotation operator ~ ( 8 )  is determined 
by Rytov's law (2.4) (the derivatives in the above expres- 
sions are taken at points on the reference beam). 

It can be seen from (2.9) that curvature of the reference 
beam is always a focusing factor (in the rectifying plane). In 
addition, the focusing and defocusing properties of the me- 
dium are also determined by the second derivatives of the 
permittivity along the transverse directions. 

Equation (2.8) is written down in the orthogonal curvi- 
linear coordinate system (rJ1 ,&), but the form of the differ- 
ential operators retained in it after truncation makes it pos- 
sible to establish a direct analogy with the problem of wave 
propagation in a lens-like medium elongated along the T 

axis. This analogy can also be taken further to discrete opti- 
cal lines--chains of quadratic phase correctors (thin 
len~es).~) The absence of axial symmetry ( c ~ , , # a ~ ~ ,  a12#O) 
leads to astigmatism--each individual element of the line 
maps a point into two crossed segments. As few as two 
lenses for which the planes of the principal normal sections 
do not coincide (torsion effect) blur the image. In geometri- 
cal optics, astigmatism is usually included among the aber- 
rations, but in quasioptics it can be taken into account in an 
approximation that (with a certain degree of license) we shall 
call aberrationless. 

Pseudogyrotropy 

Sometimes it is advantageous, for one reason or another, 
to represent the field of a wave beam in a skew coordinate 
system (r,vl,%) associated with the natural trihedral. For 
this, it is necessary to apply a rotation transformation to the 
coordinates [[,= Rmn(8) v,] and field [E!~)= R,~(O)@)]. 
Bearing in mind that the derivative of the rotation operator is 
R,,(B)= 6~, , (8+ 7~/2), we obtain after truncating (2.6) the 
system of equations 

where em, is the unit antisymmetric tensor. 

Equations (2.10) can be decoupled for waves with circu- - - 
lar polarizations: W ,  = W, t i g 2  Multiplying the second 
of Eqs. (2.10) by the imaginary unit, and adding it to the first 
(and then subtracting from it), we obtain 

The corrections of opposite signs to the effective refractive 
indices of waves with right and left circular polarizations 
establish a definite similarity between (2.11) and the equa- 
tions for waves in optically active media (sugar solution, 
turpentine). One can say that the torsion of the propagation 
path leads to "quasi-" or "pseudogyrotropy" effects in me- 
dia without spatial dispersion. We may mention in passing 
that in other situations, when A %LC , it is more convenient 
to interpret the gyrotropy due to multiple scattering by mac- 
roscopic inhomogeneities as a manifestation of structural 
spatial dispersion of long-range order." 

The skew nature of the coordinate system (r,gl ,a) also 
leads to the replacement in (2.1 1) of the derivative with re- 
spect to r by the operator f i r ,  which in the comoving cylin- 
drical coordinates (r, ,4) reduces to the form 

A similar operator occurs in the Schrijdinger equation for an 
electron in a constant magnetic field;" for its influence on 
the structure of the field, see Appendix 3. 

3. BEAMS IN SYSTEMS ADMITTING SEPARATION OF THE 
VARIABLES 

If it is admissible to go over to coordinates (x, ,x2) in 
which the quasioptical equation is invariant with respect to 
the substitutions x 4 - x l  and x 2 4  - x2 ?) it is possible to 
use the method of separation of variables, representing the 
complex field amplitude in the form 

Substituting (3.1) in (2.8), where a12=0, we obtain two 
equations of the same kind. We write down only one of 
them, omitting the subscripts: 

We go over in (3.2) to the dimensionless variables (z,y) 
by means of the substitution 

where a(r) is an as yet arbitrary function. As a result, Eq. 
(3.2) is reduced to the form 
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It is obvious that (3.4) can be reduced in two ways to 
canonical forms by equating the coefficient of y 2 ~  to unity 
or zero. We consider each of these possibilities separately. 

3.1. Expansion with respect to the modes of the discrete 
spectrum 

Setting in (3.4) 

we obtain the equation of a "quantum-mechanical oscilla- 
tor": 

The general solution of this equation can be represented in 
the form of a series in Hermite  function^:^ 

where 

is a Hermite polynomial. 
The general solution of Eq. (3.5) for the characteristic 

width of the eigenfunctions contains two arbitrary constants, 
on the values of which the form of the expansion (3.7) in the 
dimensionless variables (z,y) does not depend. However, in 
the "real" space (T,x) the structure of the modes depends 
critically on the choice of the constants of integration (3.5). 
The possibility arises of making an optimum choice of the 
modes of the discrete spectrum in different applied problems. 
We shall return to this question and mention here only one 
detail--expansion of the wave field with respect to the 
modes of the discrete spectrum is possible not only in the 
case of focusing layers [a(r)>O] or, putting it differently, 
waveguide channels, but also in the case of defocusing inho- 
mogeneities (a<O) (then, of course, the characteristic widths 
of the modes will increase exponentially along the reference 
ray). 

3.2. Expansion in modes of the continuous spectrum 

If we choose the normalization parameter U(T) in such a 
way that it satisfies the linear equation 

then (3.4) can be reduced to the "vacuum" form 

In the quasioptics of honiogeneous ~neclia, the solution 
of (3.9) is, as a rule, represented in the t'ollowir~g two forms: 

1) expansions in Green's functions, 

2) expansions in plane waves, 

It can be seen from the integral representations them- 
selves that Vo(y) and To(q) are the "initial" (at z=0) dis- 
tributions of the field and of its Fourier spectrum. However, 
upon transition to the dimensional variables (r,x), this re- 
mains true only for the quite definite choice of the solution of 
the characteristic equation (3.8) corresponding to the follow- 
ing initial conditions: 

(for a. chosen equal to the unit of length, rescaling of the 
initial distribution does not occur: Vo(xluo) = m ( 0 ,  x)). 

If, however, we choose as normalization factor the solu- 
tion (3.8) with the initial conditions 

then (3.10) upon transition to the dimensional variables be- 
comes an expansion in initially focused waves.") As is 
shown in Ref. 8, it is conveniently used in the description of 
aberration distortions of the beam field, the parameter F be- 
ing varied in such a way that in the region of observation 
each partial wave either "collapses" to a point or has a plane 
phase front. 

It should be noted that the characteristic equation (3.8) is 
identical to the equations of rays that are differentially close 
to the reference ray. As a consequence, all the results ob- 
tained above admit a transparent geometrical interpretation. 

Fundamental system of rays 

The quasioptical equation (3.2) can be brought into cor- 
respondence with the equations of geometrical optics (in a 
somewhat unusual form, since the advance of phase along 
the reference ray is eliminated by the change of variables 
(2.7)). Representing the complex field amplitude in the form 
X = A  exp(iko?) and substituting in (3.2), we obtain the fol- 
lowing equation for the eikonal q :  

The equations of rays corresponding to (3.12) have the form 

where p = dqld,x is the projection of the instantaneous wave 
vector (normalized by ko) onto the plane normal to the ref- 
erence ray. It is readily seen that Eq. (3.13) after elimination 
of p is identical to Eq. (3.8) for the characteristic parameter 
u. 
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The linearity of the ray equations (3.13) makes it pos- 
sible to introduce a fundamental system of solutions P ( r )  
and S(r) that satisfy the initial conditions 

with Wronskian W1 P ,S] = PS - PS= I . The solution of 
Eqs. (3.13) with initial conditions x(0) = x r  , 
p(0) =i(O) = p '  can be written in the form 

Here P ( r )  determines the rays of an initially plane wave, 
and S(r)  determines rays that diverge as a fan from the 
origin (these circumstances determine the choice of notation 
in accordance with the initial letters of the words plane and 
source). However, P and S also have a different "geometri- 
cal" meaning-they are also a fundamental system of the 
equation of the normal sections of the ray tubes (this equa- 
tion is obtained by differentiating the ray equations with re- 
spect to the parameter and, by virtue of the linearity of these 
equations, is identical to them). The solution of any problem 
in geometrical optics can be expressed in terms of the fun- 
damental system of rays P and S (in the small-angle approxi- 
mation). 

For example, fixing x and x '  in (3.14), we obtain (in the 
approximation of geometrical optics) an expression for the 
eikonal ?(x,x ' ) of the two-point Green's function: 

dlIr 
-- - - P ' = ~ - l ( ~ x ' - x ) ,  
dx' 

The amplitude of the Green's function in the approximation 
of geometrical optics is determined from the law of conser- 
vation of the energy flux within a ray tube surrounding the 
ray and joining the points x' and x. Consequently, the am- 
plitude A - 11fi and does not depend explicitly on the trans- 
verse coordinates. Therefore, in the approximation of geo- 
metrical optics we obtain the exact Green's function of the 
quasioptical equation of the aberrationless approximation, 
which, naturally, corresponds to the expansion (3.10) given 
in the previous section. The same also applies to the expan- 
sions with respect to originally plane and originally focused 
waves. 

We rewrite the expansions in modes of the continuous 
spectrum in terms of the fundamental ray system: 

1) The expansion in Green's functions is 

where is given by the cxpression in (3.15). 
2) The expansion in originally plane waves in 

X exp [:"po - (kx2  + Zxq - Sq2)]dq, 

where 

The expansion of the field in modes of the discrete spec- 
trum (3.7) can also be expressed in terms of the fundamental 
system P ,  S. It can be seen from (3.16) that in the aberra- 
tionless approximation a Gaussian beam always remains 
Gaussian. At the same time, its characteristic width a can be 
expressed in terms of the initial width uo as follows: 

It can be shown by direct substitution (although it is also 
obvious) that a(r) in the form (3.18) satisfies Eq. (3.5). 

4. BEAMS IN SYSTEMS WITH "TORSION" 

When the reference ray is an arbitrary curve with vari- 
able torsion, it is not possible to separate variables in Eq. 
(2.8). However, the important property of the aberrationless 
approximation noted above still holds-geometrical optics 
for the Green's function of originally plane and focused 
waves gives the exact result. The ray equations remain (as in 
one-dimensional systems) linear: 

Their solution with the initial conditions 

x,(O)=x6, p,(O)=p6, 

can be represented in the form 

x,= P,,( 7 )~ : ,+  S,,( dp:, 9 

~ r n = P r n r , ( ~ ) ~ : , + S m n ( r ) ~ L .  (4.2) 

The matrices @ and are themselves solutions of the equa- 
tions for the cross sections of the ray tubes: 

p m n +  ffmk(r)pkn=o, 

smn+ amk(r)Skn= 0, 

with initial conditions 

Pmn(0)= 6rnn, Pmn=O, 

S,,(O) = 0, s,, = a,, . 
It is readily shown that by virtue of the symmetry a,,= a,, 
the fundamental matrices are related to each other by 

~ k m ~ k n -  ~ k r n ~ k n =  

The formalism of matrix algebra makes it possible to 
generalize the two-dimensional results of the previous sec- 
tion to three-dimensional systems. For this, it is necessary to 
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replace the operations of multiplication and division of a 
scalar by a scalar by the operations of multiplication of a 
vector by a matrix and by the inverse matrix. Thus, the inte- 
gral representations of the field analogous to (3.16) and 
(3.17) are transformed as follows: 

1) Expansion in Green's functions: 

2) Expansion in originally plane waves: 

Note that the expansion in Green's functions is com- 
pletely invertible, i.e., in (4.3) it is possible to interchange 
the distribution of the complex field amplitude in the initial 
section and in the plane of observation: 

In the aberrationless approximation, a wave beam with 
Gaussian distribution of the complex field amplitude in the 
initial section ( r  =0) always remains Gaussian. Substituting 
into (4.3) 

we obtain 

(D, and D, are the determinants of the corresponding ma- 
trices). The symmetric matrices & and k - '  give the charac- 
teristic dimensions of the beam and the curvature of the 
phase front in the initial section r =O. In any other normal 
section, the corresponding quantities are determined by 

- I  - 
f f  - l m O ~  n Ei,' =Re( Y L ~  ~nk) .  

The matrices Ila,il{ll and IIKa,lll are symmetric, but in the 
general case they cannot be simultaneously reduced to diag- 
onal form by a rotation sincc thc cllipses of equal intensities 

and of equal phases are rotated relative to each other, and the 
angle of rotation changes along the propagation path. 

5. CONCLUSIONS 

The procedure described above for integrating wave 
equations in the quasioptical (aberrationless) approximation 
can be conveniently implemented on a computer. It reduces 
to the solution of the system of ordinary differential equa- 
tions (2.2), (2.4), and (4.1) and subsequent calculation of 
convolutions of the type of (4.3) or (4.4). We emphasize that 
the first block of calculations is completely independent of 
the actual structure of the required wave field and reflects 
only universal properties of the propagation path. This is an 
important difference between our approach and the tradi- 
tional generalizations of geometric optics (Maslov's method, 
the Kravtsov-Ludwig method of reference functions, etc.), 
in which the wave field is found in an appropriate ray ap- 
proximation. In the second stage, one can simultaneously 
calculate the fields of wave beams with different initial dis- 
tributions of the amplitude, phase, and polarization in all 
cross sections that are of interest (without calculating of the 
field in the intermediate regions); moreover, these distribu- 
tions need not be smooth (their integrability is sufficient). 

APPENDIX I: "HELICAL" COORDINATE SYSTEM 

The geometrical properties of the comoving coordinate 
system introduced in Sec. 2 does not depend on whether or 
not the reference curve is a ray. In this Appendix, we illus- 
trate some of these properties for the example of a helical 
reference curve having in a cylindrical coordinate system 
(r ,  4,z) an equation of the form 

where a is the radius of the surface around which the refer- 
ence curve is "wound"; K= h/27r, where h is the pitch of 
the spiral. The curvature and torsion of the helical curve are 

The principal normal n is directed along the radius; the vec- 
tor I tangent to the curve makes an angle y=tan-l(alq with 
the z axis. The element of arc length is ds = d+Jm. 
The natural trihedral revolves about the z axis and makes a 
complete revolution when the variable 4 changes by 27r. The 
orthogonal basis (I,e,,e2) rotates to the left (for a right- 
handed spiral h>O) with respect to the natural trihedral: 

where 6 is the angle between n and e l .  In one period of the 
helical curve, the lag of the orthogonal basis behind the natu- 
ral dihedral is measured by the angle 6, = hi d m .  

It can be seen that for a compact spiral (&Ga) the angle 
B,,+O, i.e., the orthogonal basis hardly lags behind the natu- 
ral trihedral. In the other limiting case of a significantly 
stretched spiral (&a), we have 6,- -27r, i.e., the lag is 
greatest, and the orthogonal basis hardly rotates relative to 
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FIG. 1 .  Characteristic curves. 

the z axis. However, over extended paths (over many turns 
of the spiral) it is necessary to take into account the inte- 
grated effects, which lead to a rotation of the orthogonal 
basis about the z axis through an angle Aq5=za2/2h"3. 

APPENDIX 2: ON THE GENERALIZATION OF RYTOV'S LAW 
IN QUASIOPTICS 

Rytov's law for the rotation of the polarization vector 
(2.4) is obtained in the geometrical optics approximation.'0 
In wave optics, the field at the point of observation is formed 
by the interference of signals that arrive along different rays 
from the region of the sources. The torsion of these interfer- 
ence rays (indices i) differs in principle from the torsion 
of the reference ray, and one can speak of their relative tor- 
sion F= Ti- To. Therefore, the polarizations of the partial 
signals differ from each other. However, in quasioptics (in 
the small-angle approximation) the interference rays consist 
of segments of strongly elongated spirals that wind around 
the reference ray. As was shown in Appendix 1, in this case 
the orthogonal basis (and, therefore, the polarization vector) 
for the partial ray will not twist (up to terms of order 
r h 2 / ~ ; )  relative to the orthogonal basis of the reference ray. 
Therefore, for paths with moderate extension r, Rytov's law 
is also fairly well satisfied in the quasioptical approximation. 

APPENDIX 3: INFLUENCE OF TORSION OF THE 
REFERENCE RAY ON THE FOCUSING PROPERTIES OF 
THE EQUIVALENT OPTICAL LINE 

Torsion of the reference ray not only leads to the Rytov 
polarization effect (pseudogyrotropy) but also changes the 
focusing properties of the equivalent optical line. In this Ap- 
pendix, we consider the special case with constant torsion 
(T=const) of the reference ray (a helical curve) and 
r-independent (in the frame of reference attached to the natu- 
ral trihedral) parameters of the medium: 

Pl1= PI = const, P22= P2= const, PI2= 0 (A.3.1) 

[see (2.9)]. Without loss of generality, we can also set eo=l. 
Such properties are possessed, for example, by a gradient- 
index glass fiber that spirals round a cylindrical surface.ll) 

As was noted in Sec. 4, the properties of the equivalent 
optical line are completely determined by the behavior of the 
geometrical-optics rays, the ecluations of which in the co- 
moving skew coordinate system ( r , ~ ,  ,v2) have the form 

FIG. 2. Projection of a ray close to the reference ray onto the plane (ql .?h) 
for p2<~'<PI  . The arrows indicate the directions of the additional focus- 
ing and defocusing due to the torsion. 

The solution of the system of equations (A.3.2) can be rep- 
resented in the form 

where cij are constant complex coefficients determined from 
the initial conditions. The "spatial frequencies" Hi of the 
ray oscillations satisfy the characteristic relation 

~ 2 +  - +- I d(/?l- /?2)2+8(fl l+p2)~ 2. 
2 -2  

(A.3.3) 

Figure 1 is the graph of the dependence H'(T~). 
It can be seen from Fig. 1 that torsion of the reference 

ray leads to an enhancement of the focusing properties of the 
effective optical line in certain directions and to a weakening 
in others. Moreover, there exists a range of values for the 
torsion, P2< T2<Pl ,  in which one of the ray modes is un- 
stable (H2<0), and, therefore, the optical line acquires de- 
focusing properties,12) even though it is made of collecting 
lenses for all directions (P1,2>0). 

For this effect, there is a two-dimensional analog. Let us 
consider, for example, an axisymmetric parabolic wave 
channel whose focusing properties vary along the axis in 
accordance with an harmonic law: 

E = E ~ - P ( I  + a  sin ar)r:. 

In such a channel, the rays are described by the Mathieu 
equation 

d2r, 
--T+p(l+a sin a r ) r l = O ,  
d r  

which has a discrete set of instability bands (the first band 
a2-4P). In contrast to an axisymmetric system, in a twisted 
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ellipticalbave channel there exists only one continuous band 
of parametric instability. An example of such an instability is 
given in Fig. 2. 

We are grateful to the Russian Fund for Fundamental 
Research for financial support (Grant No. 94-02-05419-a). 

')systems are generally called optical if they obey the laws of geometrical 
optics sufficiently well. 

2)~uasioptics as a branch of science has a fairly ancient tradition. The in- 
vestigations of Fresnel on diffraction by an opening in a screen and at the 
edge of a screen were made in the approximation of quasioptics. Schro- 
dinger wrote down an equation that, essentially, is the quasioptical ap- 
proximation of a more rigorous relativistic equation. Of course, in all these 
(and other) "prehistoric" cases a different terminology was used-the 
small-angle, for example, or paraxial approximation.2 

3 ) ~ t  should be noted that in optics effects associated with astigmatism of the 
phase correctors (the difference of the principal radii of curvature of the - - 
refracting surfaces) are usually classed as aberration effects. In quasioptics 
there is a somewhat different definition-the aberrationless approximation - - 

is assumed to be one in which a Gaussian wave beam remains Gaussian 
(with parabolic phase front). 

4 ) ~ p a r t  from the terminology and different notation, all results will, of 
course, be valid for waves of arbitrary natureacoustic, seismic, informa- 
tion, etc. 

"The choice of the reference ray is not unique and can vary depending on 
the type of problem to be solved. In problems in which the wave beam is 
formed by a system of emitters or collimators, it is sensible to choose as 
the reference ray the ray that emanates from the center of the beam- 
forming aperture (or other device) in the direction of the maximum of the 
beam pattern. 

"The polarization degeneracy inherent in (2.6) is lifted in the general case in 
the following order in v and p; this can lead to significant effects over very 
extended propagation tracks. 

7 ) ~ o t e  that wave beams in a discrete optical line can be described by the 
same equation (2.8) if we set a , , , (~)=  S ( T - T ~ ) ~ ~ , ,  where &T) is the 
Dirac delta function, and k is the number of the corrector. 

optics and electrodynamics, the directions of the circular polarizations 
are defined differently. In the given case, the "plus" sign corresponds to 
right-circular polarization in the electrodynamic s e n s e t h e  direction of 
rotation of the polarization vector is related to the wave vector by the 
right-hand screw rule. 

')This symmetry can be nominally called minor symmetry, though it is only 
such for the equivalent (rectified) optical line. In the real space, mirror 
symmetry may not be present. 

'')The completeness and orthogonality of such an expansion can be proved 
as follows. An ideal quadratic corrector with optical strength -F-I is 
positioned in the section T=O. At its "output," the field is expanded in a 
Fourier integral, and one then positions a compensating corrector with 
optical strength F-I ,  which transforms each plane wave of the expansion 
into a focused wave. 

l01f the profile of the permittivity of the fiber glass has the f o y  
&=so- Yr: and it is wound onto a cylinder of radius a with pitch 2,rrh, 
then ~ ~ - ~ + 3 ~ ~ [ a l ( a ~ + ~ ) ] ~ ,  p2-y. 

I2)1n discrete optical lines and in cavities, astigmatism can also lead to 
instability of quasioptical modes.I3 
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