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1. INTRODUCTION 

The dynamics of three bodies in quantum mechanics ex- 
hibits entirely new physical properties manifesting them- 
selves in effects unusual from the standpoint of the two-body 
problem. One is the Efimov effect, which appears because of 
long-range terms in the effective interaction in the hyper- 
radius of the system1 or in the relative Jacobi coordinate 
between one particle and the remaining pair.2 This long- 
range r-2 interaction is restricted to the region1) 

where ro is the characteristic range of painvise interactions, 
and K is the wave number of the bound state (for K>O) or 
the virtual state (for K<O;  the pole of the scattering ampli- 
tude on the unphysical sheet). When the range is infinite, i.e., 
when K-+O, there is logarithmic crowding of the levels in the 
three-particle spectrum, a direct manifestation of the Efimov 
effect. Real systems are, unfortunately, in conditions differ- 
ing greatly from such a marked long-range effect, which nev- 
ertheless determines to a greater or lesser extent the dynam- 
ics of real three-particle systems.' 

An interesting area of such three-particle dynamics 
could be the physics of diatomic negative molecular ions, in 
particular, their asymptotic part of the spectrum, which in 
view of the small scale of the electron-atom coupling energy 
(affinity) and large distances is determined by the mecha- 
nisms of three-particle dynamics. It appears3 that in a system 
consisting of one light and two heavy particles with short- 
range painvise potentials, the asymptotic part of the effective 
interaction may contain both the Efimov long-range interac- 
tion term' of the r W 2  type and a term of the r- '  type. For 
pairwise coupling energies E corresponding to real physical 
objects, the bound-state spectrum of a three-particle system 
is determined by the r-' component. This long-range cou- 
pling between the heavy particles is caused by the interaction 
between the light particle and a heavy particle and is re- 
stricted to the region (I), as in the Efimov effect. At large 
distances the decreasing power law is replaced by an expo- 
nential law for real bound states in pairs or is restricted to the 
region - I K-  ' 1  for a virtual state. 

Here the pairwise interaction is added to the effective 
potential generated by the light particle (we call the latter an 
exchange interaction). When the region (1) is large, i.e., 
when the pairs are weakly coupled, the generated spectrum 

corresponds to weakly-bound states with large rms radii, 
which makes it possible to ignore the details of the pairwise 
interaction between the particles. However, the binding en- 
ergies of real atom-atom and electron-atom systems are not 
so low, and therefore one must take into account the behav- 
ior of their painvise potentials. 

In Ref. 3 the pairwise interaction was chosen in the form 
of separable Yamaguchi potentials. Hence the results of that 
paper cannot be directly applied in the analysis of real sys- 
tems of the atom-electron-atom type (except for unique sys- 
tems with an especially low real coupling of an electron and 
an atom of the Zn- type, where E=-0.1 eV; see Ref. 4). It 
is not that realistic potentials in the attraction region are un- 
like the Yamaguchi potential: such a potential can easily be 
fitted to describe both the bound state and the scattering pa- 
rameters generated by the attraction region of real physical 
systems. The problem is that realistic potentials must contain 
a gigantic (in comparison to the attraction region) repulsive 
core (see, e.g., Ref. 5), whose behavior cannot be described 
by a separable potential. On the other hand, the height of this 
core is several orders of magnitude greater than the depth of 
the attractive part of the potential. Therefore we are justified 
to formulate a spectral problem with a painvise potential of 
the electron-atom interaction V(r) in the following form: 

where R is the repulsion radius (in what follows we call this 
potential a "wall"), and v(r) is a shallow attractive poten- 
tial. In particular, we can take v(r) in the separable form 
v(r)v(rf)  of the Yamaguchi type (its shape is defined in 
Sec. 2), obviously restricting its action to the region outside 
the wall, i.e., assuming that v(r)=O for r<R. Here it is 
proper to note that the full form of the potential energy op- 
erator v( r , r f )  can reduce either to v( r , r l )  = u(r)S(r- r ' ) ,  
with a local potential v(r),  or to a separable potential 
v ( r , r l )=  v(r)v(rf).  Since in what follows we examine the 
energy region in which the electron wavelength is much 
larger than atomic dimensions, the pairwise electron-atom 
interaction can be restricted to the S-wave. 

In this case we can easily describe the behavior of the 
interaction cross section of a pair both at low momenta (two 
parameters in the Yamaguchi potential) and at relatively high 
momenta, at least to the first unitary limit, since the phase of 
elastic scattering by the wall in the S wave is simply - k R ,  
where k is the momentum of the pair's relative motion. The 
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simplicity of such a description is achieved by the fact that 
for V(r) in the form (2) the phases of scattering by the wall 
and by the Yamaguchi potential are added. 

Having assessed the feasibility of describing pairwise 
interaction in this manner, we now formulate the problem of 
the interaction of two atoms via an exchange electron with a 
fairly realistic pairwise potential. Here, however, we must 
deal with the problem of three-particle interaction with an 
unusual combination of a potential and the boundary condi- 
tion at the wall. 

In this paper we derive a transcendental equation for the 
effective potential of the interaction of two identical atoms 
that emerges because of the third particle in the system, the 
electron. We take the electron-atom potential in the form (2) 
and assume the atoms to be structureless. 

An example considered in this paper is the He; system. 
In particular, we show that the existing experimental data 
indicate that the long-range region is large and, as a result, a 
negative molecular ion He; exists even when there are no 
bound states in the He- and He2 systems. The recent 
discovery6 of a helium dimer only strengthens the above 
statement. 

2. THE TWO-BODY PROBLEM 

Here we consider the problem of two bodies with a re- 
duced mass m interacting via a compound potential of the 
type (2). The following statements are straightforward: the 
two-body pairwise wave function q is zero for r S R ,  its 
product with the painvise potential (2) in this region is also 
zero, and the first derivative qf  with respect to the radial 
coordinate exhibits a discontinuity at r = R. To verify these 
statements, we only need to examine solutions with a finite 
repulsive potential that tends to infinity in the positive- 
energy region E = ki12m. 

Introducing the notation v, for the finite value of the 
wall potential, and F(r)lr and G(r)lr for the regular and 
irregular solutions in the field of potential v, which behave 
like sin(kor)lk and cos(kor)lk as r A w  (the Wronskian is 
zero), we write the leading terms in the solution of the 
Schrodinger equation for v , ~  ~0 as 

The above statements follow directly from these asymptotic 
expressions. 

Thus, the Schrodinger equation with potential (2) has the 
standard form 

with an additional boundary condition q ( R )  = 0. In addition, 
the infinitely high wall (in the sense of a limit; see above) 
introduces a cliscontinuity into the first derivatives at the 
boundary. 

We solve this simple equation in a rather roundabout 
way so as not to return to the same problems in the three- 
body problem. We start with the problem of bound states 
with energy E = - ~ ~ / 2 m .  Let us take the Fourier transform 
of the Schrodinger equation. Since the first derivative is dis- 
continuous at r =  R, the Fourier transform of the Laplacian 
acquires an additional term in the form of an integral over 
the surface of a sphere of radius R: 

This produces an additional term in the Lippmann- 
Schwinger equation: 

Here go(z)= (z- k2/2rn)-' is the free Green's function in 
the momentum representation. To use the boundary condi- 
tions, we go back to the coordinate representation. We intro- 
duce the notation go(x,y) for the Green's function in this 
representation. To economize on space, we use primed sym- 
bols for the arguments of the Green's function that are in- 
volved in three-dimensional integration. Moreover, since we 
are interested only in the S-wave, in what follows we do not 
introduce special notation for partial harmonics. With this 
system of notation the equation for the wave function as- 
sumes the following form: 

By allowing for the boundary condition q ( R )  = O  we elimi- 
nate the derivative and obtain a two-particle integral equa- 
tion for the effective Green's function gefdx,y) responsible 
for the boundary condition at the wall: 

Equation (3) can easily be solved for any short-range 
potential and becomes especially simple for separable poten- 
tials. Here we consider a Yamaguchi potential 
v(x,y)= v(x) v(y) (in the coordinate representation) with a 
range that extends from R to infinity, and write the potential 
in the form of projection operators1 v)(vI, assuming in this 
case three-dimensional integration over all space with the 
three-dimensional ball of radius R excluded. It is convenient 
to write the Yamaguchi potential in the form 

where /? is the potential's parameter, which determines the 
range of the forces, and N is a coupling constant. 

We can now solve Eq. (3) by simple projection on (vl, 
which leads to the following spectral equation: 
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This expression can be thought of either as an equation for 
K with N fixed or as an equation for the coupling constant at 
fixed energy. Here we find the coupling constant N by fixing 
the pair's energy. Simple integration results in 

which differs only by an exponential factor from the expres- 
sion for the coupling constant of a potential defined over the 
entire range. 

The shape of the wave function for the Yamaguchi po- 
tential follows directly from Eq. (3), where it is simpler to 
find the quantity (vl*) from the normalization condition. 
This wave function (for r 2 R )  

*(r) 

with K*P coincides with the wave function of the weakly- 
bound state for any short-range potential (see, e.g., Ref. 7) in 
the region P(r  - R)% 1, differing from the wave function in 
the potential without a core only in the shift of the active 
region by the repulsion radius. This is especially evident for 
probability densities, or 1*I2d3r, which differ only in a shift 
by R and, therefore have the same normalization. 

The scattering problem can be solved as simply as the 
above problem. Denoting the Green's function in the range 
of positive energies E = ki/2m + iO by gl ( x , ~ )  and proceed- 
ing in the same manner as above, we arrive at a reduced 
equation for the wave function of the scattering state q\lr+ in 
any partial harmonic: 

Here g,'fdx,y) is determined in the same way as for negative 
energies, and qo is the respective partial harmonic of the 
plane wave. 

The method of solving Eq. (7) is similar to the method 
for the discrete spectrum. For applications we will need the 
scattering cross section. Hence here we only outline the 
scheme for finding the partial amplitude. After projecting on 
(vl we find the quantity (vl*), substitute its value into the 
wave function, and determine the factor in front of the di- 
verging wave in the asymptotic region. The factor is the 
partial harmonic of the S-wave. This is the way in which the 
elastic scattering phase a,,, (or the amplitude) is found. In 
particular, substituting the undetermined value of the cou- 
pling constant N and fixing the pole in the scattering ampli- 
tude at k0=iK, i.e., determining the real level for K > O  or 
the virtual level for K<O, we obtain the coupling constant, 
which coincides with (6). A remarkable feature of the com- 
posite potential (2) is the additivity of the scattering phases 
at the wall, a,, and the scattering phase for the Yamaguchi 
potential, a,, in which now there is no wall radius R (it is 
hidden in the definition of K): 

tan 6, = 
2Pk,(P+ K ) ~  

( P ~ + ~ ; ) ~ - ( P ~ - ~ : ) ( P +  K ) ~ '  

Concluding the study of the problem of two bodies with 
a composite potential (2), we note that it is convenient to use 
an equation like (3) in describing real systems at low ener- 
gies. Note that an "exact" numerical solution of the equa- 
tions in integral or differential form for realistic potentials in 
atomic physics is entirely out of the question if only because 
the accuracy needed to properly account for the exponen- 
tially increasing and exponentially decreasing terms in the 
repulsion region is determined by an exponential with a dec- 
rement of three or more orders of magnitude (for Morse-type 
potentials). Naturally, such accuracy is not needed for physi- 
cal systems, since the uncertainty of the painvise potentials 
is much higher. In real calculations we must either "cut off" 
the core at reasonable heights in the integral equations or 
impose a zero boundary condition at the core in the differ- 
ential form, i.e., we automatically distort the "realistic" po- 
tential. Hence it is reasonable to introduce a scheme in which 
experimental data are used to determine the parameters of a 
composite potential like (2) with a wall (not necessarily with 
attraction in separable form), while equations like (3) or (7), 
which are free of the numerical problem of cancellation of 
large terms, are used in applications. 

3. THE THREE-BODY PROBLEM 

Here we examine the problem of three interacting par- 
ticles, two of which (1 and 2) are identical and have mass 
M, and the third has mass p ,  with p*M. Such a mass ratio 
and the type of potentials chosen presupposes the existence 
of a system consisting of two atoms and a single electron 
(although not necessarily), and below we speak of atoms 
when referring to the heavy particles and of an electron when 
referring to the light particle. This system has a wave func- 
tion that is either even or odd under permutations of the 
spatial coordinates of the pair of atoms. The method is valid 
in both cases. Here we consider systems with even wave 
functions. 

Below we use coordinates and potentials with subscripts 
denoting a pair of particles: the subscript i  denotes a pair 
with the absent particle i .  For instance, V3 and r3  refers to 
the pair of particles 1 and 2, i.e., to the atoms. With such 
notation the potential V3 may be of an arbitrary type (we 
choose the Morse potential), while the potentials V1 and 
V2 between the atoms and the electron are chosen in the 
form (2). 

For the canonical system of coordinates we take the Ja- 
cobi coordinates pi between particle i and the center of mass 
of the remaining pair, and ri ,  between the particles in the 
pair. The possible ways in which the system can be broken 
into pairs yield three sets of Jacobi coordinates, related to 
each other by linear transformations. For instance, 
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~ a r l i e r ~  the Faddeev equations were used to obtain, via 
the semiclassical approximation, the potential for the heavy 
particles in a system consisting of two heavy and one light 
particles coupled only by Yamaguchi potentials between a 
heavy particle and the light particle. It turned out that aside 
from slight differences, this expression coincides with the 
one obtained earlier by Fonseca et aL8 directly from the 
Schrodinger equation in the Born-Oppenheimer approxima- 
tion. Here we immediately use the leading term in the series 
expansion of the Schrijdinger equation in powers of plM. 
This part is called the Born-Oppenheimer approximation in 
methods of expansion in the two-center basis (see, e.g., Ref. 
9 )  

The physical reason for the possibility of variable sepa- 
ration in a three-particle equation in this limit is more than 
obvious: with plM-iO the heavy particle ceases to move in 
relation to the center of mass of the electron-atom pair. 
Hence the coordinate r3 becomes canonical in all sets of 
Jacobi coordinates, which makes it possible to separate the 
variables. 

To verify the above statement, we note that the three- 
particle wave function * can be written in terms of an arbi- 
trary pair of Jacobi coordinates, T ( p l  , r l )  = * ( p 2 , r 2 )  
= * ( p 3  , r 3 ) ,  and for p l M 4 O  with allowance for the rela- 
tionship between the sets of coordinates we get 

To economize on space, instead of writing the set of coordi- 
nates in full we place a subscript on the wave function, i.e., 
*(x,r;)=*; and assume that the absence of Faddeev equa- 
tions here will exclude any mix-up with the notation for the 
components of the wave function in the Faddeev reduction 
process. 

With such notation the Schrodinger equation of the sys- 
tem with p l  M < 1 assumes the form 

where the reduced electron mass in relation to the pair. i.e. 
m3,12, is replaced by the electron mass. Otherwise we would 
exceed the available accuracy and have an effective potential 
with incorrect asymptotic behavior. Below we demonstrate 
this directly. The potentials V I  and V 2  are chosen in the form 
(2) .  Their attractive part is still denoted by 
v i ( x , y ) =  v i ( x )  v i ( y )  with the appropriate subscript. Here we 
assume that the pairwise interaction of the electron and an 
atom is contained only in the S-wave. 

In examining a specific problem we will not do all cal- 
culations with an arbitrary potential; rather, for greater clar- 
ity we deal with a separable potential. For instance the result 
of a potential acting on a wave function can be written as 
follows: 

V I * I =  v l ( r l ) f ( r 3 ) .  ~ 2 * 2 =  v ~ ( r Z ) f ( - r 3 ) ,  

where f(x) = ( v ( r ) q ( x , r ) ) ,  and the angle brackets stand for 
integration over all space except for a ball of radius R.  Here 
f (x )  is an even function. 

Next we take the Fourier transform with respect to the 
variable p3 to Eq. (9) .  The Fourier transforms of the terms 
with potential energy are straightforward, 

and we will not discuss them here any further. However, 
transformation of the Laplacian in p3 requires a more thor- 
ough study. As in the two-particle problem, to the standard 
term - k2W3(k,r3)  we must add two terms, Z I  and Z 2 ,  in the 
form of integrals over two spheres: one of radius R encom- 
passes the first atom, and the other the second. For the first 
term we show that after we go over to the first set of Jacobi 
coordinates, the expression 

acquires an especially simple form, which when we take into 
account only the S-wave interaction in coordinate r l  be- 
comes 

The prime denotes the derivative with respect to r l ,  i.e., 
9; ( r 3  ,R)  = d* ( r 3  ,R)I dR. The expression for the integral 
over the second sphere differs in r3  being replaced by 
- r 3 .  Hence below we allow for the fact that the wave func- 
tion is even and write the derivative at the boundary without 
a subscript. 

Defining the function U ( r 3 ) ,  which we call the effective 
potential, by the relationship 

and introducing the notation 

we arrive at the Lippmann-Schwinger equation with an ad- 
ditional term: 

which is similar to the equation for the two-particle problem 
in Sec. 2. The approach to this equation is the same as the 
one used in the two-particle problem. 

We go to the &-representation by an inverse Fourier 
transform and shift to the first set of Jacobi coordinates to be 
able to use the boundary condition: 
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At r = R the wave function vanishes, which makes it pos- 
sible to eliminate the derivative (see Eq. (3)) and arrive at the 
spectral equation 

for U(r3), an equation that formally coincides with Eq. (5) 
in the two-particle problem. The difference lies in the pres- 
ence of an additional term in the Green's function reflecting 
the effect of the second atom. 

Thus, the variables in the Schrodinger equation have 
separated. First in the spectral problem (1 1) we determine the 
function U(r3), and then solve Eq. (10) where this function 
acts as a local-potential addition to V3. Below we employ 
graphical means to illustrate the behavior of the effective 
potential. 

4. THE EFFECTIVE POTENTIAL 

In this section we give the expressions for the terms of 
the transcendental equation (10) for the effective potential 
and study some features of the effective potential related to 
the presence of repulsion in the electron-atom system at 
small distances. 

We introduce the notation u = 4- (Re u>O). 
Obtaining an equation for u only requires evaluating a some- 
what cumbersome integral with allowance for the definition 
of the Yamaguchi potential, its range of action (Eqs. (2) and 
(4)), and the normalization condition (6). Here we give the 
final expressions in the regions r3<2R and r3>2R, which 
appear in calculations and involve some interesting physics : 
attraction suddenly changes its behavior when electrons are 
unable to pass "between" atoms. The expressions are cum- 
bersome, so to shorten notation we introduce the following 
column within braces: 

At r3 = 2R the functions g l  and g 2  coincide, with the result 
that the expressions given below are continuous over the 
entire range 0 s  r3 < 00. 

The components of the implicit function needed to de- 
termine u(r3) can be written as follows: 

These relationships together with Eq. (1 I) completely deter- 
mine the effective potential U(r3). 

Let us investigate some features of this potential. As 
r 3 4 0 ,  Eq. (1 1) together with Eqs. (12)-(14) yield the 
simple relationship 

for u(O), which is independent of the electron-atom repul- 
sion radius and determines the greatest possible value of the 
wave number of the effective potential: 

U,,,=(fi- l ) p +  f i K .  

Interestingly, the effective potential vanishes only when 
there is virtual coupling in the electron-atom pair, i.e., at 

The depth of the potential remains constant as ~ 4 0 .  
At the maximum possible values of r3 ,  Eq. (1 1) simpli- 

fies and acquires the same form is in the zero-radius case.3 In 
particular, for KIPG 1 the leading term in the solution of Eq. 
( I  1) can be written as follows: 
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v". arb. units U , arb. units 

FIG. 2. Effective potentials for virtual pair coupling; K = 0.1. The necessary FIG. 1 .  Effective potentials for real pair coupling; K =  0.1. The necessary 
explanations are given in the text. explanations are given in the text. 

where the constant c = 0.5671 . . . is the solution of the equa- 
tion c=exp(-c). This determines the finite range in which 
the effective potential acts in the case of virtual coupling 
- K - ' ,  or an infinite range in the case of real coupling. Here 
u-+ K and, as noted in Ref. 3, we must call the quantity 

a quasi-two-particle potential for K>O. The quantity is 
shifted by the binding energy of the pair. There is no need in 
such a procedure for virtual coupling, and we can as usual 
call U the effective potential. The above remark concerning 
the replacement of the reduced mass of the system consisting 
of two atoms and one electron, m3,21, by the electron mass 
,u becomes obvious in this case. When ,u is replaced by 
m3,21, the asymptotic value of the potential is not the pair 
energy but a quantity shifted in relation to that energy by a 
constant - ,ulM. 

Breaking up the effective potential veff into two terms, 

we see that as in the case of a zero repulsion r a d i ~ s , ~  the two 
potentials decrease differently in the region (1). For instance, 
the first term decreases according to a llr: law and corre- 
sponds to the long-range Efimov behavior,' while the second 
term decreases only as l lr3 and theref~re,~ notwithstanding 
the factor K ,  generates a finite spectrum even when K+O. It 
is the second term that determines the spectrum of the sys- 
tem on the scales K and p ,  which correspond to real systems. 
Here for ro  in the region ( 1 )  we must take the greater of the 
two quantities p- ' and R .  

Figures 1 and 2 depict the effective potentials calculated 
by Eq. (1 1 )  as functions of the distances between the atoms 
for different values of the repulsion radii for the real and the 
virtual electron-atom coupling, respectively. The values of 
the potentials are measured in arbitrary units, the same in 
both figures. The dimensional quantities r ,  R ,  and K are 
made dimensionless by introducing the quantity P ,  i.e., 
/3= 1 .  The maximum differences between potentials with fi- 
nite repulsion radii and the effective potentials with R = 0 

(see Ref. 3) are observed in the region where r - 2 R  and 
consist in the following: in the region where r  is slightly 
greater than 2R the decay of the potentials sharply dimin- 
ishes, even leading to the appearance of a local minimum 
(see the curves with R = 1 ), while for r< 2 R  the potentials 
with a finite repulsion radius decay much faster, "catching 
up" with the potentials without repulsion, since their value 
at zero does not depend on R .  

Such behavior of the effective potential can be explained 
by a fairly simple interaction model. For large distances be- 
tween the atoms the electron wave function can be repre- 
sented by a sum of pair wave functions with each atom.7 
Then the effective potential is defined as the potential energy 
averaged over the wave function. In the resonant case 
(KIP<< 1 )  the asymptotic expression for the pair wave func- 
tions contains a factor of the l l r  type. In the region ( I ) ,  i.e., 
for ~ r ~ < <  1 ,  this yields terms of the l l r ;  and l l r3  type. At 
smaller distances the pairwise wave functions become highly 
distorted. Here the electron density between the atoms begins 
to decrease because of the zero boundary condition at the 
two spheres with an area of ~ I T R ~ ,  which leads to a weak- 
ening of attraction. As the repulsion area decreases for 
r 3 < 2 R ,  the potential again begins to deepen, reaching its 
limit when the atoms merge. This situation corresponds to a 
wave function with a doubled attraction potential. The 
doubled Yamaguchi potential results in motion with a wave 
number defined by Eq. (15) .  Figure 2 clearly shows the 
higher rate of decay of the effective potential U. Such be- 
havior can be explained by the sign of the term with a decay 
of the 1/r3 type, opposite to the sign of K .  

Concluding this section, we note that the large value of 
p corresponds to deep narrow potentials. Attraction in 
electron-atom systems is determined by a polarization po- 
tential of the l lr4 type, which is shallower and wider. Hence 
for real systems of atomic physics, ,f? differs little from K ,  

and the value of the dimensionless radius, P R ,  is much 
smaller than unity, which concsponcls to curves with 
R=O. l .  
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TABLE I .  Comparison of experimental and model cross sections of 
electron-helium elastic scattering. 

Scattering cross section, a, 
Energy, eV Experiment Fit 

5. THE BOUND STATES OF He; 

For the sake of an example we examine a system con- 
sisting of two helium atoms and an electron. The pairwise 
helium-helium potential is chosen in the form of a Morse 
potential whose parameters do not produce a bound state of a 
He2 molecule: lo 

where the depth Vo of the potential is 11.0 K, and the pa- 
rameters c and a determining the shape of the potential are 
6.00 and 2.62 A, respectively. 

The electron-helium potential was taken in the form of 
(2). The parameters R ,  K ,  and P of this potential were found 
by fitting the S-wave scattering cross section for such a po- 
tential with the experimental data via the least squares 
method. The scattering cross section can easily be found 
theoretically by allowing for (8). The experimental values in 
numerical form are taken from a review by de ~ e e r . "  The 
parameters of the potential (2)  obtained in this manner were 
KIP= -0.225, P=0.967 k l ,  and R=0.693 A and yield 
satisfactory agreement between the experimental and model 
values of the scattering cross section. The quality of the fit- 
ting process can easily be seen from Table I, where the en- 
ergy is given in electron volts and the scattering cross section 
in units of the Bohr radius. 

The rms value of the relative deviations of the model and 
experimental data of roughly 4% builds up at energies where 
the experimental cross sections are higher than the unitary 
limit in the S-wave. 

After we have found the pair interaction, we can easily 
calculate the effective potential. As the values of the param- 
eters show, there can be no bound electron-helium pair 
(K<O). More than that, the effective potential is at the 
threshold of appearance (16) and must be extremely shallow. 
Indeed, substituting the values of the parameters of the 
electron-helium potential into Eq. ( 1  I ) ,  allowing for Eqs. 
(12)-(14), and solving the implicit equation numerically, we 
obtain the maximum value for the effective potential at zero, 
==3.8 K, while the total potential U,,,= V3+ U change the 
depth only by 1.3 K ,  i.e., by 12%. However, this range is 
much larger than that of the helium-helium interaction po- 
tential. This becomes especially evident if one looks at Fig. 
3, which depicts the total potential and the Morse potential 
for the helium-helium pair. We see that the effective poten- 
tial has a volume no smaller than that of V g  . To conipa1.e the 
characteristic volumes we use the quantity 

FIG. 3. The potentials Vj and V,,,, of the helium-helium interaction in the 
He2 and He; systems. The necessary explanations are given in the text. 

which enters into Calogero's estimate (see, e.g., Ref. 12) for 
the number of levels n, . Here n,< J .  Integration is over the 
attraction region of the potential. A simple analytic calcula- 
tion yields for the Morse potential the value JM=0.835, 
while a numerical calculation for the effective potential in 
the range of attraction of the total potential yields 
Jef f -  2.27. Here the total potential yields J,,,=2.73. Thus, 
the exchange potential U is roughly 2.7 times as effective as 
the helium-helium potential Vj . 

The value of the quantities J can be used to estimate the 
number of levels generated by all potentials together and 
separately. In particular, the helium-helium potential does 
not produce any bound state, while the effective and total 
potentials can have no more than two bound states. Numeri- 
cal calculations done by the semiclassical Bohr-Sommerfeld 
formula confirm the validity of such an estimate. The good 
agreement of the results of semiclassical calculations with 
those obtained by numerical solution of the Faddeev equa- 
tions has been demonstrated earlier in Ref. 3. For calcula- 
tions we used the quantization formula 

where integration is up to the turning points. Below is infor- 
mation about the spectrum generated by the effective poten- 
tial. For its calculation the left boundary was determined 
from the turning point in the total potential. The Morse po- 
tential V3 generates no bound states. The effective potential 
U generates a single bound states with a binding energy 
-0.487K. The total potential generates two bound states 
with binding energies - 0.8 13 K and - 3.5 X loe5 K.  

6. CONCLUSION 

The approach developed in this paper for describing 
three-particle systems with strong repulsion in pairwise po- 
tentials can be formulated not only for attraction in separable 
form but for potentials of an arbitrary type. The solution of 
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the spectral problem for determining the effective potential 
will in no way differ from approaches that use the expansion 
in the two-center basis and will require the same amount of 
effort. On the other hand, using a separable potential of the 
Yamaguchi type does not limit the approach. With another 
separable potential only the relationships (12)-(14) change. 
If we need to use separable potentials with a system of deep 
levels, we can used a multirank separable potential, which 
leads to complications in the expressions but does not change 
the principles of the approach. The solution of such problems 
is simpler because of the high percentage of analytic calcu- 
lations in comparison to the two-center basis expansion. 

The example of the He; system with the weakest pos- 
sible polarizability of the atoms and the lightest possible cen- 
ters suggests that the spectrum contains an asymptotic part 
caused by long-range action in all diatomic negative ions. 
The author hopes soon to obtain results from calculations for 
specific systems such as diatomic negative ions and systems 
consisting of two heavy atoms and helium, whose mass ra- 
tios also suggest the presence of a long-range component in 
the three-particle spectrum. 
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')1n this work we take Planck's constant to be fi= 1. 

- 

'V. Efimov, Yad. Fiz. 12, 1080 (1970) [Sov. J. Nucl. Phys. 12,589 (1971)l. 
'N. Zh. Takibaev and F. M. Pen'kov, Yad. Fiz. 50, 373 (1989) [Sov. J. 
Nucl. Phys. 50, 234 (!989)]. 

'F. M. Pen'kov, Zh. Eksp. Teor. Fiz. 106, 1046 (1994) [JETP 79, 568 
(1994)l. 

4 ~ .  A. Rabinovich and Z. Ya. Khavin, Concise Chemical Handbook [in 
Russian], Khimiya, Leningrad (1991), p. 30. 

5N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Clar- 
endon Press, Oxford (1965). 

6 ~ .  Luo et al., J. Chem. Phys. 98, 3564 (1993). 
7 ~ .  D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativi~tic 

Theory, 3rd ed., Pergamon Press, Oxford (1977), pp. 549 and 312. 
'A. C. Fonseca, E. F. Redish, and P. E. Shanley, Nucl. Phys. A 320, 273 
(1979). 

9 ~ .  V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and 
Coulomb Spheroidal Functions [in Russian], Nauka, Moscow (1976). p. 
296. 

'OD. D. Konowalow. J. Chem. Phys. 50, 12 (1969). 
"F. J. De Heer, in Proc. 9th International Con$ of the Physics ofElecfron 

and Atomic Collisions, Seattle, July 24-30, 1975, Univ. of Washington 
Press, Seattle (1976). p. 79. 

"A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reac- 
tions, and Decay in Non-relativistic Quantum Mechanics, Nauka. Moscow 
(1971), p. 18 [English translation of earlier edition: NASA Techn. Transl. 
F-510 (1969)l. 

Translated by Eugene Yankovsky 

394 JETP 82 (3), March 1996 F. M. Pen'kov 394 


