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The spectrum of the surface polaritons in tetragonal magnetoelectric antiferromagnets is 
investigated theoretically. It is shown that consideration of the magnetoelectric coupling introduces 
dispersion of the magnetic permeability in the optical frequency range. This leads to new 
types of surface modes, i.e., magnetic optical polaritons. The magnetoelectric interaction also 
results in the appearance of nonreciprocity, i.e., a difference between the rates of 
propagation of the surface waves along the wave vector and in the opposite direction. The 
surface modes are always virtual when the wave number is negative. O 1996 American Institute 
of Physics. [S 1063-776 1 (96)02702-41 

1. INTRODUCTION 

Since the discovery of the large value of the magneto- 
electric susceptibility in terbium phosphate,' there has again 
been heightened interest in the investigation of various 
physical properties of magnetoelectric antiferromagnets. In 
particular, the influence of the magnetoelectric interaction on 
the spectrum of elementary bulk excitations (magnetoelastic 
waves) has been the subject of some recent s t ~ d i e s . ~ . ~  

It would be interesting to investigate the influence of the 
magnetoelectric effect on the properties of surface waves in 
antiferromagnets. From the practical standpoint, this interest 
arises because such modes can be excited by both magnetic 
and electric fields. 

This paper focuses on the spectrum of surface electro- 
magnetic waves (polaritons) in tetragonal magnetoelectric 
antiferromagnets when a surface wave parallel to the antifer- 
romagnetism vector. It is shown that the magnetoelectric ef- 
fect results in the appearance of new types of surface polari- 
tons, nonreciprocity, and the conversion of real polaritons 
into virtual polaritons in the antiferromagnet. 

Let us consider a tetragonal antiferromagnet occupying 
the half-space x>O. We write the energy density of the anti- 
ferromagnet in the formd5 

-P .E+FME,  (I) 

where A, B, a ,  D, D ', and pi are parameters of the exchange 
interaction and the anisotropy, M and L are the ferro- and 
antiferromagnetism vectors, H and E are the magnetic and 
electric field strengths, K, and are the dielectric constants, 
and P is the polarization vector. The term describing the 
inhomogeneous exchange interaction has been omitted in 
(1). This enables us to neglect the spatial dispersion of the 

dynamic magnetic permeability and dielectric constant of the 
antiferromagnet. The influence of the spatial dispersion of 
these parameters on the spectrum of the surface modes will 
be discussed at the end of the paper. 

The energy of the magnetoelectric interaction FME in (I) 
can be written as5 

The form of the magnetoelectric coefficient tensor + is de- 
termined by the specific magnetic symmetry of the crystal. A 
table of the nonzero components of 9 for crystals of different 
magnetic symmetries is presented in the appendix. 

For tetragonal crystals with a 4 1  2; I -  structure (Turov's 
the energy (2) has the form 

- Y~L,(MXPX*M,P,)- Y4MZPZLZ 9 (3) 

and for tetragonal crystals with a 4,'2:1- structure this en- 
ergy is written in the following form 

- Y3LZ(MXPY +MyPx). (4) 

We choose the state with LollZ, Mo=O, and Po=O as the 
ground state. This state is possible when there are no con- 
stant magnetic or electric fields: Ho, Eo=O. 

To find the spectrum of surface waves we start out from 
a system of the equations of motion of the magnetization 
(Landau-Lifshitz) and polarization, as well as Maxwell's 
equations 

div D= 0, div B= 0. 
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Here g is the gyromagnetic ratio, c is the speed of light in a 
2 vacuum, f-z l m u o ,  z and m are the charge and reduced 

mass of a unit cell with a volume v o ,  A is the damping 
parameter, which determines the longitudinal relaxation in 
the magnetic subsystem, and H,=dFlda  (a=M, L, P ) .  It 
was assumed in writing Eqs. (5) that the antiferromagnet is 
an insulator, and the transverse relaxation in the magnetic 
subsystem was neglected. The longitudinal relaxation of M 
and L has to be treated because so-called TE polaritons can- 
not exist in an antiferromagnet in this geometry otherwise. 

Let us consider small vibrations near the equilibrium po- 
sition indicated above. Linearization of the first three equa- 
tions in the system (5) for the Fourier components of the 
variables enables us to write them in the following manner: 

where iM and GE are the dynamic magnetic and dielectric 
susceptibility tensors, and iME=GME is the dynamic magne- 
toelectric susceptibility tensor. The expressions for their 
components in crystals with a 4'2,~- structure have the 
form 

The remaining components of these tensors are equal to zero. 
In crystals with a 4:2:1- structure the tensors iM and GE 
are also specified by Eqs. (7), but in the components of iME 
the index yy should be replaced by yx and xx should be 
replaced by xy. For crystals of these symmetries XzE is 
equal to zero, since, according to (4), the term containing y4 
in the magnetoelectric energy is absent. It follows from (7) 
that the magnetic and dielectric susceptibilities have features 
in the vibrational frequencies of both the magnetic and di- 
electric subsystems due to the magnetoelectric effect (the 
possibility of such a situation in solids was noted in Ref. 10). 
The magnetoelectric susceptibility also has features in these 
frequencies. The static values of these susceptibilities are 
expressed by the formulas 

and the analogous expressions for the zz components are 
obtained by replacing the subscript I by 1). The magnetoelec- 

tric constants y can be evaluated from (8) using experimental 
values for xME. The values of the magnetoelectric suscepti- 
bility vary over a broad range: X M " - ~ ~ - 5 -  (Ref. 2). 
Hence as typical values of the parameters of the problem we 
obtain Lo- 1 o3 Oe, X, - 1 oP3, and K, - 1. The values of the 
magnetoelectric constants y also vary in the range from loF5 
to and [ varies from lo-' to 10-I (the latter values of 
y and 5 are valid, for example, for terbium phosphate). 

The presence of features at the same frequencies in iM 
and GE, as well as the presence of a nonzero magnetoelectric 
susceptibility xME, can produce new types of surface waves 
in magnetoelectric antiferromagnets. To obtain their disper- 
sion laws, we must solve Maxwell's equations in the system 
(5) using the relations (6) and continuity at x=O of the nor- 
mal components of the magnetic induction B and the electric 
displacement D, and of the tangential components of the cor- 
responding fields H and E. We seek the solution of Max- 
well's equations within the antiferromagnet in the form 

h('),e(')mexp(- iw t  + i k z -  K~x) ,  x>O, (9) 

and outside the antiferromagnet in the form 

(it is assumed that the antiferromagnet has a boundary with a 
vacuum at x=O). Substituting (9) and (10) into Maxwell's 
equations for an antiferromagnet and a vacuum, we can ob- 
tain the dispersion equations of the surface waves. These 
equations are different for crystals of different symmetry. To 
illustrate the characteristic effect of the magnetoelectric in- 
teraction on the spectrum of surface waves in an antiferro- 
magnet, we shall next consider a crystal of the 412:~- 
class, in which this influence is most pronounced in the ge- 
ometry under consideration. 

For the reciprocals of the penetration depths of the sur- 
face waves in the vacuum (e) and the antiferromagnetic (i), 
we obtain the following expressions from Maxwell's equa- 
tions using (6), (7), (9), and (10) in 4 ~ 2 : ~ ~ :  

M E M E  Here p l=  1 +4rrx,, 1 + 4 r r ~ . ~ ~  ,,,, and a = 4 r r ~ r ~  . 
The second equation describes the propagation of a TE wave 
(h, ,hi ,ey) within the antiferromagnet, and the first equation 
describes the propagation of a TM wave (ex ,ei ,hy). Fulfill- 
ment of the boundary conditions for the solutions (9) and 
(10) leads to an additional relation between k  and K, which, 
together with Eqs. ( l l ) ,  makes it possible to obtain the dis- 
persion laws of the surface waves. For TE waves this relation 
has the form 

K i = - P 2 K e  , (12) 

and for TM waves it has the form 
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Here p2= 1 + 47~~:. It is seen from (12) that surface TE 
polaritons are damped in the symmetry under consideration, 
since, according to (7), Xg is complex. These polaritons 
were considered in Ref. 11. Surface waves of another form 
are possible only when the component cZi=z2 of the dielec- 
tric tensor is negative. According to (7) these modes exist in 
the frequency range 

where wge= ~ ~ ~ ( 1  + 4 7 ~ ~ ~ ~ ) ~ ' ~ = e ~ / ' ~ w ~ ~ .  The range (14) lies 
in the optical region. According to (7), TM polaritons are 
nondamping, since only the longitudinal relaxation was 
taken into account in the original equations (5). Using (13), 
from (1 1) we ultimately obtain the dispersion equation of 
surface TM polaritons in magnetoelectric antiferromagnets 
of 4 ~ 2 : ~ -  symmetry: 

Since surface TM polaritons can be observed only when 
c2<0 holds, it follows from (11) that their domain of exist- 
ence is divided into three parts. 

1. Polaritons of type I: e2(0,el), pI>O.  
In the (w,k) plane these polaritons can exist for w<w4, 

and w > o ~ ~  in the region -wlc-<k< - w/c and in the re- 
gion wlc< k< wlc, . The values of c, and 6.)4e,6e are given 
by the formulas 

The frequencies w4e and w6e are the optical roots of the 
equations A=O and =0, respectively. In the derivation of 
the expressions for w4, and 06e it was assumed that the 
condition 4 4  w:e is satisfied. 

2. Polaritons of type 11: c2<0, el<O, p I<O.  
Polaritons of this type can be observed for w4,< w< 05 ,  

and in the regions k>max(olc+ ,w/c) and 
k<min(- w/c- , - wlc). The frequency 

is the optical root of the equation p l = O .  
3. Polaritons of type 111: E~<O, eI<O, p l > O .  
These polaritons can exist for w ~ ~ <  w< 64e and any k in 

the ranges w<-ck and w<ck. 
We note that all the surface polaritons just enumerated 

will be observed only when their domains of existence fall in 
the range (14). We also note that the polaritons of type I are 
virtual (relativistic): when there is no retardation (c+w), 
they are absent. The polaritons of types I1 and I11 can be real, 
if the frequency 

( P = K ~ / Y ~ ) ,  which is the optical root of the equation 
1 - - E ~ E ~ = O ,  falls in their domain of existence and in the fre- 
quency range (14). At this frequency the wave number (15) 
tends to infinity in the region of positive k. 

FIG. 1. Sign-reversal scheme of the magnetic permeability (P,) and the 
dielectric constant (E ,) as a function of the frequency. The frequencies w,, to 
w6, are the optical roots of the equations A=O, p,=O, and eI=O, respec- 
tively. Here a>O when w<w,,. The Roman numerals label the possible 
regions for the existence of surface modes of  different types, if the range 
(14), where c2<0, falls in these regions. 

Thus, it can be concluded that new types of surface 
waves are possible in magnetoelectric antiferromagnets. 
They include, in particular, surface modes of type 11. These 
excitations arise because the magnetic permeability can be 
negative even at optical frequencies in antiferromagnets 
when the magnetoelectric effect is taken into account. We 
note that the character of surface modes of type I and 111 in 
magnetoelectric antiferromagnets also varies. Due to the 
magnetoelectric interaction, the spectrum of these modes is 
asymmetric relative to the frequency axis, i.e., nonreciprocity 
appears, which is confined to the fact that the velocities of 
the surface waves along the z axis in the positive and nega- 
tive directions are not equal to one another. The velocity 
difference is determined by the magnitude of the magneto- 
electric coupling. 

The specific form of the spectrum of surface 'I'M polari- 
tons depends on the relationship between K, and TI. Figure 1 
presents the sign-reversal scheme of the magnetic permeabil- 
ity pl and the dielectric constant e l  as a function of the 
frequency in the optical range. The frequency range (14) for 
the existence of surface TM polaritons can be found in any 
of the regions indicated in Fig. 1 in the general case. Its 
location depends on the relationship between the values of 
the parameters p= ~ , l r l ,  EII= 1 +4rryl, and E, . An analysis 
reveals that only four cases are possible: 

polaritons of type I; 

polaritons of types I, 11, and 111; 

polaritons of types I and 111; 

polaritons of type I. 
When P>eII holds, we have ~ ~ 4 - w  on the lower 

boundary of the range (14), and, according to (IS), the wave 
number is k= + w2,Ic. On the upper boundary of the range 
we have e2+0, and the wave number is determined by the 
formula k= + w ~ ~ / c ? ( w ~ ~ ) .  Thus, the domain of existence 
of polaritons of type I is confined to the region between the 
straight lines w= +ck and w= kc ,  (w3,) k. The dispersion 
curves of the polaritons of type I for the first case are pre- 
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FIG. 
lines 

2. Dispersion curves of polaritons of type I when P>eII.  The dashed 
are the curves for w,,--to,, (P=eII). 

sented in Fig. 2. It is seen that these polaritons are, in fact, 
virtual, since they are absent when C-+W (i.e., in the ab- 
scence of retardation). Only when we have P=q (or 
w3,= w4,), do these polaritons transform into real polaritons 
in the region of positive k (the dashed curves in Fig. 2). 
When w=w2, holds, the penetration depth K,: of the surface 
waves in the antiferromagnetic is equal to zero, and in the 
vacuum K, is equal to infinity. On the upper boundary of 
the domain of existence of polaritons of type I, the penetra- 
tion depth K; equals infinity, and in the vacuum it is given 
by the formula 

where the plus and minus signs correspond to positive and 
negative k. It follows from Fig. 2 that the spectrum of po- 
laritons is asymmetric relative to the frequency axis. This 
indicates that the waves propagate at different speeds in the 
positive and negative directions along the z axis. The differ- 
ence between these speeds is determined by the strength of 
the magnetoelectric coupling. This nonreciprocity arises be- 
cause the magnetoelectric susceptibility tensor is gyrotropic. 

Surface polaritons of all three types can appear in the 
range wZe<w<w3, for l<P<qI (19). For w3,<w<o,, the 
surface modes are polaritons of type I, for w4,<w<w5, 
they are polaritons of type 11, and for w5,< w < w7, they are 
polaritons of type 111. The dispersion dependence of the po- 
laritons (Fig. 3) is practically continuous, although the char- 

FIG. 4. Dispersion curve of surface polaritons of type I11 for l/&,<P<I. 

acter of the modes changes at o=w4, and w=w5,, where 
modes of one type are replaced by other modes. At the lower 
boundary of the range (14) the value of the wave number is 
k= t wZe/c. The penetration depths of the waves in the an- 
tiferromagnet and the vacuum are equal to zero and infinity, 
respectively. When w-+y,  (18), the polaritons of type 111 
transform into real polaritons ( k - w  when W-+ye) in the 
positive range of wave numbers, and the surface polaritons 
are virtual over the entire frequency domains of existence 
when k is negative. At the upper boundary of the domain of 
existence of the surface modes (w=w,,) the penetration 
depth of the polaritons tends to zero both in the antiferro- 
magnet and in the vacuum in the region of positive k, and the 
surface modes convert into bulk modes occurs ( K ~  and K, 

become imaginary) in the region of negative k. 
According to (19), polaritons of types I and I11 should 

exist in the range (14) when l/e,</?<l. However, a more 
detailed analysis reveals that only polaritons of type 111 can 
appear in this case. The dispersion curve is presented in Fig. 
4. The values of the wave numbers and the behavior of the 
penetration depth in the antiferromagnet and the vacuum at 
the lower boundary of the range (14) are the same as in the 
two preceding cases. At the upper boundary the behavior of 
these parameters is similar to their behavior in the preceding 
case. The wave number kl is given by the formula (as in Fig. 
3) 

FIG. 3. Dispersion dependence of the surface polaritons for I <P<eII. The 
Consideration of the magnetoelectric coupling results, first, 

Roman numerals label the domains of the existence of polaritons of different in the curves to the fie- 
types. quency axis. This corresponds to the appearance of nonreci- 

o where the values of E I ,  p l ,  e2, and a should be calculated 
A for w=w,,. Hence it is seen that kl  depends strongly on the 
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t o = - c k  

\\ 
\ 

;o= ck 
I magnetoelectric coupling constant y3, which appears in the 

/' expression (11) for a. When y3-+0, the surface modes of 
/ \\ ' W 3 e  ,I type 111 in the region of negative k also transform into real 

polaritons. 
In the last case, in which O<P< 1/.9,, only polaritons of 

type I should appear according to (19). However, here, too, a 
more detailed analysis of (11) and (15) reveals that these 

I polaritons cannot exist in the range (14). 
C 

k  
Thus, magnetoelectric antiferromagnets, unlike ordinary 

antiferromagnets, should exhibit the following main features. 



TABLE I. Con~ponents of the magnetoelectric tensor. 

1) I I -  ....... ....... 

procity, i.e., a difference between the rates of propagation of 
the,surface waves along the antiferromagnetism vector and in 
the opposite direction. Second, at negative wave numbers the 
surface modes become virtual. When c+w, these modes are 
absent. Special attention must be focused on this fact in ex- 
perimental investigations of these modes. Third, surface 
modes of a new type can appear in magnetoelectric antifer- 
romagnets. They are polaritons of type 11. Their appearance 
is due to the dispersion of the magnetic permeability ,u, in 
the optical range. This dispersion, in turn, results specifically 
from the magnetoelectric coupling. The polaritons of type I1 
are magnetic in nature; therefore, they should be called "op- 
tical magnetic" (or "magneto-optical") polaritons. 

We note that in the present work we restricted ourselves 
to a treatment of one class of tetragonal magnetoelectric an- 
tiferromagnets, viz., 4 ~ 2 : ~ - ,  and one geometry of the prob- 
lem. An investigation of other classes of antiferromagnets 
and other geometries would significantly expand the scope of 
the present work. Therefore, we shall indicate here only the 
main phenomena appearing in other problems. 

For antiferromagnets of the 4:2:1- class and the ge- 

ometry indicated above, the sign in front of a should be 
reversed, according to (7) and (11). This is equivalent to 
reversing the sign in front of the wave number in (11) and 
(15) while maintaining the sign of a. Thus, the spectrum of 
the surface polaritons in 4:2:1- crystals in the geometry 
considered can be obtained from the spectrum presented here 
via the replacement k+ - k, i.e., upon mirror reflection of 
the spectrum investigated relative to the frequency axis. 

In magnetoelectric antiferromagnets of the 4,'2:1- 
classes in a geometry in which the antiferromagnetism vector 
is perpendicular to the surface of the sample and the wave 
vector of the surface wave, both TE polaritons and TM po- 
laritons can appear. One special feature of these polaritons is 
that they can appear both at vibrational frequencies of the 
spin subsystem (o-o,) and at optical frequencies (w-w,,).  
Another important feature in such a geometry is that all the 
types of surface polaritons are modes which appear in the 
bulk of the antiferromagnet. 

In antiferromagnets of the 4:2;1- classes in the geom- 
etry considered here, the models of the TE and TM polari- 
tons are coupled. In addition, the presence of the term 

384 JETP 82 (2), February 1996 V. D. Buchel'nikov and V. G. Shavrov 384 



- y,M,P,L, causes the component p,; of the magnetic per- 
meability tensor to also have a feature in the optical frequen- 
cies. Thus, the spectrum of surface polaritons in antiferro- 
magnets of the 4:2,,l1 classes should differ considerably 
from the spectrum considered above. In particular, weakly 
damped TE surface polaritons should be expected to occur in 
such magnets. An analysis of the spectrum of the surface 
modes in tetragonal antiferromagnets of the 4'?2,1- classes 
requires a separate investigation. 

The substances in which the surface polaritons consid- 
ered here might be observed should be mentioned. They in- 
clude, for example, t r i r u t i l e ~ ' ~ - ~ ~  and rare-earth phosphates 
and van ad ate^,"'^"^ if the ground state considered here is 
realized in them. In particular, the highest magnetoelectric 
susceptibility X M E -  lop2 was discovered experimentally in 
tetragonal terbium phosphate. ' 

Finally, we recall that the spatial dispersion of dielectric 
constant was neglected in the present work. In particular, this 
can have bearing on the fact that the vanishing of the pen- 
etration depth of the surface waves in the magnet renders the 
macroscopic approach considered here inapplicable. The 
usual condition for macroscopic waves is ak< l ,  where a  is 
the lattice constant. It was shown in Ref. 17 that consider- 
ation of the spatial dispersion of the magnetic permeability 
tensor (2) leads to a more rigid condition than the usual 
condition for macroscopic waves. Thus, all the results ob- 
tained here hold when a k 4  I. 
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APPENDIX A 

The table presents the nonzero components of the mag- 
netoelectric coefficient tensor ? in the energy F M E  

=- ynayM,LBPy for crystals of different symmetry. The 
filled circles denote nonzero components of ?, and the un- 
filled circles denote nonzero components which must be 
written with a minus sign. The lines connect components 
which are equal in absolute value. The number of indepen- 
dent components of ? is given in parentheses. For simplicity 
the tensor is written in a two-index scheme: yap,= ynj, 
where the values j= I, 2, 3, 4, 5, 6, 7, 8, and 9 correspond to 
the indices p y =  11, 12, 13, 2 1, 22, 23, 3 1, 32, and 33. 
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