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The nonlinear stage of spinodal decomposition in multi- 
layered structures is investigated in the present work. The 
interest in this problem is due primarily to the active inves- 
tigation and diverse applications of multilayered structures 
consisting of ultrathin (-1 nm) metal films with limited 
solubility.' In solid solutions with limited solubility two 
phases differing with respect to the concentrations of the 
components coexist below the phase-separation temperature. 
Such a situation is realized, for example, in FeICr, CoICu, 
and some other solid solutions. In a multilayered structure 
consisting of films with equilibrium concentrations, interdif- 
fusion is suppressed, and an increase in its themostability 
can be expected. However, it was shown in Ref. 2 that the 
one-dimensional periodic distribution of the concentration is 
unstable with respect to fluctuations of the film boundaries 
and that the growth rate of this instability increases with 
decreasing film thicknesses. Here we investigate the nonlin- 
ear stage of this process and show that in multilayered struc- 
tures diffusion-controlled relaxation involves a doubling of 
the period and that the precise scenario of this doubling de- 
pends sensitively on the total number of films in the struc- 

(D is a kinetic coefficient) takes the form of the Cahn-Hillard 
equation 

and the equilibrium concentrations c!ly2) have the values + 1. 
Let us consider the evolution of the initial distribution corre- 
sponding to a multilayered structure of films with equilib- 
rium concentrations: 

where z, is the coordinate of the nth boundary and N is the 
total number of boundaries. We note that each of the terms in 
(5) is a solution of Eq. (4) when dcldt=O. The first pair of 
boundary conditions for Eq. (4) imply the absence of diffu- 
sive fluxes on the boundaries: 

ture. 
Let us consider a substitutional solid solution consisting = 0, (6) 

of atoms of two kinds (A and B), where the concentration of 
atoms of type A is equal to c. The free energy of the decom- 
posing solution has the form 

where a, p, and y are positive coefficients, and co is the 
mean concentration of the solution. For the equilibrium con- 
centrations of the phases we have 

The diffusion-controlled relaxation equation 

where L is the total length of the structure. If surface segre- 
gation effects (see, for example, Ref. 3) are ignored, the sec- 
ond pair of boundary conditions has the form 

We have solved problem (4)-(7) analytically and nu- 
merically. The analytical solution is based on an assumption 
that the distortion of the shape of the boundaries as they 
move during the relaxation process is weak. We seek a solu- 
tion of Eq. (4) in the form 

in the dimensionless variables 
Assuming that the rate of motion of the boundaries V,dz,/dt 

D a2 
c=(C-Co)$, t = t ( q y ) ,  r = r G  and steady-state the correction (duldt=O), u(z,t) after are integrating small and twice that the we process obtain is 
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where a and b are integration constants. 
We expand u(z,t) in the eigenfunctions cpx of the opera- 

tor H: 

Here f (z) is the right-hand side of Eq. (9), and A denotes the 
eigenvalues of H. The equation for the eigenfunctions (o, has 
the form of the Schrodinger equation for a particle in a field 
of N potential wells. Recalling the assumption that the cor- 
rection u(z,t) is small, we require that f(z,t) be orthogonal 
to all the functions cpx corresponding to A=-4. To within 
terms of order exp(-2(zn-2,-,)), the eigenfunctions cpx 
are N linearly independent combinations of the functions 
c o ~ h - ~ ( z  - z,), which are solutions of the Schrodinger equa- 
tion for an isolated well centered at the point z = z n  and 
A= -4. As a result, we have the N conditions 

The boundary conditions (6) take the form 

which corresponds to maintenance of the mean concentration 
as the phase boundaries move. Thus, we have a system of 
N+l  equations for determining the coordinates of the 
boundaries z,, and the constant b: 

Here l,,, = zm - z,, , is the thickness of the mth film. From 
the system of equations (12) it follows that the variations in 
the concentration distribution are due to the "interaction" of 
the boundaries and are small when the film thicknesses are 
small in comparison with the width of a phase boundary, 
which is of the order of unity in our variables. When this 
condition is satisfied, the assumptions made regarding the 
smallness of Vn and u(z,t) are justified. The derivative dul 
dt is -v2, and, thus, the condition for a steady-state diffu- 
sion process is satisfied. In the derivation of Eqs. (12) we 
neglected terms of order exp( - 2(1, + 1, + ,)). Nevertheless, 
the motion of the mth boundary depends on the thicknesses 
of all the films in the multilayered structure, and this fact is 
formally expressed in the structure of the first term in Eqs. 
(12). This nonlocality is due to the interaction of the phase 
boundaries through the diffusion field of the solute atoms. 
We note that an interaction of this type is dominant in the 
case of two and three measurements and can be described in 
the Lifshits-Slezov modeL4 

We investigate the instability of an unrestricted multilay- 
ered structure with a period 2d. For this purpose we seek a 
solution of Eqs. (12) in the form 

Then for 6, we obtain 

It follows from (14) that the multilayered structure is abso- 
lutely unstable with respect to fluctuations of the thicknesses. 
The dependence of the fluctuation growth rate on the wave 
number k ,  

has a maximum at k =  7~/2d, which reflects a tendency to 
double the period. The expression (15) coincides with the 
growth rate obtained in Ref. 2. 

Let us consider the case of four films having an initially 
identical thickness. From the symmetry of the problem it 
follows that 

From the system of equations (12) we have b =O. Figure l(a) 
displays the time dependence of the film boundaries. The 
thicknesses of the outermost films increase, while those of 
the central films decrease. The dependence of the dissolution 
time of the central films on the initial thickness d has the 
form (Fig. I b) 

The crosses in Fig. lb  represent the results of the numerical 
solution of the problem (4)-(7) based on a splitting method.' 
Films of doubled thickness form after a time T. 
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As the number of films is increased, the dynamics of the 
system becomes increasingly nontrivial. Figure 2a shows 
plots of the dependence of the coordinates of the boundaries 
in a multilayered structure of 16 films obtained as a result of 
a numerical solution of the problem. In this case the 3rd and 
14th films dissolve first. The dependence of the dissolution 
time of these films on the initial thickness d is presented in 
Fig. 2b. We observe (as in the case of four films) good agree- 
ment between the results of the analytical solution and the 
direct numerical simulation. The 8th and 9th films dissolve 
next. As a result, we have a structure with film thicknesses 
equal to -2d. 

Thus, the dynamics of diffusion-controlled relaxation in 
a multilayered structure resulting in doubling of the period 
has been investigated in this work. The actual agreement 
between the results of the numerical and analytical solutions 
of the problem confirms the correctness of the conception of 
phase boundaries moving without distortion for the case con- 
sidered. The dependence of the precise scenario of the dou- 
bling on the total number of films in the structure is a con- 
sequence of the nonlocal interaction of the film boundaries. 
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T 
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Although the rate of the process under consideration de- 
creases exponentially with increasing layer thickness, this 
rate can be quite appreciable for ultrathin films. If it is as- 
sumed that the thickness of a phase boundary is -a (a is the 
interatomic distance) and that the period of the multilayered 
structure is -IOU, the diffusion rate decreases by about 30 
fold. Nevertheless, owing to the large diffusion coefficient, 
this decrease can be insufficient for creating thermostable 
structures. On the other hand, this circumstance makes it 
possible to experimentally observe the effects considered in 
this communication. 
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FIG. 2. a) Time dependence of the coordi- 
nates of the film boundaries (N= 15, rI=4); 
b) dependence of the logarithm of the disso- 
lution time T on the initial film thickness; 
solid line-solution of the system of equa- 
tions (12); X-results of numerical simula- 
tion. 
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FIG. 1 .  a) Time dependence of the coordi- 
6 nates of  the film boundaries (N=3, d = 5 ) ;  b) 

dependence of the logarithm of the dissolu- 
tion time T on the initial film thickness; 

4 solid line--calculation based on Eq. (17); 
X-results of numerical simulation. 
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