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A theory of the recombination of nonequilibrium carriers in type-I1 semiconductor heterostructures 
with quantum wells is devised for the first time. Analytical expressions for the radiative 
recombination and Auger recombination rates are obtained. It is shown that the Auger 
recombination mechanisms in type-I and type-I1 heterostructures differ fundamentally. 
A fundamentally new result is obtained: the Auger recombination rate has a minimum at certain 
values of the heterostructure parameters. Such effective suppression of the Auger 
recombination processes in type-I1 heterostructures is associated with the short-range character of 
the Coulomb interaction of the electrons participating in the recombination process. It is 
also shown that the radiative recombination processes take place with equal efficiency in type-I 
and type-I1 heterostructures and that their rates are comparable. The possibility of regulating 
the Auger recombination rate in type-I1 heterostructures by varying the parameters of the structure 
is demonstrated. The effectiveness of using type-I1 heterostructures as opposed to type-I 
heterostructures to create optoelectronic devices is also demonstrated. O 1996 American Institute 
of Physics. [S 1063-7761 (96)02002-X] 

1. INTRODUCTION 

Semiconductor quantum structures (single heterobarri- 
ers, quantum wells, superlattices, and quantum dots) have 
been actively investigated in recent years.' The interest in 
such structures from both the fundamental and practical 
standpoints is due to the occurrence of several phenomena in 
them which are not observed in homogeneous 
semiconductors.2~3 

Semiconductor quantum structures may be of type I or 
type I I . ~  In type-I heterostructures the offsets of the conduc- 
tion band and the valence band at the interface between the 
two materials are in opposite directions (Fig. la). Type-I1 
heterostructures have the following distinguishing  feature^:^ 
1) the offsets of the conduction band (V,) and the valence 
band (V,) are in the same direction (Fig. lb) and have dif- 
ferent signs: V,>O, V, = - I v,I <O; 2) in contrast to the case 
of type-I heterostructures, here the electrons and holes are 
spatially separated, so that recombination is possible only by 
means of tunneling through the heterobarrier. 

As far as we know, the literature does not offer any 
material devoted to a theoretical investigation of Auger re- 
combination processes in type-I1 heterostructures. As was 
previously shown in Ref. 3, the mechanisms of Auger recom- 
bination in heterostructures and in bulk semiconductors are 
essentially different. In heterostructures Auger recombination 
is a threshold-free process owing to the interaction of the 
carriers with the heterointerface, since there is no conserva- 
tion law for the quasimomentum component perpendicular to 
the heterointerface; here the Auger recombination rate is a 
power function of the temperature. We recall that in a bulk 
semiconductor the Auger recombination rate is an exponen- 
tial function of the temperat~re.~ It will be shown below that 
in type-I1 heterostructures the Auger recombination rate is 
also a power function of the temperature, but the Auger re- 

combination mechanisms in heterostructures of types I and I1 
are fundamentally different. 

The purpose of the present work is to theoretically in- 
vestigate the recombination processes of nonequilibrium car- 
riers in type-I1 heterostructures. We shall consider the radia- 
tive recombination and nonradiative Auger recombination 
processes in detail. 

Type-I1 heterostructures have two important channels for 
Auger recombination: 1) an Auger process involving two 
electrons and one hole (the CHCC process); 2) an Auger 
process involving one electron and one hole with passage of 
a second hole into a spin-split-off band (the CHHS process). 
In the present work we restrict ourselves to consideration of 
the CHCC process (Fig. 2), since it dominates the CHHS 
process if (E, -Aso)lE,>m,lmso holds where A,, is the 
spin-orbit splitting constant, E, is the effective band gap 
width (see Fig. 2), and m, and mso are the effective masses 
of an electron and an SO hole. 

We note that in type-I1 heterostructures, unlike those of 
type I, the CHCC Auger process involves two channels (Fig. 
2): 1) an electron tunnels through the heterobarrier and re- 
combines with a hole in the quantum well (the E channel); 2) 
a hole tunnels through the heterobarrier and recombines with 
an electron in the quantum well (the H channel). The contri- 
butions of these two channels to the Auger recombination 
matrix element are of the same order owing to the intercon- 
version of light and heavy holes when they interact with the 
heterointerface. It turns out that only the E channel is impor- 
tant in the radiative recombination process. 

2. BASIC EQUATIONS 

To calculate the radiative recombination rate R and the 
Auger recombination rate G it is first necessary to find the 
wave functions of the carriers in a type-I1 heterostructure. 
Figure 2 shows the band diagram of such a structure with 
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FIG. I .  Band diagram of type-1 (a) and type-I1 (b) heterostructures. 

quantum wells. To the left of the point x=O (in the region 
x<O) there is a quantum well of width a for electrons, and in 
the region x>O there is a quantum well of width b for holes. 
We shall henceforth assume that nonequilibrium electrons 
and holes are trapped in these wells. We note that the effec- 
tive band gap width E ,  (i.e., the minimal energy separation 
between the electron and hole states) is smaller than the band 
gap widths for both semiconductors (see Fig. 2). As was 
previously n ~ t e d , ~ ' ~  the wave functions of the carriers must 
be calculated in a multiband approximation. It will be shown 
below that this is especially important for type-I1 hetero- 
structures, since there are two channels for the recombination 
of electrons and holes (the E and H channels). These two 
channels interfere with one another owing to the interconver- 
sion of light and heavy holes. Therefore, the Auger recombi- 
nation matrix element must be calculated with consideration 
of the complex structure of the valence band, particularly, the 
interconversion of light and heavy holes when they interact 
with the heterointerface. 

We use the simplest multiband approximation, viz., the 
Kane  mode^^,^ with vanishingly small spin-orbit coupling. 
The influence of the spin-orbit coupling on the Auger recom- 
bination rate is discussed below. In this model the basis wave 
functions of the bottom of the conduction band and the top of 
the valence band are chosen in the form of Is) and Ip) func- 

FIG. 2. Schematic representation of the b'uld diagram of a type-11 hetero- 
structure with quantum wells: 1 and 2-initial states of the particles; 3 and 
4-final states; H and E are two possible channels for the recombination of 
electron 2 and hole 3. 

tions (the x axis is perpendicular to the plane of the eteroint- 
el-face). The wave functions of the electrons and holes are the 
result of superposition of the basis states: 

where u(r) and v(r) are the smooth envelopes of Bloch func- 
tions. The system of equations for the envelopes has the 
form7 

[E- 2 - U , ( X ) ] U -  y c.v=O, 

Here k=-iV, y is the Kane matrix element, which is iden- 
tical for both semiconductors, and mh is the effective mass of 
the heavy holes. The band offsets U,(x) and U,(x) are 

We note that V, and V, have different signs in type-I1 het- 
erojunctions: V,>O, V, = - I V,\ <O. According to (2), the 
spectrum of the energy E is divided into an electron branch, 
a light hole branch, and a heavy hole branch. 

The electron and hole wave functions determined from 
(2) must satisfy the following boundary conditions at the 
interfaces. The components u and v, for the electrons are 
continuous at the heterointerfaces at x =  -a, 0, b :3 

Here the superscripts < and > on the components u and v 
refer to the values of these components to the left and to the 
right of the heterointerface, respectively. The components of 
the electron wave function parallel to the heterointerface v, 
and v, undergo a discontinuity. We note that in our model we 
neglected the term h2k2/(2mh) in (2) when the electron wave 
functions were found, as well as when the boundary condi- 
tions (3) were de r i~ed .~  Consideration of this term in the 
calculation of the electron wave functions is beyond the ac- 
curacy of the envelope-wave-function approximation. How- 
ever, this term is of fundamental importance for the holes, 
since it leads to the interconversion of light and heavy holes 
when they interact with a heterointerface. The components 
v,, v,, and v,, as well as the derivatives dvyldx and 
dv,ldx, are continuous at the heterointerfaces at x=  -a,  0, 
and b. However, the derivative dv,ldx and u undergo a dis- 
continuity: 

The boundary conditions for the electron (3) and hole (4) 
wave functions were obtained from the system of Kane equa- 
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tions (2) by integrating with respect to the transverse coordi- 
nate x and invoking the continuity of the x component of the 
flux density j,. 

As is well known? the wave functions of particles (elec- 
trons and holes) in a symmetric quantum well are either even 
or odd functions of the coordinates. In the present paper we 
consider quantum wells which are not excessively narrow for 
the electrons and holes (rather than Sfunction quantum 
wells): ~ , b % l ,  Kla%l, and K ~ %  1, where KF ', ~f , and K; 

are the characteristic damping distances of the wave function 
components near the barrier for electrons, light holes, and 
heavy holes, respectively. These inequalities are quite gen- 
eral and are valid for numerous semiconductor 
heterostru~tures.~ In fact, using the characteristic values for 
heterobarriers V, , I v,[ 20.1 eV for wells of width a ,  b280 
A, we have ~ , b 2 3  and ~ ~ ~ 2 3 .  Therefore, the components 
of the envelope wave function u and v of the electrons and 
holes trapped in the quantum wells can also be classified 
according to their parity (even or odd). Below we shall 
present the wave functions of the carriers for states of a 
single parity. 

The wave function of the electrons trapped in the region 
of the quantum well (-a<x<O) has the form 

I iX-k sin(kx,) 
$,(r)=A exp(iqep) X - q, cos( kx,) * I 

Here k=(k,,q)=(k,q) is the quasimomentum of an electron; 
x,=x+ a/2; A- = y/(E,+ I V,I + EJ2) is the characteristic 
wavelength, which corresponds to~an electron energy of or- 
der E (when k=O holds, we have A _ =  y/E,=X, 
= h/ JG); 

is the electron energy; p is the coordinate in the plane of the 
well; A is a normalization factor. For x>O (the subbarrier 
part) we have 

where B = A  cos(ka/2), X +  = yI[E,+ E,/2], and K, is the 
characteristic damping distance of the components of the 
electron wave function under the barrier: 

A similar expression holds for the subbarrier part of the wave 
function in the region x< -a. Using the boundary condi- 
tions (3), we obtain the dispersion equation for the even elec- 
tron levels in the quantum well: 

Let us now consider the states of the light and heavy 
holes. In the region of the quantum well (0 <x< b) the wave 
functions of the holes have the form 

/ 0 \ 

Here 

q = dm, x, = x - bi2, pl  and ph  are the x components of 
the wave vectors of the light and heavy holes, respectively, 
and L and H are the amplitudes of the wave functions cor- 
responding to the light and heavy holes. Note that the ampli- 
tudes L and H should be calculated with consideration of 
interconversion of the light and heavy holes using the bound- 
ary conditions (4) (see Appendix A). The subbarrier part of 
the hole wave function in the region x<O has the form 

l o \  

where 

and H are the amplitudes of the wave functions of the light 
and heavy holes with consideration of their interconversion 
in the subbarrier region (Appendix A). The hole wave func- 
tion in the region x> - b has a form similar to (9). We obtain 
the dispersion equation for the holes by plugging the expres- 
sions for the wave functions (8) and (9) into the boundary 
conditions (4): 

For q =0, Eq. (10) splits into two equations correspond- 
ing to noninteracting light and heavy holes. Figure 3 presents 
the spectrum of the holes as a function of q. For q # O  inter- 
conversion of the light and heavy holes takes place. In the 
temperature range T>Eoh, where EOh is the energy of the 
first size-quantization level of the heavy holes, the main con- 
tribution to the Auger recombination rate is made by values 
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in the range q > d b  (here and in the following the tempera- 
ture T is measured in energy units). The influence of the 
spin-orbit coupling on the spectrum and wave functions of 
the holes can be neglected in this range of values of q  (see 
Fig. 3). Therefore, as was pointed out above, the Kane model 
with vanishingly small spin-orbit coupling can be used to 
calculate the Auger recombination rate. An analysis reveals 
that the influence of the spin-orbit coupling on the Auger 
recombination process is confined to a quantitative change in 
the value of the recombination rate G. Thus, for AsoZO the 
Auger recombination rate acquires an additional factor F(a), 
where a=AsdEg. For a = O  we have F(a)=l .  It is signifi- 
cant that F(a) varies only slightly over the broad range of 
values O<a<10: 1<F(a)<2. We also note that in the Kane 
model there are states of heavy holes polarized in the yz  
plane of the heterointerface in addition to the heavy hole 
states indicated above." These states do not participate in the 
Auger recombination process, since the overlap integral of 
an electron with such holes is equal to zero. 

The wave function of fast Auger electrons is a result of 
the superposition of the incident and reflected waves in the 
region x< -a  and the transmitted electron wave in the re- 
gion O<x<b: 

Here r and t are the amplitudes of electron reflection and 
transmission above the barrier; k4 is the x component of the 
quasimomentum of a fast Auger electron above the barrier, 
i.e., 

A ,  is a normalization factor, 

The wave function in the region of the quantum well 
(-a<x<O) for the highly excited electrons has the form 

Here d- and d+ are the amplitudes of the reflected and trans- 
mitted waves in the region of the quantum well, and k4 is the 

FIG. 3. Spectrum of holes in a type-I1 heterostructure as a function of the 
longitudinal momentum q. The solid lines represent the spectrum calculated 
from the dispersion equation (10). The dashed lines depict the anticrossings 
of the hole levels, which appear when the spin-orbit coupling is taken inio 
account. The following parameters were taken for the calculation: b=80 A, 
E,=0.96 eV, As0=0.6 eV, Vc=0.15 eV, Iv,I=O.~ eV, mh=0.4mo, 
mc=0.05m0. 

x component of the quasimomentum of the highly excited 
Auger electron in the region of the well, i.e., 

The amplitudes r, d+ , and t are calculated using the bound- 
ary conditions (4) and the expressions for A ,  (Appendix A). 

According to the standard rules of the theory of Auger 
processes,3.5 the nonradiative Auger recombination rate is 
calculated using first-order perturbation theory with respect 
to the electron-electron interaction: 

where f(Ei) is the distribution function of the ith particle 
(i= 1,2,3,4) with respect to the energy, E ,  and E2 are the 
energies of the initial states of the particles, Eg and E4 are the 
energies of the final states (we regard the hole state as the 
final state for one of the electrons participating in the pro- 
cess), S is the area of the heterojunction, M is the matrix 
element of the electron-electron interaction calculated with 
consideration of the antisymmetrization of the electronic 
wave functions of the initial and final states. The square of 
the absolute value of the matrix element after statistical av- 
eraging over the spin states of the initial electrons takes on 
the form 

where 
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and KO is the dielectric constant of the medium. 

3. AUGER TRANSITION MATRIX ELEMENT 

To calculate the matrix element we expand the Coulomb 
interaction potential in a Fourier integral. Then the matrix 
element of the electron-electron interaction takes the follow- 
ing form: 

where 

Iij(q) = d3r+T(r) ~ , ( r ) e ' q '~ .  I (17) 

The expression for M I ,  is obtained from (16) by performing 
the corresponding interchange of indices 1632. TO calculate 
the matrix element we express the integrand in I,, in terms 
of the flux density. From the general form of the Kane equa- 
tions we can obtain the scalar product $7 $, of two electron 
wave functions having the form of columns containing four 
components of the envelopes u and v [see (I)]: 

1 
~ : c l ; = u f ~ ~ + v : . v ~ = ~  div jij , 

1 1  

where 

j..= 11 i y(uTvj+ujvf). (19) 

Substituting (18) and (19) into (17) and performing the 
integration in the plane of the quantum well, we obtain the 
following expression for I,,: 

where 

Here we took into account that v=(v,,vll), and Sq,O is the 
Kronecker delta. We substitute the expression (20) for 114 
into (16). As a result, with consideration of the explicit form 
of I,,, for the matrix element we obtain 

The matrix element M I  can be calculated exactly by ana- 
lytical methods. It is convenient to use the following scheme 
to calculate it. We first calculate I, and Ill (see Appendix B). 
Then we integrate with respect to q in (23) using the residue 
the~rem.~  1t follows from (23) and (B 1) that there are then 
two kinds of poles in the complex plane of q: 1) poles which 
correspond to a small momentum transfer q = 2 ilq, -q41 
1 during the Coulomb interaction, where A T  
= d m ;  2) poles which correspond to a large momen- 
tum transfer q- Q ,  where Q= l / d A g  and A,< A,. We recall 
that the longitudinal momenta q ,  and q4 of the particles are 
of the order of the thermal momenta; therefore, Iqll, lq,leQ. 
As a result, the Auger transition matrix element separates 
into two parts: 

where M(') and M(,) are the contributions to the matrix ele- 
ment corresponding to small and large momentum transfers. 

The following remarks are in order here. In homoge- 
neous semiconductors the Coulomb interaction matrix ele- 
ment for Auger recombination contains only the part which 
corresponds to large momentum transfers due to the require- 
ments of the energy and momentum conservation laws. The 
consequences of this are as follows: 

1) the very indirect course of the transition of an electron 
from the initial to the highly excited final state in k space; 

2) the threshold (exponential) dependence of the Auger 
recombination rate on the temperature. 

As was previously shown by one of us? in type-I semi- 
conductor heterostructures the main contribution to the Cou- 
lomb interaction matrix element is made by the long-range 
part, which corresponds to small momentum transfers. This 
feature of the behavior of the Auger transition matrix ele- 
ment in the presence of a heterointerface is fundamentally 
related to the interaction of the carriers with the heterointer- 
face. One result of such an interaction is the absence of a 
conservation law for the transverse (x) component of the 
quasimomentum of the particles. The consequences of this 
are as follows: 

1) the threshold-free character of the Auger recombina- 
tion process in quantum structures, where the rate is a power 
function of the temperature, rather than an exponential func- 
tion, as in a homogeneous semiconductor; 

2) the resonant character of the Auger transition, i.e., the 
transition of the electron from the initial state to the highly 
excited state takes place as a result of the transfer only of 
energy from the recombining electron-hole pair without mo- 
mentum transfer; the electron obtains the momentum needed 
for the transition to the highly excited final state from the 
interaction with the heterointerface. 

In type-I1 heterostructures, along with the long-range 
part of the Coulomb interaction matrix element, which cor- 
responds to small momentum transfers, the short-range part, 
which corresponds to large momentum transfers, must be 
taken into account. Since the electrons and holes in type-I1 
heterostructures are spatially separated, there are two chan- 
nels for Auger recombination, viz., E and H (Fig. 2). As will 
be shown below, these two channels interfere with one an- 
other, causing a decrease in the matrix element M('). In ad- 
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dition, M") is significantly smaller than M ( ~ '  when a certain 
relationship exists between V,  and V, [see (31)]. Thus, in 
type-I1 heterostructures contributions to the Auger recombi- 
nation rate are made by both the long-range part of the Cou- 
lomb interaction (small momentum transfers) and the short- 
range part of the Coulomb interaction (large momentum 
transfers). 

In calculating M(') and M(*) below, we shall use the 
following relationships between the parameters: 
TQ(V,. ,I v,I) 4 E, . Such a relationship between the param- 
eters is observed for most semiconductor heterostructures. It 
is then convenient to calculate M(') and M ( ~ )  separately. 

3.1. Small momentum transfers 

Let us proceed to the calculation of M('). We consider 
the electron overlap integral II4(q) at small q. We expand II4 
in powers of l/Q. Then, according to (20)-(22) and (B l), we 
obtain 

- .  

Here q = ?ilql -q41, u ,(O), vX4(O), and u4(0) are the values of 
the components of the envelope wave function at the hetero- 
interface x=O; u ,(- a) ,  vX4(- a ) ,  and u4(- a )  are the val- 
ues of the components at x=  - a .  We recall that the compo- 
nents u and v, for electrons are continuous. Using the 
explicit expressions for I, and Ill (see Appendix B), we find 
that IlIII/lX - 4 1 ; therefore, we have neglected Ill in 
(25). In addition, in (25) we have taken into account that 
E4-El=Eg.  

To calculate I, according to (22), we divide the integra- 
tion with respect to x into three regions: the region of the 
well (-a<x<O) and the two barrier regions (x>O and x 
<--a). It turns out that the contributions to the matrix ele- 
ment from the region of the quantum well and from the two 
barrier regions are of the same order, but of different sign. As 
a result, they cancel one another, so that a small parameter of 
order [where V is a combination of V, and I v,I, see 
(26)] appears in the expression for I,. Thus, the leading 
(with respect to l/Q) term in I, is proportional to l/Q3. In 
(26) we retained the next order in l/Q, i.e., l/Q4, since the 
main term, which is proportional to 1/Q3, has the multiplier 
3V,- (v,(, which can be close to zero. It should be stressed 
that such a situation does not arise in type-I heterostructures, 
and it is sufficient to restrict the calculation of I, to the main 
term, which is proportional to l/Q3. In type-I heterostruc- 
tures the main term in l/Q is proportional to (3V,+ V,)IE, , 
where V,>O. 

We substitute the expression for f I 4  [Eqs. (25) and (26)] 
into (23). Performing the integration with respect to q ,  we 
obtain 

" 1 4 ]  (28) sign x + ~ ( ~ v . - I v , I )  - , 
Q 

where p,4=lql-q41-1/X,. We note that in (28) we ne- 
glected the terms which are proportional to exp(-p ,,a)4 1. 

This is correct when p 14a = Jv = + 1. 
Here and in the following we assume that EOh<T%IVul. 

Performing the integration with respect to x in (27), we 
obtain the final expression for the matrix element M(') at 
small momentum transfers. Expressing the product 
4b;(x)fl3(x) in (27) in terms of the flux density [see Eqs. 
(18) and (19)fartdiptegrating in parts, we obtain . 

where 

where Jh is the same as J , ,  except that it is taken in the 
range from 0 to co. 

When M is calculated, it is important to take into ac- 
count the interconversion of the light and heavy holes ac- 
companying the interaction with the heterointerface. The ma- 
trix element M consists of two parts: the contribution from 
the region x<O and the contribution from the region x>O. 
These two contributions correspond to two channels for the 
recombination of spatially separated electrons and holes (the 
E and H channels, see Fig. 2). The E channel corresponds to 
the recombination of an electron tunneling through the het- 
erobarrier with holes, which transform into one another when 
they are reflected from the heterointerface. In the case of the 
H channel, an electron trapped in the well recombines with 
holes, which transform into one another when they tunnel 
through the heterobarrier. For quantum wells in which the 
size-quantization energy of the electrons and holes is much 
smaller than the height of the heterobarriers (Eo,QV,., 
EOh<lV,I), we find that the contributions of the E and H 
channels to M(') are of the same order, but of different sign. 
Thus, there is destructive interference between these two 
channels for Auger recombination. Such interference pro- 
duces an additional small parameter of order 
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[ T n z , , l V , n ~ , ] ~ / ~ < I  in the matrix element M'" for type-I1 het- 
erostructures in comparison with the Auger recombination 
matrix element for type-I heterostruct~res."'~ As a result, the 
Auger recombination matrix element for small momentum 
transfers equals 

Here ~ ~ = i i ~ ( ~ ~ + q ~ ) / 2 m ~  is the energy of a heavy hole 
measured from the valence-band edge of the semiconductor 
in the region of the quantum well O<x< b; 

Let us proceed to the calculation of M ( ~ ) .  

3.2. Large momentum transfers 

In type-I semiconductor heterostructures the contribution 
to the Auger transition matrix element M ( ~ )  from large mo- 
mentum transfers is small in comparison with the contribu- 
tion from small momentum transfers: 

As will be shown below, in type-I1 heterostructures this is 
not so: M ( ' )  and M ( ~ )  can be of the same order, and under 
certain conditions the contribution M ( ~ )  from large momen- 
tum transfers can significantly exceed M ( ' ) .  This difference 
between the mechanisms of Auger recombination in hetero- 
structures of types I and I1 is attributed to the magnitude of 
the overlap integral l I 4  of the electrons in the initial state 1 
and the final state 4  at small momentum transfers. 

Using the expression (23)  for M I ,  we represent Mi2) in 
the form 

where 

" d q  
- iqs 

J\:)= I. [14(q)  7 
Y + d 4 '  

J\>S the same as J\?, except that it is taken in the range 
from -a to 0 .  When J Y ~  and J(,? are calculated using the 
residue theorem, only the poles corresponding to large mo- 
mentum transfers Iql - Q should be taken into account, and 

the pole q =  k i p l 4  should be disregarded, since it was al- 
ready taken into account in M " ) .  Performing the integration 
in ( 3 3 )  with respect to q ,  we obtain 

Here A!)= y / ( E i  + I v,/ + E , / 2 ) ,  where i = 1,4. The expres- 
sion for ~ $ 2  is presented in Appendix C .  We substitute ( 3 4 )  
and ( C 2 )  into (32) .  The integration with respect to x  must be 
performed next. The integral with respect to x  has the fol- 
lowing form 

A relation similar to (35)  holds in the case of integration 
from -w to 0. The expression ( 3 5 )  is obtained using integra- 
tion by parts. Here we use f ( + w ) = O  and note that f (+O) is 
the value o f f  at the point x=+O.  In our case 5-Q holds; 
therefore, Eq. ( 3 5 )  is nothing more than an expansion of M ( ~ )  
in powers of l / Q .  As in the case of small momentum trans- 
fers, we restrict ourselves to the first two nonvanishing terms 
in the expansion in powers of l / Q  in M ( ~ ) .  As a result, the 
integral with respect to x (from -w to + w )  equals 

where f ( - 0 )  is the value of the function f  at the point x  
= - 0 .  It was assumed in ( 3 5 )  and ( 3 6 )  that f ( x )  is a smooth 
function separately in [ -w,O] and [O,+m]; both the function 
f  ( x )  = U ? ( X )  u 3 ( x )  + v ; ( x ) . v 3 ( x )  and its derivatives 
f  ( x )  , f ' ( x )  ,... have finite discontinuities at the heterointer- 
face. The jumps in the function and its derivatives are calcu- 
lated directly using the Kane equations (2) and the boundary 
conditions ( 4 ) .  As a result, for ~ f 2 )  we obtain 
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Here v,,(O) is the value of the conlponent of the hole wave 
function at the heterointerface x=O. In the approximation 
E,< I V , [  for states of the parity for which u~~ is odd we have 

( p ; b ) [ q 3  
uL,(O) = i H  sin - - 

l ~ l l  h21vul 

The expressions (24), (31), and (37) completely specify the 
Auger transition matrix element M I .  As we have already 
noted above, M I I  is obtained from M I  by means of the inter- 
change of indices 1 ~ 2 .  

It follows from the expressions which we obtained for 
M ( ' )  and M ( ~ )  that in type-I1 heterostructures the relationship 
between M ( ' )  and M ( ~ )  greatly depends on the parameters of 
the heterostructure, viz., the heights of the heterobarriers V ,  
and V ,  and the widths of the quantum wells for electrons ( a )  
and holes (b) (Fig. 2). The following cases are possible, 
depending on the relationship between V ,  and V , :  
M ( ' ) > > M ( ~ )  M ( ' ) - M ( ~ ) ;  M ( ' ) ~ M ( ~ ) .  

4. AUGER RECOMBINATION RATE 

To calculate the rate G, the square of the absolute value 
of the matrix element lMI2 [see (IS)] must be substituted 
into the expression (14), and the summation must be carried 
out over the initial and final states of the particles. We shall 
assume below that only the ground-state of the electron size- 
quantization is filled. As for the heavy holes, it was noted 
above that T>E,,; therefore, we replace the summation over 
the hole size-quantization levels by integration with respect 
to ph . Integration should also be performed over the states of 
the highly excited electron. Then for G we have 

In deriving (39) we sum over q, using the Kronecker delta 
corresponding to the conservation law for the longitudinal 
component of the momentum q [see (23)]. Then in (39) we 
perform the integration with respect to the momentum k4 of 
the highly excited electron using the energy 6 function. We 
use the explicit expressions for the energies of the electrons 
and holes, in which it is important to take into account the 
nonparabolic character of the spectrum of the highly excited 
electron, to represent the argument of the &function in the 
form 

In (40) we took into account that l k l  l=lk21= Jm,lnlhlk31 
41 k41. As a result, the integration with respect to k4  gives 

We perform the ensuing integration with respect to q , ,  q 2 ,  
and q 3  using a polar coordinate system. The calculation of 
the integrals is a simple, but lengthy procedure. As we have 
already noted above, the heavy holes polarized in the plane 
of the heterointerface do not make a contribution to the Au- 
ger recombination rate. Therefore, in the expression for the 
rate we must require that the concentration of holes which 
participate in the recombination process be equal to half of 
the total concentration of holes. As a result, the final expres- 
sion for the Auger recombination rate has the following 
form: 

Here 

where ~ , = m , e ~ / 2 h ~ d  is the Bohr electron energy, n and p  
are the two-dimensional concentrations of the electrons and 
holes, respectively. The three terms in (42) are the result of 
the expansion of the matrix element in powers of l/Q. The 
gl and g2 terms originate from the M ( ' )  part of M ,  which 
corresponds to small momentum transfers during the Cou- 
lomb interactions of the electrons, and g 3  originates from the 
M ( ~ )  part of M ,  which corresponds to large momentum trans- 
fers. 
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5. RADIATIVE RECOMBINATION RATE 

In order to analyze the lifetime of the nonequilibrium 
carriers in type-I1 heterostructures, as well as the internal 
quantum efficiency, we must calculate the radiative recombi- 
nation rate, which is conveniently represented for two- 
dimensional carriers in the form" 

where 

w is the frequency of the photon emitted, 8, is the high- 
frequency dielectric constant of the narrow-gap semiconduc- 
tor, .kg= E,+ EOc+ Eoh, Nph is the photon density, the sub- 
scripts c and v correspond to electron states in the 
conduction band and hole states in the valence band, and M R  
is the optical transition matrix element. Using the explicit 
forms of the electron and hole wave functions, we represent 
the square of the absolute value of the matrix element in the 
form 

Here e is the polarization unit vector, which is directed par- 
allel to the electric field of the wave; we recall that q,,, is the 
wave vector of the particles in the plane of the heterointer- 
face; 

The flux density j,, is given by (19). 
Substituting the explicit expressions for the components 

of the electron and hole wave functions (u and v) into (52) 
and performing the integration with respect to x, we obtain 

phb 
P,= iB -2 p h  cos -- K ,  sin - I K::;h [ P h b l  2 

P lb + pl  cos -- K ,  sin - L p l  [ 2 K ~ + P /  2 

Here P,:,~~ and P,:.:~~ correspond to the two channels E and H 
for electron-hole recombination (see Fig. 2). The terms pro- 
portional to H and L in (53) and (54) correspond to P , i I 1 ,  and 
the terms proportional to H and i correspond to P,,l!. We 
recall that the E channel corresponds to the recombinat~on of 
a tunneling electron with a hole in the quantum well and that 
the H channel corresponds to the recombination of a tunnel- 
ing hole with an electron in the quantum well. 

As we know, the contributions to the radiative recombi- 
nation rate in the case of nondegenerate electron statistics are 
made by values of q S q T ,  where q T =  I lkT.  It follows from 
(53) and (54) that we have I P , I  e (PIII  when q s q , :  

Therefore, the main contribution to the radiative recombina- 
tion rate is made by PI\. As follows from (53) and (54), when 
q c = q ,  = 0 ,  we have P,=O, and PII is nonzero: 

Here we have taken into account that the holes are found in 
a size-quantization level of the heavy holes and K , > P ~ .  It is 
noteworthy that PII is weakly dependent on q ,  and q , .  In 
addition, Pll(q,= q ,  = 0) -P l l (qC = q ,  = q T )  . Thus, the optical 
transition matrix element M R  is determined by PII and 
scarcely depends on q ,  and q , .  Therefore, in the further 
calculations of the radiative recombination rate we can set 
q , =  q ,  = 0 in the expression for PII . We recall that the Auger 
transition matrix element is shortly dependent on the longi- 
tudinal components of the electron momentum (q2)  and the 
hole momentum (q3) and that when q 2 =  q3  = 0 holds, the 
Auger transition matrix element equals zero [see Eqs. (16), 
(20), and (23)l. 

It should also be noted that the contributions of the two 
recombination channels (E and H) to PII differ significantly: 

A conclusion of fundamental importance follows from (57): 
the optical transition matrix element M R  and, therefore, the 
radiative recombination rate in type-I1 heterostructures is de- 
termined by the E channel for electron-hole recombination. 
As was shown above, in the case of Auger recombination, 
the contributions of the E and H channels to the Auger tran- 
sition matrix element are of the same order, but of different 
sign, and when they are summed, they compensate one an- 
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other. As a result, destructive interference of the E and H 
channels takes place for Auger recombination with a result- 
ant decrease in its rate. 

Some comments on the physical meaning of the interfer- 
ence mechanism of the two channels (E and H) in the Auger 
recombination rate and the predominance of the E channel 
over the H recombination channel in the case of radiative 
recombination are in order. 

As we have already noted, the Auger recombination ma- 
trix element for small momentum transfers is proportional to 
the difference between the longitudinal components of the 
momenta of the electrons and holes q3-q2=ql  -q4 [see Eqs. 
(16), (20), and (23)]. When q3 is nonzero, interconversion of 
the light and heavy holes occurs upon interaction with the 
heterointerface. As a result, a hole incident to the heteroint- 
erface tunnels through the heterobarrier with a light mass. 
This results in a significant increase in the part of the Auger 
recombination matrix element corresponding to the H chan- 
nel, which is of the same order as the matrix element corre- 
sponding to the E channel, but of opposite sign. 

Such destructive interference of the E and H channels 
does not occur for radiative recombination, since, as we have 
already noted, MR is weakly dependent on the longitudinal 
momenta of the electrons (9,) and holes (9,) .  Also, since 
the mutual transformation of light and heavy holes does not 
take place at q,=O, this process is not important for optical 
transitions. In this case the H channel of electron-hole re- 
combination is ineffective, since it corresponds to the tunnel- 
ing of a hole with a heavy mass. As a result, in the case of 
optical transitions, the ratio between and P f  is given by 
(57). 

Thus, for llnRI2 we obtain 

We substitute (58) and (50) into (48). Performing the sum- 
mation over the c and u states of the particles and integrating 
with respect to o, for the radiative recombination rate we 
obtain 

We note that the radiative recombination process of electrons 
and holes is just as effective in type-I1 heterostructures as in 
type-I heterostructures. For comparison we present the ratio 
of the radiative recombination rates R = R ,, and R ,  in type-I1 
and type-I heterostructures, respectively, for the same hetero- 
structure parameters: 

6. DISCUSSION OF RESULTS 

As follows from (42), the Auger recombination rate is a 
power function of the temperature. In addition, G is highly 
dependent on the parameters a ,  b, V,. , and V, of the hetero- 
structure. 

As we have already noted, G I  and G2 in (42) originate 
from the part M(" of the matrix element M ,  which corre- 
sponds to small momentum transfers in the Coulomb inter- 
action of the electrons, while G j  originates from the part 
M ( ~ )  of M, which corresponds to large momentum transfers. 
We note that, as follows from (42)-(46), when V,>IV,I 
holds, we have G I  > G 2 S  G, . It should be specially stressed 
that under the condition 3 ~ , -  I v,/, i.e., (3V,- / v , I ) / v , ~  I ,  
we have G I  < (G2 ,G3).  Under another condition 3 V,-I v , I  
we have G2<(G,  ,G3).  This means that G I  and G2 have a 
minimum at the values of Iv,I/v, just indicated (Fig. 4). 
Therefore, the Auger recombination rate has a minimum at 
certain values of Iv,I/v,: G"""-G,. Thus, the minimal 
value of the Auger recombination rate G"'" is determined by 
the Coulomb interaction matrix element M ( ~ )  for large mo- 
mentum transfers. This means that there is effective suppres- 
sion of the Auger recombination processes in Type-I1 hetero- 
structures, since, as we have already noted, when 
v,>IV,I,G~+(GI ,G2). 

Such effective suppression of the Auger recombination 
rate in type-I1 heterostructures is attributed to the behavior of 
the overlap integral I ,,(q) of the electron in the initial state 1 
and the final state 4 for a small momentum transfer q. This 
overlap integral has contributions from three regions: the two 
regions for subbarrier motion of the electron (x< - a  and 
x>O) and the region of the quantum well (-a<x<O). 
When the contributions from these three regions are 
summed, it is found in the case of both type-I and type-11 
heterostructures that the contributions from the subbarrier 
regions and the region of the quantum well cancel. The re- 
sultant overlap integral is diminished by a factor of 
(3V,+V,)IE,. We note that for type-I heterostructures 
V,>O and that for type-I1 heterostructures V, = - I v , I  < O .  
Consequently, we find that in type-I1 heterostructures there is 
a strong decrease in the overlap integral I,,(q) of the elec- 
tron in the initial and final states when the momentum trans- 
fer q is small under the condition 3V,= I v,]. This is a result 
of the cancellation of the contributions to I,,(q) of the re- 
gions indicated above. 

Figure 4 presents the dependence of the logarithm of the 
Auger recombination rate on the ratio Iv,I/v, calculated 
from (42) with consideration of the exact expressions for g ,  , 
g 2 ,  and g 3  [see (43)-(46)]. We obtained a result of funda- 
mental importance: the Auger recombination rate has a mini- 
mum for 3 V,= I V, / .  Also, the ratio of the Auger recombina- 
tion rate G ' ~ " ' ~ ~ G ( ~ v , -  IV,I) at the minimum to the rate for 
V , 2  I v , I  is small: G"""/G(v,> I v,I)< 1 .  The result obtained 
is of fundamental importance, since it demonstrates the pos- 
sibility of suppressing the Auger recombination processes in 
type-I1 heterostructures. Such effective suppression of these 
processes is attributed to the nature of the Coulomb interac- 
tion between the electrons in an Auger transition. Under 
some conditions (I v , I  < V,) the Coulomb interaction be- 
tween the electrons is mainly an effective long-range inter- 
action (small momentum transfers), producing a large value 
for the Auger recombination rate. Under other conditions 
(3V,.=IV,I) the Coulomb interaction between the electrons 
has a predominantly short-range character (large momentum 
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log G RIG 

FIG. 4. Logarithm of the Auger recombination rate log G versus IV,I/V, at 
T=290 K. The dashed curves correspond to the contributions G I ,  G,, and 
G, to G. The solid curve corresponds to the total rate G.  The following 
parameters, which are characteristic of an InPIAlInAs s t ~ c t u r e , ~  were used 
in the calcylation: E,=0.96 eV, V,=0.15 eV, m,=0.05m0, mh=0.4m0, 
a = b = 8 0  A, n = p =  1.2X 10'' cm-,. 

transfers), causing a sharp decrease in the Auger recombina- 
tion rate. 

Suppression of the Auger recombination process in 
type-I1 heterostructures is of fundamental importance for cre- 
ating optoelectronic devices with improved characteristics. 
Auger recombination processes are known to cause a de- 
crease in the internal quantum efficiency of semiconductor 
quantum-well lasers and an increase in the threshold current 
density at high temperatures.I2 The mechanism for suppress- 
ing Auger recombination processes in type-I1 heterostruc- 
tures predicted in the present work makes it possible, in par- 
ticular, to solve the problem of long-wavelength lasers ( 0 4  
mp), viz., to raise their working temperature to room and 
higher temperatures. 

It is interesting to compare the Auger recombination rate 
in type-I1 heterostructures at the minimum with the rate in 
type-I heterostructures G I .  Using the expression for G I  from 
Ref. 12, for equal values of the heterostructure parameters 
we have 

Therefore, in type-I1 heterostructures, unlike type-I hetero- 
structures, a significant decrease in the rate of the Auger 
recombination processes is possible. This conclusion, in par- 
ticular, can be significant in developing optoelectronic de- 
vices. 

Let us proceed to an analysis of the radiative recombi- 
natibn rate in type-I1 heterostructures. As has already been 
noted, the radiative recombination rates in type-I1 (R=RI1) 
and type-I (R,) heterostructures are of the same order: 
RIISRI .  

FIG. 5. Dependence of the ratio between the radiative ( R )  and Auger (G) 
recombination rates on IV,I/V, at T=290 K. The following parameters, 
which are characteristic of an InGaAsSbIGaSb s t ~ c t u r e , ~  were used in the 
$alculation: E,=0.6 eV, V,=0.25 eV, m,=0.04m0, tnh=0.4m0, a = b= 100 
A, n = p = 7 X  10" cm-'. 

In the case of quantum wells based on narrow-gap 
semiconductors,'2 the Auger recombination rate in type-I 
heterostructures (GI) is known to significantly exceed the 
radiative recombination rate (R,) at high temperatures. 
Therefore, in these semiconductor structures the internal 
quantum efficiency 7 is much less than unity: 
7;1=RI/(GI+RI)G1. 

In type-I1 heterostructures the situation can be the exact 
opposite. The ratio between the radiative and Auger recom- 
bination rates in these heterostructures has a sharp maximum 
as a function of Iv,I/V, (Fig. 5). It is noteworthy that for 
type-I1 heterostructures even with a small value for the ef- 
fective band gap width E,  the value of RII/GII at the maxi- 
mum can be greater than unity. Consequently, by selecting 
the optimal parameters for the heterostructure (at which RIG 
is a maximum), we can achieve the maximum internal quan- 
tum efficiency 7 for long-wavelength lasers based on type-I1 
heterostructures. 

The mechanism for suppressing the Auger recombina- 
tion processes that was theoretically predicted in the present 
work was detected experimentally when a laser of a new type 
employing a single InAsIGaSb type-I1 heterojunction was 
created.13 Suppression of the Auger recombination processes 
in type-I1 heterostructures with a superlattice based on In(As, 
Sb) was also discovered in another experimental study.14 

7. CONCLUSIONS 

We summarize the main results of this work. 
I )  It has been shown that the Auger-recombination pro- 

cess is always a threshold-free process in type-I1 heterostruc- 
tures and that its rate is a power function of the temperature. 

2) The fundamental difference between the mechanisms 
of the Auger recombination of nonequilibrium carriers in 
type-I and type-I1 heterostructures has been demonstrated: 

a) in type-I1 heterostructures there are two channels for 
Auger recombination, viz., E and H, which interfere with one 
another to a significant degree; 
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b) C, ,  and G I  depend on the heterostructure parameters 
V,. and V, significantly different: GI ,  has a minimum as a 
function of Iv,I/v,, while G I  is an increasing filnction of 
v,/ v,. ; 

c) the Auger recombination rate is suppressed in type-11 
heterostructures in comparison with type-I heterostructures; 

d) in quantum wells for which Eoh<T<Eo, holds the 
temperature dependence of GI, differs from that of G I :  
G , , K T ~  and GI= IIT. It follows from this analysis that in the 
temperature range where the recombination of nonequilib- 
rium carriers is determined by the nonradiative channel, the 
lifetime r=nlG is greater in type-I1 structures than in type-I 
structures. 

3) Another fundamental conclusion of the present work 
is as follows: the radiative recombination rate in type-I1 het- 
erostructures is of the same order as in type-I heterostruc- 
tures with the same parameters. 

4) It has been shown that in type-I1 heterostructures the 
internal quantum efficiency 7 can be significantly higher 
than the quantum efficiency in type-I structures with the 
same parameters. 

5) We predict a significant decrease in the value of the 
threshold current density of lasers based on type-I1 hetero- 
structures in comparison with lasers based on type-I hetero- 
structures owing to the mechanism for suppressing the Auger 
recombination rate when the ratio of the barrier heights V, 
and V,(~IV,I=V,) has a certain value. We shall not analyze 
the influence of the recombination processes studied on the 
operation of optoelectronic devices in detail here. The pur- 
pose of the present study was to investigate the mechanisms 
of radiative and Auger recombination in type-I1 heterostruc- 
tures and to ascertain the main features distinguishing them 
from the recombination mechanisms in type-I heterostruc- 
tures. 

In conclusion we thank M. I. D'yakonov, V. I. Perel', 
and R. A. Suris for discussing the results of this research. 
The work was partially supported by the Russian Fund for 
Fundamental Research (grant No. 93-02-3199) and INTAS 
(grant No. 94- 1172). The work of A. D. Andreev is supported 
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APPENDIX: A 

Using the boundary conditions (4) and the explicit form 
of the wave functions for holes [Eqs. (8) and (9)], we express 
the amplitudes I?, i, and L in terms of the amplitude H of a 
heavy hole in the well: 

- &h phb 
H=- -H sin- 

IVUI 2 ' 

- & h  q3 phb 
L = - - H  sin-, 

IVUI l ~ l l  2 

The expressions (A1)-(A3) were written for states for which 
the component u~~ is an odd function relative to the middle 
of the well for holes x =  612. There is an analogous expres- 
sion for the states of the other parity. In deriving (A1)-(A3) 
we took into account that ~ ~ 4 1 ~ ~ 1 .  The amplitude H of a 
heavy hole in the quantum well is calculated from the nor- 
malization condition for the wave function and has the form 

Note that in the interesting range of values q,> l lb  the x 
component of the wave vector of a light hole pl in the region 
of the well is purely imaginary: pl=ilpll, where lp,(-q3. 

Using the explicit form of the wave functions of the 
highly excited electron (11)-(13) and the boundary condi- 
tions (3), for the amplitudes r ,  d+ , d -  , and t we obtain 

t=ei'+', d + = e v ( 1 - )  d -=8e iv ,  

r=2i8ei'+' sin k4a, cp=a(k,- k4), 8= 
2vc- IV"1 

4 1. 
8% 

In (A5) we took into account the explicit form of A,. The 
expressions (A5) were written for the case of & I .  

APPENDIX: B 

We substitute the explicit expressions for the wave func- 
tions of electrons in states 1 and 4 from (3, (6), and ( 1  1)- 
(13) into (22). Performing the integration with respect to x, 
we obtain the expression for I, : 

exp( - kqa) + r exp(k4a) 
[ ,=A,B~-"I~ ik ( ' )  1 + Kc[ Kc+ i q +  i i ,  K,+ iq - i i ,  

It follows from (Bl) that the integration of I, with re- 
spect to q in the plane of the complex variable q produces 
poles at the points q = k4+ i K, and q = k4-+ k. These poles in 
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I ,  correspond to large momentum transfers y = Q , since 
k 4 = k 4 = ~ +  ( k , ~ , . ) .  We note that the expression for Ill can 
be calculated using (21) and the explicit forms of the wave 
functions (9, (6), and (1 1)-(13). The final expression for Ill 
has a form similar to (Bl); the dependence of Ill on q is the 
same as that of I,. It is also significant that the poles of Ill 
and I ,  appearing in the q plane as a result of the integration 
with respect to q coincide. 

APPENDIX: C 

According to (33), the expression for ~( [ ' k )  has the form 

, - iqs 

Integrating with respect to q in (CI) with the aid of the 
residue theorem and discarding the poles corresponding to 
small momentum transfers at q = ? ip 14,  which were already 
taken in M('), we obtain the following expression for J(,eJ: 

where I (  v )  = vkx,+ K ~ X .  
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