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A new method is proposed for calculating the electronic and magnetic properties of a CuO, sheet 
(the general structural element of the copper-oxide high-temperature superconductors) in the 
framework of the Emery model. This method is a modified mean-field approximation that takes 
into account adequately the antiferromagnetic correlations of the copper spins. Detailed 
investigations are made of the distribution of the carriers between the copper and oxygen sites, 
the density of states and its change on doping, the dependence of the Fermi energy on 
the type of doping and the carrier concentration, and the dependence of the sublattice 
magnetization and of the magnetic form factor on the level of p-type and n-type doping. The 
obtained results agree with modern ideas about the undoped precursors of high-T, 
superconductors as charge-transfer insulators and correctly describe the basic way in which the 
insulating state is changed by doping, including the different occupancies of the copper 
and oxygen orbitals in the case of p-type and n-type doping, the pinning of the Fermi level, the 
transfer of the spectral weight, and the more rapid suppression of the antiferromagnetic 
correlations in the case of p-type doping than with n-type doping. The spectrum of Fermi 
quasiparticles is found explicitly, and the dependence of the width of the lower Hubbard band on 
the carrier concentration is obtained. The results for finite Cu-0 clusters agree to high 
accuracy with numerical calculations made by exact diagonalization and by the Monte Carlo 
method. O 1996 American Institute of Physics. [S 1063-7761 (96)01802-41 

1. INTRODUCTION 

It follows from band-structure  calculation^'^^ and x-ray 
and optical spectroscopy experiments394 that the properties of 
high-T, superconductors are largely determined by the inter- 
action of the electrons of the outer shells of copper and oxy- 
gen in Cu02 sheets, which are the common structural ele- 
ments of copper-oxide high-T, superconductors. The 
maximum overlap integral is obtained for the Cu3dXz-,2 and 
02p,(,, orbitals, which form the spectrum of electron states 
in the neighborhood of the Fermi leveL5 In consequence of 
this fact and also the presence in high-T, superconductors of 
strong Coulomb correlations, the two-dimensional many- 
band model of ~ m e r ~ ~  is usually used to describe the elec- 
tronic structure of the CuO, sheets. 

In the analysis of the Emery model, the main difficulty is 
that the energy Ud of the Coulomb repulsion of the carriers 
at the copper sites is too large to include the Coulomb cor- 
relations in perturbation theory [U,1=6-10 eV (Refs. 5 and 
7), which is of the order of the band width] but too small for 
correct expansion with respect to the parameter tlU,l (Refs. 8 
and 9), where t -  1 eV is the matrix element of a carrier hop 
along the copper-oxygen bonds. Since the difference E of 
the carrier energies at the oxygen and copper sites has the 
order of magnitude t (Refs. 5 and 7), expansion with respect 
to the parameter t l ~  (Refs. 9 and 10) is also invalid. 

The absence of exact solutions of the Emery model 
stimulated development of numerical methods for modeling 
the electronic structure of two-dimensional Cu-0 clusters- 
the elementary units of a CuO, sheet. The method of exact 
diagonalization"-'3 and the Monte Carlo methodi3-l6 are 

most frequently used. A serious shortcoming of these meth- 
ods is the severe restriction on the size of the investigated 
system (10-20 atoms in the first case and 20-200 atoms in 
the second). In addition, the accuracy of the Monte Carlo 
algorithm falls sharply when the temperature is lowered, so 
that it is not possible to investigate the most interesting case 
TST,-100 K. 

To describe the electronic structure of an infinite CuOz 
sheet, different (analytic or semianalytic) approaches are 
used. The difficulty is that in the undoped (insulating) and 
weakly doped (superconducting) states, which have the 
greatest interest, antiferromagnetic interactions, which can- 
not be described by the means of the standard mean-field 
approximation, are very strong. This approximation is not 
capable of explaining the antiferromagnetic insulating state 
of the undoped system and the insulator-metal phase transi- 
tion resulting from doping. The assumption of a paramag- 
netic state of the CuO, sheet'7y18 leads to a discrepancy with 
the data of cluster ca~culations. '~ 

To take into account antiferromagnetic correlations of 
the copper spins due to the large value of U,!, one most often 
uses the slave-boson method, which was proposed in Ref. 19 
for the single-band Hubbard model and generalized in Refs. 
20 and 21 to the many-band Emery model. Other approaches 
are known (see, for example, Ref. 22), but they are less 
popular. To some degree or other, all these methods are ap- 
proximate, and therefore it is sometimes difficult to know 
how well they describe the properties of a real system. One 
of the possible criteria here could be the agreement between 
analytic results and the data of exact numerical calculations 
of finite Cu-0 clusters. As examples, we may mention the 
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good agreement between the properties of the ground state of 
the Cu408 cluster as calculated by the slave-boson method 
and the method of exact diagonalization,23 and also the simi- 
larity of the phase diagrams describing the bound states of 
the excess holes in a CuO, sheet22'24 and the Cu408 
with infinitely large Ud. 

Every approximate method has certain shortcomings. 
For example, the algorithm developed for the Emery model 
in Ref. 22 can be used only in the limiting case tee, which 
does not correspond to the real experimental situation t-s 
(Refs. 5 and 7) and restricts its applicability. A serious short- 
coming of the slave-boson method is that the quasiparticles 
in it are composite Fermi-Bose formations. This makes it 
necessary to take into account several subsidiary conditions 
(constraints19) and makes it difficult to calculate the proper- 
ties of the actual Fermi quasiparticles (for example, their 
dispersion2'). In addition, because of the comparatively large 
number of variational parameters it is necessary to use rather 
laborious numerical calculations to obtain actual results by 
the slave-boson method. 

In this paper, we propose a new method for calculating 
the electronic and magnetic properties of a CuO, sheet. Al- 
though it is based on the mean-field approximation, it does 
take into account explicitly the presence of antiferromagnetic 
correlations in both the undoped and doped states. In contrast 
with Ref. 22, this method can be used for an arbitrary rela- 
tionship between the parameters of the Emery model, and, in 
contrast with the slave-boson method, makes it possible to 
find explicitly the dispersion and wave functions of the ac- 
tual Fermi quasiparticles, and not "pseudofermions"; this 
greatly facilitates its application to the calculation of the 
electronic and magnetic properties of the Cu02 sheets, 
namely, the occupancies of the atomic orbitals, the spectrum 
of the Fermi quasiparticles, the band width, the density of 
states, the antiferromagnetic correlations, etc. At the same 
time, it is possible to obtain an effectively complete analytic 
solution (numerical calculations are required only in the self- 
consistency stage, and the number of variational parameters 
is less than in the slave-boson method, which greatly accel- 
erates the convergence and shortens the time of the numeri- 
cal calculations by 1-2 orders of magnitude). The method 
can also be applied to finite Cu-0 clusters; the results that 
are then obtained agree excellently with the data of the exact 
diagonalization and Monte Carlo methods. Good agreement 
with the experimental data indicates that the method cor- 
rectly describes the main features of the electronic structure 
of high-T, superconductors. 

2. METHOD OF CALCULATION 

The starting point of our method is the two-dimensional 
many-band model of ~mery,6 the Hamiltonian of which has 
the form 

where dLJ and are the operators of creation of a hole in 
the states 3d,z-,2 and 2 ~ , ( ~ , ,  respectively, ( i j )  denotes 
summation over nearest neighbors, the index i labels the 
copper sites and the index j the oxygen sites, ni(,=dzdi(, , 

+ nj,=pjUpj,, t is the matrix element of a copper-oxygen 
hop, ep(cd) are the hole energies at the oxygen (respectively, 
copper) sites, and U,,, Up, and V are the energies of the 
Coulomb repulsion of holes at the copper and oxygen sites 
and between them, respectively. 

In the undoped insulating state of the high-T, supercon- 
ductor, there is one hole at each copper atom in the Cu02 
sheet, i.e., there is one hole for each Cu02 unit cell, and 
therefore it is convenient to use the hole representation of the 
Hamiltonian (1). An increase in the number of holes in the 
CuO, sheet corresponds to p-type doping of the high-T, su- 
perconductor (partial replacement of La3+ by s?' in 
La2Cu04, lowering of the oxygen deficit 6 in YB~,CU,O~_~ ,  
etc.) while a decrease of the number corresponds to n-type 
doping (partial replacement of ~ d ~ +  by ce4+ in Nd2Cu04 or 
of s?' by La3+ in SrCuO,, etc.). 

Our aim is to transform the Hamiltonian ( I )  to a single- 
particle form in order to take into account the possible pres- 
ence at the copper sites of antiferromagnetic spin correla- 
tions, which occur at a low doping level of the CuO, sheets. 
Since these correlations are due to the strong Coulomb re- 
pulsion of the holes at the copper sites (Ud% f ) ,  in the first 
stage we apply the Hartree-Fock decoupling only to the last 
two terms in (I), which describe the interaction of holes at 
the copper sites and at neighboring copper and oxygen sites. 
Proceeding in this manner, we assume that these interactions 
do not have a decisive effect on the electronic structure of 
the Cu02 sheet, i.e., that they lead to quantitative but not 
qualitative changes in the spectrum. This is true if Up and V 
are much less than Ud, which certainly appears to be the 
case in high-T, superconductors (see, for example, Ref. 5). 
With allowance for what we have said above, we obtain 

where np=(njt)+(njl) and nd= (ni t )+(ni l)  are the occu- 
pancies of the oxygen and copper sites, respectively, 
npd= ( d z p  ju) = (P7,dia)h , (...) denotes the mean value in 
the ground state (at T=O) or over the canonical ensemble (at 
finite temperature), and N is the number of CuO, cells in the 
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system. In (2), allowance is made for the fact that the nearest 
neighbors of each copper atom are four oxygen atoms, while 
the nearest neighbors of each oxygen atom are two copper 
atoms. With allowance for (2) and (3), the Hamiltonian (1) 
takes the form 

where 

If the mean field approximation can also be applied to 
the term that characterizes the repulsion of the holes at the 
copper sites, then one can describe fairly well the paramag- 
netic phase of the CuO, sheet,18 which corresponds to a 
heavily doped nonsuperconducting state. However, one does 
not then take into account the antiferromagnetic correlations, 
which have a decisive effect on the electrical and magnetic 
properties of the undoped insulating and, possibly, 
play a decisive role in the formation of the superconducting 
state in the case of a weak doping leveL30 

In order to take into account the antiferromagnetic cor- 
relations adequately, we divide the copper lattice into two 
sublattices in the coordinate and spin space, and then use the 
mean field approximation. Such an approach enables us to 
find the dispersion law of the actual Fermi quasiparticles in 
an antiferromagnetic environment without having to intro- 
duce Fermi-Bose quasiparticles as in the slave-boson 
method. At the same time, the physical picture becomes 
completely transparent, and the calculation of the various 
electronic and magnetic properties is significantly simplified. 
In addition, we shall see that our approach admits an almost 
complete analytic solution (laborious numerical calculations 
are required only in the final stage of obtaining self- 
consistency). 

Mathematically, our approach can be formulated as fol- 
lows. We make the ansatz 

where Ri are the coordinates of the copper sites, Q=(.rrla,.rrl 
a), a is the distance between the nearest-neighbor copper 
sites (the lattice period), and a= + 1 and - 1 (for spin direc- 
tions upward and downward, respectively). Some properties 
of the operators d& and d;u and also their connection with 
the operators dig and ni ,  are given in Appendix I .  By means 
of the ansatz (S), we have divided the copper lattice of the 
Cu0, sheet into two sublattices ( A  and B )  in coordinate- 
spin space. The sites of the A and B sublattices coincide in 
coordinate space but differ in spin space (Fig. 1). Each site of 
an A or B sublattice can be occupied only once, i.e., by a 
hole with spin up or a hole with spin down, depending on the 

FIG. I .  Division of the copper lattice into the coordinate-spin space. The 
coordinates of the copper sites are R=am,,e.,+am,e, (a is the lattice pe- 
riod). As an example, one of the directions in the Cu02 plane is shown. The 
solid and open squares show the A and B sublattices, respectively. 

coordinate of the site. For example, the site of the A sublat- 
tice with spatial coordinates Ri=(O;O) can be occupied only 
by a hole with spin up, while the site of the B sublattice with 
the same spatial coordinates can be occupied only by a hole 
with spin down. 

The term with Ud in (4) now takes the form 

where n&=dt:dt,, nfu=dF:d;u. The use of the mean field 
approximation at this stage makes it possible to describe the 
antiferromagnetic ordering of the copper spins if there is 
such ordering in the system. Applying the Hartree-Fock de- 
coupling, we obtain from (6) 

Note that for each copper site i only one of the mean 
values ( n t t )  or ( n t L )  is nonzero (the same is also true for 
(nFT), (nr1)) .  We shall assume that the numbers of carriers 
with spin up and spin down are the same. Then, depending 
on the site number i ,  we obtain (n tT)=nA,  ( n t 1 ) = 0  or 
( n f ) = n A ,  (ntT)=O. For the B sublattice, we have 2 1 ( n i t > = n B ,  (n;J=0 or (n:l)=nB, (nfT)=O. Here nA ( n B )  is 
the probability of occupation by a hole of a site of the A 
(respectively, B) copper sublattice. Depending on the values 
of nA and nB,  one or other of the following phases will be 
realized in the system: 1) for n A = n B ,  the paramagnetic 
phase, i.e., any copper site will be occupied with equal prob- 
ability by carriers having opposite spin directions; 2) for 
nA# nB, the antiferromagnetic phase, i.e., the A and B sub- 
lattices are occupied by carriers with different probabilities. 

It is here necessary to make the following remark. Since 
the A and B sublattices are completely equivalent, in the 
absence of a magnetic field the antiferromagnetic states with 
nA>nB and nB>nA do not differ in any way, since the one 
can be obtained from the other by the substitution A-B.  
Therefore, the state of the system is doubly degenerate. In 
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reality, however, the transition from the phase with nA=nB 
to the phase with nA#nB spontaneously lifts of the degen- 
eracy (an analogous situation obtains, for example, in the 
Ising model). In other wbrds, the situation is as if there were 
an infinitesimal magnetic field present in the system. In what 
follows, we shall for definiteness assume that nA>nB. 

Using the notation nA and nB, we write (7) in the form 

Substituting (8) in (4) and making the change of variables 
(5 ) ,  we obtain 

where 

&A- d -  ed+ 1 udnB, &:=EL+ udnA, 

the expressions for E L  , E; , t I ,  and E '  are given above. 
The Hamiltonian (9) is a single-particle Hamiltonian, 

and it can therefore be diagonalized by going to the k repre- 
sentation. However, it is convenient as a preparation, using 
an ansatz similar to (9, to divide the copper lattice of the 
Cu02 plane into sublattices A and B: 

where p&(pf,) are the operators for annihilation of a hole in 
the states 2p,(2py) at the copper sites with coordinates 
Rj+exa/2(Ri+eya/2). Here Ri=exmxa +eymya are the coor- 
dinates of the copper sites (m, and my are integers). We 
emphasize that the transition to the new p operators is made 
exclusively for reasons of convenience in subsequent ma- 
nipulations and does not signify (as in the case of the copper 
sublattice) the presence of antiferromagnetic correlations of 
the spins at the oxygen sites. 

The Hamiltonian (9) can now be expressed completely 
in terms of variables relating to the A and B copper and 
oxygen sublattices: H = H,+ H, , where the diagonal part has 
the form 

A+ A B+  B I A +  1A 
H O = & : ~  din diu+':C diu djo+';E (Piu Pio 

;,u I,, 

I A +  
where d*:, , (j , ~ m . ~  , (, and im , (7 are the operators for 
creation of a hole in the states 3d,z-,z, 2p,, and 2py,  re- 
spectively, for the states of the unit cell that belong to the 
copper and oxygen A sublattices. The operators with index B 
are the ones for the corresponding B sublattices. 

The Hamiltonian (10) can be diagonalized in the usual 
manner. The single-particle wave function of a hole with 
quasimomentum k=(kx,ky) and spin projection u has the 
general form 

where *\I, ,?:, ,*:: ,?:: ,*:: ,?\I: are Bloch wave 
functions constructed using the Wannier functions of the cor- 
responding copper and oxygen sublattices. The coefficients 
CA(k) and CB(k) are the probabilities for finding a hole with 
quasimomentum k in the A and B copper sublattices, respec- 
tively, and CIA(k) and C2,(k) [CIB(k) and C2,(k)] are the 
corresponding quantities for the A(B) oxygen sublattices, 
respectively, with site coordinates Ri+e,a12 and Ri+eya/2. 
The normalization condition is 

IcA(k)l2+Ic~(k)I2+Ic~~(k)I2+Ic1~(k)I2 

+ I ~ 2 A ( ~ ) 1 ~ + l ~ 2 B ( ~ ) l ~ =  

Substituting (11) in the Schrijdinger equation 

where the Hamiltonian H has the form (lo), we obtain a 
system of equations for the coefficients 
CA ,CB ,ClA,C,B,C2A,C2B (see Appendix 2). The condition 
for the existence of a nontrivial solution of this system gives 
the dispersion law E,(k), where 1= 1-6 is the band index. 
For 1 = 1 and 2, we have El(k) = E2(k) = e; ., We find the 
values of E3(k), E4(k), ES(k), and E6(k) by solvlng the equa- 
tion 

where 

Explicit expressions for E3(k), E4(k), E,(k), and E6(k) are 
given in Appendix 3. 

In the k representation, the Hamiltonian (10) is diagonal: 

and the hops are described by the term where 
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The prime in (13) means that the summation is over half the 
Brillouin zone. The region of summation in the k space de- 
creases because the lattice period in real space doubles after 
the division into the A and B sublattices. 

For 1=I and 2, we have I~a(k)/~=IcL(k)1~=0,  i.e., the 
first and second bands are occupied exclusively by carriers in 
the 2p oxygen orbitals; moreover, the probabilities of occu- 
pation of the A and B oxygen sublattices are equal. These are 
so-called nonbonding bands corresponding to the atomic 
level of 2p oxygen orbitals. They are nondispersive because 
we have ignored direct oxygen-oxygen hops in the original 
Hamiltonian (1). The remaining bands are occupied by both 
holes in the 3d 2 2 orbitals and holes in the 2pX(,, orbitals. 

I Y 2  The values of (CAI , IcLI2, Ic:AI2, Ic:BI2, Ic;AI2, I c k B l 2  

are given in Appendix 4. Note that the probabilities of occu- 
pation of the 2p, and 2py orbitals of the different sublattices 
are the same for all bands: I ~ : ~ ( k ) ) ~ = ) c : ~ ( k ) 1 ~  and 
lc;A(k)l2=Ic;B(k)l2. 

There are two possible cases corresponding to different 
types of occupancy of the A and B copper sublattices: 1) the 
paramagnetic phase (U,=O, nA = nB), for which the prob- 
abilities of occupation of all the bands by carriers in the 
3dX2- ,2 orbitals of the A and B copper sublattices are equal 
(lci(k)l2= ICL(k)l2, see Appendix 4); 2) the antiferromag- 
netic phase (Ud>O, nA#nB), in which case 
(ca(k)l2#ICL(k)l2, i.e., the probabilities of occupation of the 
A and B copper sublattices are different. 

Now, knowing the explicit expressions for El(k) and the 
band occupation probabilities, we write down the self- 
consistency conditions 

6 

n A = ( 2 / W C  C IIc;(k)l2f(~I(k)), 
I = I  k 

(14) 

where f(E) is the Fermi distribution function, and n is the 
reduced concentration of holes (the number of holes per 
CuO, cell). 

Self-consistent values of nA, nB, and npd were deter- 
mined numerically by successive iteration. We first specified 
the parameters of the Emery Hamiltonian 
(.sp ,ed ,  Ud ,Up,  V,t), the number of CuOz cells in the inves- 
tigated system (N), the hole concentration (n), the tempera- 
ture (T), and also the initial values of nA,nB,nPd. We then 
calculated the energies E,(k), the band occupation probabili- 
ties Ic'(k)I2, and the value of the chemical potential. Using 
the expressions (14)-(17), we determined new values of 
nA,nB,npd. If they differed from the initial values, the itera- 

tive procedure was repeated with the original values of 
nA,nB,np,, taken to be those obtained in the previous itera- 
tion. Such iterations were continued until the difference be- 
tween the "input" and "output" values became less than a 
prescribed quantity, which we usually set equal to lop5. 

As our calculations showed, the final result does not de- 
pend on the choice of the initial values of tzA,nB,npd, i.e., the 
iterative algorithm described in this paper is stable. The num- 
ber of iterations needed to achieve the accuracy de- 
pends, in general, on the values of the parameters of the 
Emery Hamiltonian, the size of the system, the hole concen- 
tration, and also on the quality (i.e., the proximity to the true 

A B values) of the initial values of n ,n ,npd but, as a rule, does 
not exceed 50 and only in individual cases amounts to 200 or 
more iterations. Note that nA,nB,nPcl play qualitatively the 
same role as the variational coefficients Xi in the slave-boson 
me th~d . '~ -~ '  However, there are fewer of them than there are 
coefficients Xi, and this reduces the time of the numerical 
calculations in the iterations by 1-2 orders of magnitude. 

In the determination of the properties of finite Cu-0 
clusters, the summation in (14)-(16) was performed over 
discrete values of the quasimomentum: 
k=(k, ,ky)= (2mxlNxa,2mylN,a),  where 
nx=O,l, ..., Nx- 1; ny=O,l ..., Ny- 1; ~ , = ~ , = f i .  In the 
case of an infinite CuOa sheet, the summation was replaced 
by integration over k, and ky . 

3. OCCUPATION OF THE COPPER AND OXYGEN ORBITALS 
IN THE CASE OF p-TYPE AND n-TYPE DOPING 

The question of which orbitals are occupied by the ex- 
cess carriers introduced into the original insulating state as a 
result of doping is very important for the choice of a theo- 
retical model capable of describing adequately the electronic 
structure of a high-T, superconductor. At the present time, it 
has been established e ~ ~ e r i m e n t a l l ~ ~ ~ - ~ ~  that the excess 
holes occupy preferentially the oxygen 2 ~ , ( ~ ,  orbitals, and 
excess electrons preferentially copper 3dx2-,2 orbitals. This 
is, in fact, the justification for using the many-band Emery 
model (and not the single-band Hubbard and r- J models) in 
order to describe the electronic structure of the Cu02 sheets. 

However, the nature of the occupation of the copper and 
oxygen orbitals on doping depends strongly on the values of 
the parameters of the Hamiltonian (1). As is shown in Ref. 8, 
the type of the initial insulating state of the Cu02 sheets at 
small values of Up is basically determined by the value of 
(.s+2V)IUd and belongs either to the class of Mott- 
Hubbard insulators (for Ud<.s+2V) or to the class of 
charge-transfer insulators (for Ud> E + 2V). In the first case, 
both p-  and n-type doping lead to a significant change in the 
occupancies nd of the copper orbitals but hardly influence 
the occupancies np of the oxygen orbitals (recall that we use 
the hole representation, i.e., nd and np are the occupancies of 
the corresponding orbitals by holes; the occupancies of these 
orbitals by electrons are 2-nd and 2-n,, respectively). In 
the second case, n, increases on p-type doping faster than 
nd ,  while nd decreases faster than np in the case of n-type 
doping. This corresponds to the experimental situation for 
high-T, superconductors, indicating that the original un- 
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FIG. 2. Occupancies of the copper (n,) and oxygen (n,) orbitals versus the 
reduced hole concentration n for Udlt=6, E/I =2, Up= V=O (solid lines) 
and U,,/I =2, ~ l r  =6 ,  Up= V =  0 (dashed lines). The number of CuO, cells in 
the system is N=256. 

doped compounds La2Cu04, YBa2Cu306, Nd2Cu04, 
SrCuO,, etc. belong to the class of charge-transfer insulators. 

Figure 2 gives the dependences of nd and n, on the 
number of holes n per Cu02 unit cell (n= 1 corresponds to 
the undoped insulating state, n > l  to p-type doping, and 
n<l  to n-type doping). The values of the parameters of the 
Emery model are chosen so that the initial insulating state 
belongs either to the class of charge-transfer insulators or to 
the class of Mott-Hubbard insulators. It can be seen that the 
nature of the dependence of nd and np on n in these two 
cases is indeed different and identical to what was described 
above. 

Note that the n,(n) and nd(n) curves in Fig. 2 are cal- 
culated for a Cu-0 cluster consisting of N=256 of the CuO, 
cells. We investigated in detail the influence of the cluster 
size on the values of nd and n,. The corresponding graphs 
are shown in Fig. 3. It can be seen that the values of nd and, 
therefore, n, (for n=const) virtually cease to depend on N 
already at N= 16. Thus, the occupancies are weakly sensitive 
to the size of the Cu-0 clusters, and this can be regarded as 
a justification of the use of the exact diagonalization 
method12'13 and the Monte Carlo method13-l6 to calculate nd 
and np in Cu408 and C U ~ ~ ~ ~ ~  clusters, respectively. 

Returning to Fig. 2, we emphasize that our results agree 
well with both e ~ ~ e r i m e n t ~ l - ~ ~  and the numerical calcula- 
tions of Refs. 12, 13, 15, and 16. For example, it has been 
established experimentally33 that in Re2-,MXCuO4-, (Re 
=Pr, Nd, Sm; M=Ce, Tb) the spectral weight of the line 

corresponding to holes at copper orbitals decrease by 
14?4% if x is increased from 0 to 0.15. It follows from our 
calculations (see Fig. 2) that at this level of n-type doping 
(n =0.85) the value of n,, is reduced by 15%-in good agree- 
ment with the experiment and with Refs. 13, 15, and 16, in 
which calculations were made by the Monte Carlo method. 

In order to make a more detailed comparison of our re- 
sults with the data of numerical cluster calculations, we 
found the function nd(&) for the Cu408 and Cuj6O3, clusters 
and compared them with studies in which these functions 
were found by the exact diagonalization method13 and the 
Monte Carlo method.15 The corresponding curves are given 
in Fig. 4. For the Cu408 cluster, the difference between our 
calculated values and the exact numerical values of n is less 
than 3% in the complete range &lt=O-5; moreover, in the 
most interesting region (corresponding to the real experimen- 
tal situation) &It= 1-2 the nd(&) curves practically coincide 
(see Fig. 4a). For the CuI6o3, cluster, our values of nd differ 
from those given in Ref. 15 by 1-2% (see Fig. 4). 

We investigated in detail how n, and np depend on Up, 
U,, V, and E for different n. We found that a change in Up 
had very little effect on nd when n< 1. This is because in 
both charge-transfer and Mott-Hubbard insulators the excess 
electrons preferentially occupy copper orbitals. In the Mott- 
Hubbard insulators, such a situation also obtains in the case 
of p-type doping (n>l). In the charge-transfer insulators, 
increase of Up for n > l  causes nd to grow. For n < l  the 
value of Ud also has a weak effect on the distribution of the 
carriers between the copper and oxygen orbitals. However, 
for n > l  the occupancies depend strongly on Ud (nd de- 
creases rapidly with increasing Ud). In contrast to the param- 
eters Up and U,, variation of V leads not only to quantitative 
but also to qualitative changes of nd and n,. We established 
that increase of V to a certain critical value Vc>& causes to 
an abrupt redistribution of the holes between the copper and 
oxygen sites. At the same time, nd decreases abruptly, and 
n, , correspondingly, increases. Similar results were obtained 
in Ref. 34. 

Summarizing this section, we note that the modified 
mean field approximation that we have proposed in this pa- 
per describes not only qualitatively but also quantitatively 
correctly the dependence of the occupancies of the copper 
and oxygen orbitals on the parameters of the Emery model 
and on the doping level. This follows both from comparison 

FIG. 3. Occupancies n,, of the copper orbit- 
als versus the number N of CuO, cells in the 
Cu-0 cluster for U,,/t=2, d t = 6 ,  
Up= V=O; a) undoped insulating state (n  
= 1); p-type doping (n=  1.25); b) n-type 
doping (n =0.75). 
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with experimental data and from the agreement with the nu- 
merical first-principles calculations made for some Cu-0 
clusters. Our approach also makes it possible to investigate 
how the occupancies depend on the size of the system. This 
enabled us to determine the size of the Cu-0 cluster at 
which its properties differ weakly from those of an infinite 
Cu02 sheet. This is important for an analysis of the results 
obtained by the numerical methods: exact diagonalization 
and Monte Carlo. 

4. DENSITY OF STATES 

The occupancies of the copper and oxygen orbitals are 
rather crude characteristics of the system in question. Much 
more informative is a quantity such as the density g ( E )  of 
quasiparticle states, which is defined by 

FIG. 4. Occupancies n,/ of the copper orbit- 
als versus E for U,/lt=6, U,=V=O, n = l .  
a) m e  Cu,O, cluster; b) the CU,,O,~ cluster; 
the solid lines are the results of our calcula- 
tions, and the dashed lines give the data of 
the exact diagonalization method13 (a) and 
Monte Carlo method15 (b). 
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The chemical potential ,u was found from the condition 
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where f ( E , , u )  is the Fermi distribution function. 
In this paper, we have restricted ourselves to investigat- 

ing the influence of doping on g ( E )  and E f =  p(T= 0). Fig- 
ure 5 gives the g ( E )  curves for a Cu02 sheet for different 
doping levels [we emphasize that g ( E )  depends strongly on 
the carrier concentration, i.e., the scheme of the energy bands 
is not "rigid"]. The form of the function g ( E )  reflects the 
presence in the energy spectrum of five bands: the lower 
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FIG. 5. Density of quasiparticle states g ( E )  
in a CuO, sheet for U,lt=6, &/r=1.5, 
U,lr=2, Vlr=0.5. The arrow indicates the 
position of the Fermi level Ef. The lower 
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FIG. 6. Width W of the lower Hubbard band versus the reduced hole con- 
centration n .  The dashed line is for U,lt=6, e/t=2, Up= V=O, and the 
solid line for U, l t=2 ,  elr=6, U,=V=O. 

Hubbard band (LHB), the bands of correlated states (CS), the 
doubly degenerate nonbonding band (NB), the bonding band 
(B), and the upper Hubbard band (UHB). These bands are 
named in accordance with the studies of Refs. 35 and 36. 

The LHB and UHB are separated by -Ud. They are 
formed by quasiparticle states, to which the copper orbitals 
make the main contribution. We note that for n = 1 it is pre- 
dominantly orbitals relating to the copper A sublattice that 
are occupied in the LHB, and only a small fraction of carriers 
occupy copper orbitals of the B sublattice. For the UHB, the 
opposite situation is realized. Between the two Hubbard 
bands, there are the purely oxygen NB at E = E L ,  the CS, 
and the bonding band. 

In the case of p-type doping, the LHB is shifted to 
higher energies. This effect was found experimentally in an 
investigation of x-ray absorption in La2-,Sr,CuO, (in the 
case of p-type doping, the LHB spectral intensity was shifted 
in the direction of the band in which the Fermi level is 
situated37338). Doping of n-type leads to a shift of the CS 
band to lower energies, i.e., to the region in which the band 
gap is situated in the undoped state. A similar shift of the 
spectral intensity has been observed experimentally in an 
n-type high T, supercond~ctor.~~ 

It can be seen from Fig. 5 that for n = 1 the Fermi level is 
situated in the band gap. For r-1 eV, the gap width is of 
order 2 eV, in agreement with the experimental data of Refs. 
40 and 41. Weak p-type doping leads to a displacement of Ef 
into the CS band, after which Ef hardly changes with further 
doping (pinning of the Fermi level). In the case of weak 
n-type doping, Ef is shifted into the LHB and then depends 
very weakly on n, as in the case of p-type doping. Note that 
the qualitative dependence of Ef on n (Fig. 5d) agrees quali- 
tatively with the experimental studies of Refs. 33, 37, 38, 
and 42, in which it was shown that on the transition from p -  
to n-type doping there is an abrupt "transfer" of Ef from one 
side of the band gap to the other. Admittedly, this contradicts 
the data of photoemission spectroscopy~3 according to which 
E,. is approximately the same for both types of doping. One 
of the possible reasons for such a discrepancy is that the 
photoemission experiments give information only on the 
properties of a narrow surface layer of the sample. 

Figure 6 gives the dependences of the LHB width W on 

n for different values of the model parameters. It can be seen 
that W(n) has a minimum at n=  1. This is due to the pres- 
ence of the metal-insulator phase transition at this carrier 
concentration. We emphasize that for U,,= U,,= V =  0 the 
band structure is "rigid," i.e., does not depend on n. 

5. MAGNETIC PROPERTIES 

In undoped copper-oxide insulators, there is antiferro- 
magnetic ordering of the magnetic moments at the copper 
sites, and therefore these compounds are antiferromagnets 
with Niel temperatures TN-300 K in La2Cu04 (Refs. 26 and 
27), TN-500 K in YBa2Cu3o6 (Refs. 26 and 28), and 
TN-250 K in Nd2Cu0, (Ref. 29). In the case of p-type 
doping, the three-dimensional antiferromagnetic ordering is 
very sensitive to the excess carrier concentration: The long- 
range magnetic order completely disappears at a concentra- 
tion of excess holes around 2% (Ref. 44). However, the 
short-range magnetic order persists at appreciably higher 
hole  concentration^.^^.^^ In the case of n-type doping, there is 
not such a strong effect on the antiferromagnetism of the 
copper-oxide compounds. The long-range antiferromagnetic 
order disappears only at a concentration of excess electrons 
exceeding 14% (Ref. 47). The experiment indicates that in 
the case of n-type doping a transition to the paramagnetic 
phase takes place immediately, without intermediate states of 
spin-glass type.47 

To obtain a quantitative characterization of the degree of 
antiferromagnetic ordering of the copper spins in the CuO, 
plane, we used the quantity 

S=So /nd (I8) 

where 

is (up to a coefficient) the magnetic moment of the copper 
antiferromagnetic sublattice per copper atom. In (19), the 
summation is over only the copper sites, and Q=(.rrla,.rrla). 
Normalization by the occupancy nd of the copper orbitals in 
(18) is convenient in that it enables us to separate precisely 
the changes in So as a result of doping that are due precisely 
to the destruction of the antiferromagnetic correlations and 
not the change in nd.  

Figure 7 gives the results of the calculations of the de- 
pendence S(n). The calculations were made for a CuOz sheet 
(the value of S for all n is essentially independent of n be- 
yond N=256). Note that S #  1 holds at n =  I ;  this is due to 
the presence in the system of quantum fluctuations. With 
increasing concentration of excess holes, nh= n- 1 ,  or ex- 
cess electrons, riel= 1 -n, the value of S decreases monotoni- 
cally (indicating a weakening of the antiferromagnetic corre- 
lations) and vanishes at the critical values n i  = n:, = 0.578. 
The phase with S=O is paramagnetic (nA = nB). 

In the case of weak p-type doping, 
S( 1 ) - S(n)-n - 1 = nh . This can be explained by the for- 
mation of Zhang-Rice  singlet^?^ the number of which is 
approximately equal to nh for nh<. l .  At small values of ne, , 
n-type doping does not have such a strong effect on S as 
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FIG. 7. The quantity S (see the text) versus the reduced hole concentration 
n for U,ilr=6, &lr=2, U ,=V=O.  

p-type doping. The reason for this is that in the case of 
n-type doping the excess electrons preferentially occupy 
copper orbitals33 (i.e., the value of n, changes weakly), and 
therefore, in contrast to the case of p-type doping, no com- 
peting interaction that weakens the antiferromagnetic ex- 
change interaction between the spins at the copper sites 
arises. The small decrease of S at low excess electron con- 
centrations can evidently be attributed to the growth of the 
effective hopping integral due to the appearance of copper 
sites not occupied by holes?9 the number of which is ap- 
proximately riel. When a certain concentration of excess 
electrons is reached, S decreases abruptly with a subsequent 
transition to the paramagnetic phase. 

As follows from what has been said above, S depends 
asymmetrically on nh and n,, in the case of weak doping 
because the original undoped system with n =  l (nh=O, 
ne,=O) is a charge-transfer insulator, i.e., has a band gap 
because of the density of states the nonvanishing value of 
E ,  which in high-T, superconductors is nevertheless appre- 
ciably less than Ud (&lt=l-2, Udt=6-10, see Refs. 5 and 
7). In the opposite case (Ud<&+2V), we should have a 
Mott-Hubbard insulator,8 and the dependence of S on nh 
and riel would be symmetric in the complete range OSnh, 
n,+l by virtue of the electron-hole symmetry of the Hub- 
bard model. Nevertheless, it is interesting to note that the 
critical values of nf, and n,C, at which S vanishes are equal. 
Since we consider a purely two-dimensional model, the val- 
ues of nf, and n;, differ from the corresponding critical values 
for three-dimensional layer systems [-0.02 (Ref. 44) and 
-0.14 (Ref. 47), respectively]. At the same time, the values 

FIG. 9. Dependence of S(w,?r) on e in the Cu,,O,, cluster for U,dt=6,  
U p =  V =  0 ,  n= 1. The solid line gives the results of our calculations and the 
dashed line the data of the Monte Carlo method.'' 

found for n i  and n,C1 agree well with the results of Ref. 21, in 
which a two-dimensional model was also used to calculate 
the dependence of the local magnetic moment at a copper 
site on the carrier concentration. 

In order to compare our data with the results obtained for 
finite Cu-0 clusters by the exact diagonalization method13 
and the Monte Carlo m e t h ~ d , ' ~ ? ' ~  we calculated 

where S;= nit  - nil is twice the total projection of the spin at 
the i-th copper site [up to a factor, rn: is the mean square of 
the magnetic moment at the copper sites, and S(.rr,.rr) is the 
Fourier transform of the spin correlation function, the value 
of which indicates the strength of the antiferromagnetic cor- 
relations of the spins at the copper sites]. The cxresponding 
graphs are given in Figs. 8 and 9 (in each case, the param- 
eters of the Emery model, the temperature, the size of the 
Cu-0 clusters, and the doping levels are the same as in the 
numerical calculations of Refs. 13 and 15). It can be seen 
from Figs. 8 and 9 that the agreement between our results 
and the numerical calculations is fairly good. This is particu- 
larly true for the dependence m:(&). With regard to the de- 
pendence of S(T,T) on 8, the difference between our data 
and the results of Ref. 15 reaches 15%. This may be due to 

FIG. 8. Dependence of rn: on E for U,lr=6, 
U p =  V=O,  n= I .  a) The Cu,O, cluster; b) 
the C U ~ ~ O , ~  cluster; the solid lines are the 
results of our calculations, and the dashed 
lines are the data of the exact diagonaliza- 
tion method13 (a) and the Monte Carlo 
method'' (b). 
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the insufficiently high accuracy of the Monte Carlo varia- 
tional algorithm (used in Ref. 15) compared, for example, 
with the determinant algorithm (in Fig. 9, the point for .s=2 
clearly deviates from a smooth dependence). 

6. CONCLUSIONS 

In recent years, two broad approaches have developed in 
the theory of high-T, superconductors: 1) analytic or semi- 
analytic treatment of the electronic, magnetic, and supercon- 
ducting properties of the infinite CuO, sheets; 2) exact (or, at 
least, controllable) numerical calculations made by the 
Monte Carlo or exact diagonalization methods for finite 
Cu-0 clusters. Each of these approaches has serious short- 
comings. The results of the analytic calculations entirely de- 
pend on the approximations and simplifications, employed 
and this often leads not only to quantitative but also qualita- 
tive differences between the data of different authors. On the 
other hand, exact numerical solutions are possible only for 
small Cu-0 clusters consisting of at most - 10 of the Cu02 
unit cells. This is often the reason for lack of confidence in 
cluster calculations. In this connection, there arises a need 
for the development of new approaches that, on the one 
hand, would be to a known extent approximate (and there- 
fore admit almost complete analytic solution) and, on the 
other, would take into account correctly the interelectron in- 
teractions in the CuO, sheets. Such methods include, for ex- 
ample, the slave-boson 

In this paper, we have presented a new modified mean- 
field approximation that satisfies the above requirements: 
First, it takes into account fairly accurately (in the framework 
of the Emery model) the presence of antiferromagnetic cor- 
relations of the copper spins due to the high energy of the 
Coulomb repulsion at the copper sites; second, it takes into 
account other interelectron interactions (at the oxygen sites, 
between the oxygen and copper sites); third, it admits an 
almost complete analytic solution and makes it possible to 
find in explicit form the spectrum of the Fermi quasiparticles 
(numerical calculations are required only in the self- 
consistency stage). Comparison with exact numerical calcu- 
lations for Cu-0 clusters showed that the error of our ap- 
proximation in the calculation of the electronic and magnetic 
properties (occupancies, magnetic moments, antiferromag- 
netic correlations) does not, as a rule, exceed 1-5%. The 
results that we obtained for an infinite CuO, sheet agree well 
with the experimental investigations of the electronic struc- 
ture of high-T, superconductors. 

Our method has made it possible to estimate the size of 
a Cu-0 cluster above which the electronic properties depend 
weakly on the number N of CuO, cells in the system. We 
found N =  16, and this can be regarded as a justification for 
the use of the exact diagonalization and Monte Carlo meth- 
ods in the investigation of the electronic structure of the 
CuO, sheets. To study the magnetic properties of doped 
states, the Cu-0 clusters must be somewhat larger, since the 
characteristic length over which the antiferromagnetic corre- 
lations decrease is -3-4 lattice periods (see also Ref. 16). 

It is interesting to compare our results with the data of 
Ref. 50, in which upper and lower bounds on the ground- 

state energy Eo were obtained for different carrier concentra- 
tions. Our calculations have shown that the values of Eo 
satisfy the inequalities E:'" < Eo < Eta" given in Ref. 50 at 
least for the parameters of the Emery model that were used 
in Ref. 50. 

Note that the method developed here, in contrast to the 
slave-boson method, is free of the need to take into account 
constraints and makes it possible to find the dispersion of the 
Fermi quasiparticles directly. This facilitates the calculation 
of the band width, the density of states, and other properties. 
In addition, the number of parameters that must be deter- 
mined in the self-consistency stage is smaller in our method 
than in the slave-boson method. This accelerates the conver- 
gence and shortens the time of the numerical calculations by 
1-2 orders of magnitude. 

We emphasize that our method makes it possible to de- 
scribe a large number of experimental facts, namely, the na- 
ture of the distribution of the carriers between the copper and 
oxygen sites in the case of p-  and n-type doping, the depen- 
dence of the Fermi energy on the type of doping and the 
carrier concentration, the transfer of spectral weight on dop- 
ing, the more rapid suppression of the antiferromagnetic cor- 
relations in the case of p-type doping as compared with 
n-type doping, etc. All this is achieved for values of the 
model parameters that correspond to the experiments. The 
method can be improved further, for example, by taking into 
account direct oxygen-oxygen hops. 
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APPENDIX 1 

Some relations between the operators dim ,d& ,dy, are as 
follows: 

1. diu=d;u+d;g, 

d;= df; + dB; , 

A B -  A + B + -  A + B -  A B + -  
2. Cdiudjsl-{din dj8 I-{diu djs)-{diudj, 1-09 

{df,d;:} = 0.5[1+ (T cos(QRi)] SijSu4, 

{d:,d;:} = 0.5[ 1 - cr cos(QRi)] 6ijSu4, 

where {...} is the anticommutator, and 4j is the Kronecker 
delta; 

A +  A B +  B 3. ni,=d&di,=di, di,+di, di,. 

A +  A B +  B A +  A B +  B 4. niTnil=diT ditdil  d i l+di l  dildiT d i T .  

APPENDIX 2 

The system of equations for the coefficients 
CA ,CB ,C,A,C,,,C,A,C,~ is 
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where 

X+ = exp(ikxa/2), X -  = exp( - ik,a/2), 

Y + = exp(ikya/2), Y - = exp( - ikya/2). 

APPENDIX 3 

The expressions for Ei(k) for 1=3-6 [the solution of Eq. 
(12)l are 

E3(k)= - x l  - x 2 + x 3 + ~ ; + ~ / 2 ,  

E4(k)= - x l  +x2-x3+~;+w/2,  

E5(k)=xl - x ~ - x ~ + E ; + w / ~ ,  

E6(k)=x1 + x ~ + x ~ + E ; + w / ~ ,  

A B W = E ; - E ; + ~ & ~ - E ~ ~ / ~ ,  

I c & ( ~ ) ~ ~ = I c : B ( ~ ) I ~  

= tr2[  1 + ~ ~ ( k ) + 2 ~ ~ ( k ) c o s ( k ~ a ) ] l ~ ~ ( k ) ,  

where 

Dl@)= Ol(k)/Pi(k), 

Ll (k)=( l  + ~ ; ( k ) ) [ ( ~ ; - ~ ~ ( k ) ) ~ + 4 t ' ~ ] + 4 t ' ~ ~ ~ ( k )  

X [cos(k,a) + cos(k,a)], 

ol(k)  = ( E ; -  ~ ~ ( k ) ) ( ~ f j -  El(k))-4rr2[sin2(kxa/2) 

+ sin2(kya/2)], 

pl(k)=(&;- E, (~) ) (E;-  El(k))- 4tr2[sin2(kXa/2) 

+ sin2(k,a/2)]. 

We have ( ~ a ( k ) ( ~ =  Ic;(k)l2 for Ud=O, since D,(k) = 1 holds 
by virtue of the fact that E ~ = E : .  

where 

/3=[32t'2+(&;-&:)2+2w2]/24, 
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