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The paper describes transport properties of a mesoscopic loop with a finite aspect ratio with two 
terminals in a magnetic field. The loop is rectangular and is characterized by a ratio dlL, 
where L is the loop dimension, and d is the width of its segments. If the loop is fairly narrow 
(dlL= 1/9), the curve of its conductance versus magnetic flux can be divided into three 
regions. In its first region, where the magnetic length satifies I,= J-2 l.3d, the 
Aharonov-Bohm (AB) oscillations are regular and quasiperiodic. The current density also 
oscillates and forms a laminar pattern except regions next to the terminals, where one 
vortex or a vortex-antivortex pair is formed. The second region is characterized by the inequality 
d S I H S  1.3d and is strongly affected by quantum oscillations which lead to irregular AB 
oscillations. In the third region ( lHSd)  electron transport across the loop is totally blocked and 
electrons are confined in the input terminal. In the case of multichannel transport (the 
paper considers only one and two-channel cases) AB oscillations are irregular, and the electron 
current density forms a convection vortex pattern. At a higher ratio dlL= 114 the range of 
irregular AB oscillations is wider. O 1996 American Institute of Physics. [S1063-7761(96)01602- 
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1. INTRODUCTION 

The intense interest in transport properties of mesos- 
copic and nanostructures shaped as quantum wires, dots, het- 
erostructures, etc., is driven by the progress in nanotechnol- 
ogy using molecular-beam epitaxy and lithography.' 
Structures fabricated by these techniques are of such high 
quality that their transport properties are controlled by the 
coherence of electron wave functions across them. 
Aharonov-Bohm (AB) oscillations2 in metal (Au, Ag, and 
Cu) and semiconductor (based on GaAs) loops3-5 and the 
quantum Hall are spectacular manifestations of the 
electron coherence in these structures. 

AB oscillations arise because an electron conducted 
from the input terminal into a loop acquires an additional 
phase 

where the sign of the integral depends on which branch of 
the loop contains the electron trajectory. As a result, the total 
phase shift at the output terminal is 

where H ,  is the external magnetic field perpendicular to the 
loop plane, @ is the magnetic flux through the ring, and 
Q,, is the magnetic-flux quantum. This equation indicates 
that the electron transport should be periodic in the reduced 
flux y with a period equal to unity. 

The simplest approach to AB oscillations is to consider a 
two-terminal structure consisting of one loop and two elec- 
trodes connected to it. If the electron motion across such a 
structure is one-dimensional and coherent, oscillations of its 

conductance will be strictly periodic with a period equal to 
unity. But if the electron coherence length in the loop is 
comparable to or smaller than its dimension, the shape of the 
AB oscillations may alter owing to interference with trajec- 
tories of electrons backscattered from impurities, and the pe- 
riqd of AB oscillations in contaminated cylindrical structures 
may be l/2.8,9 Several  author^'^-'^ attempted to find an exact 
solution of the quantum-mechanical problem of the electron 
transport across a mesoscopic one-dimensional, two-terminal 
loop with two arbitrary scatterers. The period of the oscilla- 
tions in this solution was unity, although curves of the trans- 
mission probability versus magnetic flux clearly demonstrate 
the presence of higher harmonics. The parameters of scatter- 
ers for which the second harmonic was dominant, i.e., the 
period of oscillations was 112, were also determined." A 
similar effect is caused by inelastic scattering from dynamic 
scatterers like phonons.13 To end our brief review of one- 
dimensional rings, we should note the importance of averag- 
ing over s~atterers. '~"~ After this procedure the unit period is 
eliminated in the thermodynamic limit, and only the period 
112 is observed. A calculation of AB oscillations in mesos- 
copic rings with ring segments modelled as N-channel con- 
ductors demonstrated that oscillations with the unit and one- 
half periods fall with N as 1lN when the conductance is 
averaged over the channels.I6 

In real experiments regular AB oscillations are not ob- 
served in loops with dimensions of 100-500 nm and a seg- 
ment width d=40 nm. Fourier transforms of AB 
 oscillation^^,'^ indicate that they contain a harmonic with the 
unit period and an additional harmonic with the period 112. 
Besides, Fourier transforms of AB oscillations show a con- 
siderable contribution from aperiodic fluctuations. The con- 
tribution from aperiodic fluctuations increases as a function 
of the ratio dlL, a one-third harmonic emerges, and the 
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widths of periodic peaks plotted against the magnetic field, 
including those with the unit period, also increase. stoneig 
was the first to calculate numerically these quantum fluctua- 
tions in a two-dimensional strip in a magnetic field using the 
quantum jump model with random energies of the scatterers. 
He demonstrated the existence of reproducible fluctuations in 
electron transport due to the microscopic configuration of the 
sample. These fluctuations are considerably stronger if quan- 
tum states are localized. As for the quantum Hall effect, a 
similar suggestion that localized electron states may bring 
about intense quantum fluctuations of the low-temperature 
conductance was made by Jain and ~ i v e l s o n . ' ~ . ~ ~  In particu- 
lar, a strip electron waveguide with an internal barrier was 
considered, and large fluctuations in the transmission of elec- 
trons tunnelling via localized states were detected. Note also 
the work by shapiro?l who found that in a planar waveguide 
corrections to the quantum Hall effect are on the order of 
(dllH12, where 

is the magnetic length. Experimental studies of the quantum 
Hall effect in multiterminal mesoscopic loops22 demon- 
strated that, first, only those theories in which no averaging 
over impurities is used are applicable and, second, at low 
magnetic fields aperiodic AB oscillations are due to the 
quantum AB interference of electrons scattered from impuri- 
ties or geometrical irregularities of their trajectories. 

Concluding our review of two-dimensional electron 
waveguides under magnetic field, let us consider several 
works in which microscopic current distributions were cal- 
culated, as a rule, numerically. A detailed analysis of current 
distributions in two-dimensional straight waveguides with 
s ~ a t t e r e r s ~ ~ - ~ ~  or with a potential barrier,26 and in curved 
waveguides without ~cat terers '~-~~ revealed fundamentally 
new features of the two-dimensional electron transport, 
which showed the quantum Hall effect from another view- 
point. The first feature is the formation of boundary states 
near edges of two-dimensional structures along which cur- 
rent flows. These states give the structure a high conduc- 
tance, despite the presence of scatterers in it. The second and 
most interesting feature is the formation of vortex states in 
the electron current distribution. They may have a consider- 
able effect on the electron transport. In systems with scatter- 
ers, states with an orbital momentum localized on impurities 
in a magnetic field are formed concurrently. The most im- 
pressive effect of vortices on the conductance was demon- 

FIG. 1 .  Configuration of the mesoscopic loop with two terminals. 

strated by Berggren and Zhen-Li ~ i ? ~  who discovered a tran- 
sition from laminar to convective transport in a curved 
waveguide with two bends. Such transitions are accompa- 
nied by jumps in the conductance. 

In this work we have numerically calculated AB oscilla- 
tions in the conductance, detailed structure of wave functions 
and current distribution in two-dimensional loops with two 
wide terminals. The magnetic field is perpendicular to the 
loop plane. To the best of our knowledge, these characteris- 
tics of two-dimensional loops have not been calculated pre- 
viously. According to stone1' inside and outside electron tra- 
jectories in the loop enclose different magnetic fluxes, which 
leads to aperiodic AB oscillations. But he assumed that the 
electron transport in the loop was laminar. In this paper we 
demonstrate that even with a very small magnetic flux, 
y 4  1 ,  the transport in not laminar because a vortex is formed 
in the input terminal. This makes phase shifts of electrons 
traveling along different trajectories equal, and AB oscilla- 
tions are periodic until the magnetic length is equal to fd,  
where d is the width of a bend in the loop and f is the 
number of electron transport channels. At a higher magnetic 
flux, AB oscillations are irregular owing to the restructuring 
of wave functions inside the loop and resulting fluctuations 
of local current distributions in space. Finally, when the mag- 
netic length is smaller than the aspect ratio, the electron state 
in the input terminal is totally localized, and the electron 
current across the loop is blocked. Besides, AB oscillations 
in the loop essentially depend on whether the electron trans- 
port is single-channel (only the fundamental mode is fed into 
the loop) or multichannel (several modes are fed). In the 
latter case AB oscillations are practically random and the 
current distribution is a convectional pattern of vortex 
chains. 

FIG. 2. Aharonov-Bohm oscillations of the probability of transmission across a narrow two-dimensional loop with a bend of width d= 12 and an external 
loop dimension L= 108; 7 is defined by Eq. (12) and equals the magnetic flux across the middle trajectory in the loop divided by the flux quantum: a) 
dimensionless energy r= 20 (single-channel transport); b) c= 50 (two-channel transport). The arrows indicate 7 corresponding to the patterns of the wave 
function and current shown in the following graphs. 
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FIG. 3. Patterns of the wave function 
1 Jl(x,y) l  corresponding to j indicated by ar- . . 

rows in Fig. 2a at 6=20 (single-channel 
transport). 

2. STARTING EQUATIONS 

The Schriidinger equation for the stationary electron 
transport in a two-dimensional structure in magnetic field is 

where A is the vector potential in the Landau gauge: 

and V(x) is the potential confining electrons in the structure. 
The structure shown in Fig. 1 has the shape of a rectangular 
loop with two wide terminals. The Fermi energy (or chemi- 
cal potential in a semiconductor structure) is uniform 
throughout the structure, including the terminals. The elec- 
tron motion across the structure is ballistic, i.e., the coher- 
ence length is much larger than the loop dimension, which 
determines the upper limit on this dimension of the order of 
100 nm. The magnetic field is uniform. 

Equation (3) in dimensionless form is 

and in the third method the structure is separated into regions 
and the solution in each region is expressed as a series of its 
eigenfunctions, and these are matched on the boundaries. 
The latter technique yields good results for zero magnetic 
field because in this case the solutions are plane waves. This 
method was applied to curved and multi- 
terminal s t ~ u c t u r e s . ~ ~ - ~ ~  But in the presence of a magnetic 
field the eigensolutions are parabolic cylinder functions, 
which makes calculations more difficult. Note also the 
Green's function Our approach combines sev- 
eral techniques. In the terminals we represent the solution as 
a superposition of waves, and in the loop we use numerical 
techniques. 

Let us write the solution in the input terminal as 

where the transverse functions +f are the eigenfunctions of a 
one-dimensional problem, 

- A 

where the coordinates are divided by the loop width d, 

y= ~ ~ d ~ 1 ~ ~ ,  ~ = 2 r n d ~ ~ l h ~ .  (6) E =  K ~ + A ~ .  

Techniques for calculating the probability of transfer The axial wave numbers K and ~f are also made dimension- 
through a multidimensional structure, from which the con- less by dividing by the terminal width d, which is equal to 
ductance is derived in the Buttiker-Landauer mode1,3°931 are that of the bend in the loop. In the output terminal the solu- 
well developed, and this probability can be derived by sev- tion is written as 
era1 methods. The first method is to calculate directly the 
transfer probability using the  matrix;^^-^^ in the second 
method Eq. (5) is solved numerically by finite-differences; 

# o I I ~ ( ~ , Y )  = E bfeiKfy 4fiy). 
f' 

(10) 
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FIG. 4. Patterns similar to those in Fig. 3 in 
the range of small magnetic fluxes. 

The finite difference equation for the functions in the @(m,N+ l ) = O .  As a result, we have a system of equations 
loop is for the factors af and bf which determine the probabilities of 

electron transmission and reflection through the equations 
[ 4 + ? n 2 - ~ I @ m , n - ( l  + i ~ n ) @ m + ~ , n  

Y - ,  , + I  m - ~ ~  ( 1 1 )  

where m and n run through integers from 1 to N .  We con- T = X  f=1 qbf12 ,  K R = Z  f = ~  51a4'. K 

struct the numerical solution starting from the upper edge of 
the loop, where $(m,O) = @i,,(xm,O) or @(m ,0) = 0 ,  and end- The calculation accuracy was checked by the condition 
ing on its lower edge, where @(m ,N+ 1 ) = @o,,(xm ,L)  or T +  R = 1, which was satisfied to within lo-'.  

I . .  -,--. . 

FIG. 5. Current distributions at the input region in the case of single-channel 
transport for several magnetic fluxes corresponding to the first AB oscilla- FIG. 6. Current distributions similar to those of Fig. 5 around the second 
tion period: a) y= 0; b) y=0.25; c) j= 0.5; d) y= 0.75 ( d =  12, L= 108, zero in the transmission probability: a) y= 1.4566; b) y= 1.477; c) 
~ = 2 0 ) .  ?= 1.4871; d) y =  1.5075. 

293 JETP 82 (2), February 1996 K. N. Pichugin and A. F. Sadreev 293 



FIG. 7. Contour plots of the wave function 1t+b(~,~)l and current distribution at e= 50: a) y = O ;  b) ?=0.5; c) j = 5 ;  d) y= 5.6. The current-distribution pattern 
is shaped as a chain of vortices around the middle line of the loop. The lower plots show only fragments of these chains. 

Since vortex states are of primary importance for trans- The current density was expressed in the numerical calcula- 
port in curved waveguides,27829935 it is very interesting to cal- tions using the gauge of Eq. (4) as 
culate the pattern of current density in wide loops: 
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FIG. 8. Transmission probability versus 
dimensionless energy 6 [Eq. (9)]: a) 
j=O;  b) +=0.5. The loop dimensions 
in mesh widths are d X L =  12X 108. 

where jo=ehlmao,  a .  is the dimension of a unit cell, and 

In the next section we shall demonstrate that AB oscillations 
in loops with the finite aspect ratio are followed by very 
complicated oscillations in the vortex current pattern. 

3. NUMERICAL CALCULATIONS 

Let us first consider numerical results for narrow loops 
( L S d ) .  The width d of bends in the loop equals twelve 
mesh widths of the grid on which the difference Eq. ( 1  1) was 
solved, the outside loop dimension L equals 108 mesh 
widths, and the width of the terminal was taken to be d .  
Figure 2a shows AB oscillations of the probability of trans- 
mission across the loop at an energy E= 20. At zero magnetic 
field only the fundamental mode with f = 1 is fed into the 
waveguide. In dimensional units, this energy means that both 
the metal-terminal and loop widths calculated by Eq. (6) are 

cm and the loop dimension is cm if the Fermi 
energy is about 1 eV. In GaAs structures, where the Fermi 
energy is several tens of millielectronvolts and the electron 
effective mass is m,= g:2 the width is d -  low6 cm at 
a dimensionless energy of 20. In order to identify the AB 
oscillation period, let us introduce the dimensionless mag- 
netic flux, which is the flux enclosed by the loop opening, 
@o = H ~ ( L  - d ) 2 ,  divided by the flux quantum ao: 

where the flux y is defined by Eq. (6) .  In the limit d--+O the 
AB-oscillation period tends to unity. 

Figure 2a demonstrates that in the case of single-channel 
transport the transmission probability in the range 0 5 7 5  6 
oscillates with a period ?= 1. In terms of magnetic length, 
this range is 1 . 3 d 2 l H 2 ~ .  In the next range of magnetic 
flux, 6 s  f s  10, AB oscillations are irregular and quantum 
fluctuations are important. The importance of quantum fluc- 
tuations in this range can be seen from the relationship 

1 . 3 d s l H 5 d .  A direct evidence of this effect, however, is 
shown in Fig. 3, where configurations of I @ ( x , ~ ) /  for differ- 
ent enclosed fluxes are given. The graph shows four configu- 
rations corresponding to maxima and minima of the trans- 
mission probability indicated by arrows in Fig. 2a. For 
comparison Fig. 4 shows four configurations of I @(x,y)l on 
one period of AB oscillations at low magnetic fields. One can 
see that in the region of irregular oscillations the pattern is 
blurred over the whole bend in the loop, whereas in the re- 
gion of regular oscillations the pattern is clearly periodic 
over the entire conducting path and is gradually deformed by 
the magnetic flux. 

The distinctive feature of AB oscillations in the electron 
transport in the single-channel case is that the transmission 
probability is exactly zero at points ?=m + 112. If electron 
currents are assumed to be laminar in the loop segments, the 
inside and outside trajectories enclose different magnetic 
fluxes.'' The conditions that the phase difference between 
electrons passing along the left and right paths equals .rr for 
all possible trajectories cannot be fulfilled, and it seems that 
the transmission probability cannot vanish. The numerical 
calculation of the current distribution for different magnetic 
fluxes in the range of regular oscillations indicates that in 
reality the electron transport is laminar throughout the struc- 
ture only at zero magnetic field, so that phases of electrons 
conducted via the right and left path are equal and the trans- 
mission probability is a maximum. But as soon as the mag- 
netic flux is nonzero, a vortex state is formed at the input 
region (Fig. 5b) and the states in the right and left branches 
are mixed. Therefore it is impossible to specify the flux en- 
closed by a particular trajectory. 

Near the points ?=m+ 112 a vortex-antivortex pair is 
formed at the input junction, so the phase shifts due to the 
magnetic flux along inside and outside trajectories in the 
loop are equalized and the transmission probability goes to 
zero (Fig. 5c). At this moment the state is degenerate with 
respect to current reversal, and the sign of vortex chirality is 
inverted. Figure 6 shows current patterns around the second 
zero of the AB oscillations at an input electron energy 
E= 20. This graph indicates that even a small change in the 
magnetic flux leads to a radical restructuring of the current 

T T 
I 

FIG. 9. AB oscillations of transmission 
probability in the loop with Lld= 7: a) 

0.4 - 
r=20;  b) c=50. 

0 1 2 3 . 4 5 6 7 8 9  P 
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FIG. 10. AB oscillations of the transmis- 
sion probability in the loops with 
Lld=4: a) e=20; b) r=50. 

pattern. The reversal of the chirality of vortex states at an 
energy corresponding to zero conductance was also reported 
in Ref. 29, where a curved waveguide with two bends was 
discussed. On the second half-period of AB oscillations the 
current pattern is similar to that of the first half-period, ex- 
cept that the current direction is reversed. Figure 5(d) shows 
the current pattern at a magnetic flux corresponding to 314 of 
the oscillation period, and it is nearly identical to that in Fig. 
5b, but with reversed current directions. If we renormalize 
the magnetic length taking into account the real period of the 
oscillations, the region of regular oscillations is described in 
practically all cases by the relationship lHS 1.3d, where 

Figure 2b shows AB oscillations of the transmission 
probability at an energy e=50 at which, according to Eq. 
(9), the second waveguide mode (f =2) is involved (two- 
channel transport). Besides, an electron can switch between 
these two modes in this ~ a s e . ~ ~ ~ ~ ~ * ~ ~ , ~ ~  The curve of oscilla- 
tions demonstrates that this modification leads to radical 
changes, and oscillations are irregular after two regular peri- 
ods starting with y> 2.5. In the two-channel mode two elec- 
tron half-waves can be inserted between path boundaries. As 
a result, the effective magnetic length is shorter, and the con- 
dition of electron transport without fluctuations becomes 
l H >  1.8d. The range of regular AB oscillations is reduced 
accordingly, as seen in Fig. 2b. But the pattern of the current 
distribution is different from the single-channel case, and 
even at zero magnetic field the electron transport in the loop 
is vortex-like, so the current distribution pattern is a chain of 

FIG. 11. Current distributions in the loop with a finite aspedt ratio 
(Lld=4) in the case of single-channel transport for e=20: (a) j -0;  (b) FIG. 12. Current distributions in a loop with a finite aspect ratio 
j =  1 ; (c) j =  1.966; (d) j =  1.9695. Graphs c and d correspond fo anomalies (Lld=4) in the case of two-channel transport for r=  50: (a) j=O; (b) 
in AB oscillations around j =  2 shown in Fig. 10 for r= 20. j =  0.3724; (c) y= 3.0; (d) j =  3.8675. 
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vortices, part of which is shown in Fig. 7. As a consequence, 
the conductance as a function of the magnetic flux does not 
vanish, except in the range l H 5 d ,  where the wave function 
is totally localized at the input junction. In the case of the 
three-channel transport, there are two vortex chains, etc. This 
effect was also reported in Ref. 29, where the scale of the 
vortex pattern changed abruptly at certain energies of elec- 
trons launched into a waveguide with two bends. These criti- 
cal energies correspond to the change in the number of trans- 
port channels in the waveguide. 

To end our discussion of AB oscillations in the loop 
transmission at low electron energies and a small aspect ra- 
tio, note that amplitudes of regular oscillations are notably 
smaller than in the case of higher energies. The cause of this 
is the square shape of the loop, whose comers generate 
bound states of a transport As a result, an elec- 
tron propagates across an effective potential relief with two 
potential wells in one bend of the loop. The transmission 
probability plotted against the electron energy at a fixed 
magnetic flux in fact demonstrates a typical resonant tunnel- 
ling nature (Fig. 8).  

Now we shall discuss calculations for loops with larger 
dlL ratios. Figures 9 and 10 show AB oscillations in loops 
with dimensions d X L = 12X 84 (dl  L = 117) and 12X 48 
(d lL  = 114) in terms of the mesh width. As we might expect, 
AB oscillations become aperiodic at smaller magnetic fluxes. 
The range of periodic AB oscillations, like in the case of a 
narrow loop, is approximately described by the inequality 
0 5  7 5  2 or lH> 2d .  The range of irregular oscillations can 
be described as 2 5  y 5 4  or d > l H >  2d .  Figure 1 1  shows 
patterns of the current distribution for single-channel trans- 
port in an wide loop, and Fig. 12 shows the distribution for 
the two-channel transport. The latter shows that even in zero 
magnetic field the current pattern consists of a vortex chain. 
At a finite magnetic field this pattern becomes more compli- 
cated, and at a large magnetic flux, corresponding to irregu- 
lar AB oscillations, the current pattern contains a complex 
set of vortex and antivortex states. 

Summarizing the computer simulations discussed above, 
we come to the following conclusions. The patterns of the 
current distribution and wave function of an electron propa- 
gating across a mesoscopic loop at small electron energies 
and magnetic fluxes help us to discover fine mechanisms 
which control single current vortices in the range of regular 
AB oscillations. At a high magnetic flux in the range of 
irregular oscillations, our calculations demonstrate the im- 
portance of quantum fluctuations, which eventually spread 
electron wave functions. In the energy range where several 
channel are involved in the electron transport (which is the 
case in metal loops), the current pattern convective and con- 
sists of one, two, etc., vortex chains. As a result, the electron 
transport becomes totally irregular. Thus the cause of the AB 
oscillation irregularity is the vortex structure of the electron 
current, which consists of a quasiperiodic lattice of vortices 
acting as Benard cells. As a result, electron trajectories have 
complex shapes and enclose magnetic flux in a complicated 
way. Therefore even a small variation in the magnetic field, 
which brings about small deformation of Benard cells, sig- 
nificantly changes the phase shift on the electron trajectory. 

This change equals by the order of magnitude the product of 
the loop perimeter L and the Benard cell dimension, which is 
approximately equal to the width d of the bend divided by 
the number of electron transport channels. An estimate of the 
number of transport channels in experiments by Webb 
et al.,5.'7 who studied gold loops with a width d-40  nm 
yields 1 0 ~ ' ~ .  This means that the current pattern in those 
loops is quite complex with many vortex chains. In order to 
study regular AB oscillations, one should take very narrow 
loops. The widths d of metal loops should be about 1 nm, 
and that of GaAs structures of the order of 10 nm. 
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age Grant 93- 1602, and by the Krasnoyarsk territory Science 
Foundation. 

'H. Sakaki, in Physics of Nanostructures, ed. by J. H. Davies and A. R. 
Long (1992), p. 1. 

'Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 
3 ~ .  A. Webb, S. Wasburn, C. P. Umbach, and R. B. Laibowitz, in 
SQUID'S,  Superconducting Quantum Interference Devices and their Ap- 
plications, ed. by H. D. Hahlbohm and H. Lubbig (Walter de Gruyter, 
New York, 1985), p. 561. 

4 ~ .  A. Webb, in Quantum Coherence (World Sc. Publ., Singapore, 1990). 
's. Washbum and R. A. Webb, Adv. Phys. 35,375 (1986). 
6 ~ h e  Quantum HaN Eflect, ed. by R. E. Prange and S. M. Giwin (Springer- 
Verlag, New York, 1987). 

7 ~ .  von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 
(1980). 

8 ~ .  I. Al'tshuler, A. G. Aronov, and B. Z. Spivak, Pis'ma Zh. ~ k s ~ .  Teor. 
Fiz. 33, 101 (1981) [JEW Lett. 33, 91 (1981)l. 

9 ~ .  G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys. 59,765 (1987). 
I0Y. Gefen, Y. Ymry, and M. Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984). 
"Y. Gefen, Y. Ymry, and M. Ya. Azbel, Surf. Sci. 142, 203 (1984). 
I'M. Buttiker, in SQUID'85, Superconducting Quantum Interference De- 

vices and their Applications, ed. by H. D. Hahlbohm and H. Lubbig 
(Walter de G ~ y t e r ,  New York, 1985). p. 529. 

1 3 ~ .  N. Bulgakov and A. F. Sadreev, Phys. Rev. B 52, 11938 (1995). 
145. P. Carini, K. A. Mutalib, and S. R. Nagel, Phys. Rev. Lett. 53, 102 

(1984). 
I'D. A. Browne, J. P. Carini, K. A. Muttalib, and S. R. Nagel, Phys. Rev. B 

30, 6798 (1984). 
1 6 ~ .  Buttiker, Y. Imly, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 

(1985). 
1 7 ~ .  A. Webb, S. Washbum, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. 

Lett. 54, 2696 (1985). 
1 8 ~ .  D. Stone, Phys. Rev. Lett. 54, 2692 (1985). 
1 9 ~ .  K. Jain and S. A. Kivelson, Phys. Rev. Lett. 60, 1542 (1988). 
'OJ. K. Jain and S. A. Kivelson, Phys. Rev. B 37, 4111 (1988). 
"B. Shapim, J. Phys. C 19, 4709 (1986). 
"A. M. Chang, G. Timp, T. Y. Chang, Sol. St. Commun. 67, 769 (1988). 
2 3 ~ .  Bandyopadhyay, S. Chaudhuri, B. Das, and M. Cahay, Superlattices and 

Micmstructures 12, 123 (1992). 
2 4 ~ .  Chaudhuri, S. Bandyopadhyay, and M. Cahay, Superlattices and Micm- 

structures 11, 241 (1992). 
2 5 ~ .  Chaudhuri, S. Bandyopadhyay, and M. Cahay, Phys. Rev. B 47, 12649 

(1993). 
2 6 ~ .  M. Ramaglia, F. Ventriglia, and G. P. Zucchelli, Phys. Rev. B 48, 2445 

(1993). 
2 7 ~ .  S. Lent, Phys. Rev. B 43, 4179 (1991). 
2 8 ~ .  Leng and C. S. Lent, Superlattices and Microstructures 11,351 (1992). 
2 9 ~ . - ~ .  Berggren and Ben-Li Ji, Phys. Rev. B 47, 6390 (1993). 
'OR. Landauer, Phil. Mag. 21, 863 (1970). 
3 L ~ .  Buttiker, Phys. Rev. B 38,9375 (1988). 
"c. B. Duke, Tunneling in Solids (Academic Press, New York, 1969). 
3 3 ~ .  E. Mendez, in Physics and Applications of Quantum Wells and Super- 

lattices, ed. by E. E. Mendez and K. von Klitzing (Plenum Press, New 
York and London, 1987). 

3 4 ~ .  Vacek, A. Okiji, and H. Kasai, Phys. Rev. B 47, 3695 (1993). 
35H. WU, D. W. L. Sprung, and J. Martorel, Phys. Rev. B 45, 11960 (1992). 

297 JETP 82 (2), February 1996 K. N. Pichugin and A. F. Sadreev 297 



"H. Kasai, K. Mitsutake, and A. Okiji, J. Phys. Soc. Jap. 60, 1679 (1991). 4 2 ~ .  L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974). 

3 7 ~ .  Buttiker, Phys. Rev. Lett. 57, 1761 (1986). 4 3 ~ .  Streda, J. Kucera, and A. H. MacDonald, Phys. Rev. Lett. 59, 1973 

3 8 ~ .  L. Schult, H. W. Wyld, and D. G. Ravenhall, Phys. Rev. B 41, 12760 
(1990). 

4 4 ~ .  Exner, P. Seba, and P. Stovicek, Czech. J. Phys. B 39, 1181 (1989). 
"H. Wu and D. W. L. Sprung, Phys. Rev. B 47, 1500 (1993); Phys. Lett. A 

3 9 ~ .  Avishai and Y. B. Band, Phys. Rev. Lett. 62, 2526 (1989). 183, 413 (1993); Phys. Rev. A 49, 4305 (1994). 
"Q. Niju and D. J. Thouless, Phys. Rev. B 35, 2188 (1987). 
4'S. Datta, J. Phys. C: Condensed Matter 2, 8023 (1987). Translation provided by the Russian Editorial office. 

298 JETP 82 (2), February 1996 K. N. Pichugin and A. F. Sadreev 298 


