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The exponents of the scale transformations determining the large-scale behavior of the statistical 
solutions of the nonlinear diffusion equation, known under the name of the 
Burgers-Kardar-Parisi-Zhang equation, are calculated by means of the renormalization 
approach in the two-loop approximation. The value found for the dynamic exponent and the 
roughness exponent, z = 1.73 and x = 0.27, respectively, are in satisfactory agreement 
with results obtained by other theoretical methods and by numerical analysis of the 
problem. O 1996 American Institute of Physics. [S 1063-776 1 (96)01402-91 

1. INTRODUCTION 

At present, the nonlinear diffusion equation in the pres- 
ence of an external random source, known by the name of 
the Burgers-Kardar-Parisi-Zhang (BKPZ) equation,' is the 
subject of intense study. The interest in this equation is due 
to the fact that it describes a wide variety of physical and 
physico-chemical processes such as fluctuations of the shape 
of the boundary surface of a growing solid body or the in- 
terfaces of two-liquid flows, and the motion of domain walls 
and  cluster^.^-^ This equation turns out to be equivalent to 
the equation for the distribution function of directed poly- 
mers, dislocations, and vortices in a random field. The BKPZ 
equation governs the velocity potential of liquid flow de- 
scribed by the Burgers equation?*6 the large-scale asymptotic 
behavior of the propagation of flame fronts (the Kurarnoto- 
Sivashinski equation)? and diffusion in a randomly inhomo- 
geneous m e d i ~ m . ~  This wide range of applicability of the 
BKPZ equation is due to the fact that this equation is the 
simplest nonlinear generalization of the diffusion equation. 

As the unknown function, one considers the scalar quan- 
tity h(r,t), whose dimensionality and physical meaning can 
be quite various. The radius vector r is defined in a space of 
dimension d, which can be equal to the dimension of real 
space or to the dimension of a hypersurface in 
(d + 1 )-dimensional space. The quantity h(r,t) can have the 
meaning of a velocity potential, or perturbations of the pro- 
file of a surface moving in the direction perpendicular to 
itself, or be proportional to the logarithm of the concentra- 

study of the BKPZ equation is to find the values of these 
universal exponents. Note that the presence in the system of 
some symmetry property (Galilean invariance) leads to a re- 
lation between the two exponents of the form2 

as a result of which, only one of the exponents is indepen- 
dent. 

The BKPZ equation in the presence of an external ran- 
dom source 17 and a regular source f has the form 

where, depending on the specific physical meaning of the 
quantity h, the parameters vo and X o  have a different mean- 
ing and dimensionality. When h defines the potential of a 
velocity field (the Burgers equation), the parameter vo has 
the meaning of a viscosity coefficient, and the nonlinear in- 
teraction constant Xo  is dimensionless and equal to unity. 
When h has the dimension of length and describes the fluc- 
tuations of the shape of a moving interface, the parameters 
vo and Xo  correspond to the coefficient of surface tension at 
the interface and the translational velocity of the boundary. 
(With the Burgers equation in mind, in what follows we will 
call the parameter vo in Eq. (1.3) the viscosity coefficient.) 
The Langevin noise source 7 is assumed to satisfy Gaussian 
statistics and it is assumed that it is &correlated in space and 
time ("white noise"): 

tion distribution function in a randomly inhomogeneous me- 
dium. (v(r , t )  7,1(r ' , t ' ) )=2D,S(r -rr )S( t - t ' )  

A characteristic feature of all the above systems is that 
the absence of'a characteristic length scale causes the large- 
scale fluctuations of h to display universal scaling properties, 
i.e., for the pairwise correlation function C(r,t) the follow- 
ing relation" h o ~ d s ~ . ' ~  

where the universal (depending only on the dimension d) 
values ,y and z are called respectively the roughness expo- 
nent and the dynamic exponent and the function f ( x )  in the 
limit x-tw behaves like x2X'Z, and in the limit x--0 ap- 
proaches a constant value. One of the main problems in the 

("colored noise" correlations n(r,t) are considered in Ref. 
6). 

The exponents for the asymptotic power-law depen- 
dences in the absence of a characteristic scale can sometimes 
be found from dimensional arguments. However, such argu- 
ments are insufficient if divergent integrals arise in the 
theory. To regularize the divergent integrals by truncating 
them in the large-scale region (for IR divergences) or the 
small-scale region (for UV divergences), one introduces, ei- 
ther explicitly or implicitly, an additional spatial scale 
A W L ,  which must be taken into account when using dimen- 
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sional arguments. The presence of this scale causes the val- 
ues of the exponents of the scale transformations to differ 
from the values that follow from simple dimensional argu- 
ments, and the corresponding correction carries the name of 
the anomalous dimension." The value of the dimension of 
the space at which the divergences appear is called the criti- 
cal (crossover) dimension. At the critical dimension the di- 
vergence is weak (logarithmic), and the behavior of the 
power-law exponents on both sides of the critical dimension 
is different. 

Usually, the problem of calculating the power-law expo- 
nents is solved by using the renormalization-group (RG) 
method. The RG method, which first appeared in quantum 
field theory and was later modified and successfully applied 
to the theory of critical phenomena, may be considered as a 
way of studying substantially multimode systems, in which 
the absence of an isolated characteristic scale makes the 
modes of all scales equally important for understanding the 
processes taking place in the system.12 

Two somewhat different formulations of the RG method 
are known. In the so-called field-theoretic formulation, the 
property of renormalization invariance, lying at the basis of 
the method, consists in the independence of the total 
perturbation-theory series on the manner in which the equa- 
tion (or the corresponding Lagrangian) is divided into an 
unperturbed part and the perturbati~n.'~.'~ This property 
means that by knowing the lower approximations of the per- 
turbation theory one can predict the form of the subsequent 
terms of the series and sum up this series or some infinite 
subsequence of it. The second formulation, which was devel- 
oped and successfully applied by Wilson in the theory of 
critical phenomena,15,16 is based on the idea of successively 
decreasing the number of considered modes by an iterative 
partial averaging over the small-scale (fast) modes in the 
equation (or distribution function) for the slow modes (the 
Kadanoff procedure) in combination with a scale transforma- 
tion defining the interface between the slow modes remain- 
ing after the transformation and the fast modes excluded 
from consideration by the Kadanoff procedure. The asymp- 
totic behavior of the system is determined by the properties 
and nature of the stability of the fixed points of the RG- 
transformation, which reduces to a combination of the 
Kadanoff transformation and the scale transformation. 

The RG approach was first applied to the problem under 
consideration in Ref. 17, whose authors proposed a generali- 
zation of the one-dimensional Burgers equation to the case of 
a space of arbitrary dimension and used the RG method in 
the Wilson formulation to examine the dependence of the 
large-scale asymptotic behavior of the statistical solutions on 
the dimension of the space. They showed that for d =  1 the 
property of Galilean invariance in combination with the 
fluctuation-dissipation theorem allows one to obtain the val- 
ues ,y = 112 and z = 312 for the exponents. In the region 
1 < d<  2 there are no divergences and as a consequence of 
this it should be possible to determine the exponents by di- 
mensional arguments, which leads to the values 
z= (d+2)/2 and ,y= (2- d)/2 (Refs. 1 and 18). In fact, in 
the absence of divergences the RG approach reproduces the 
results of a dimensional analysis in analogy with the situa- 

tion that obtains in the RG description of t~rbulence.'~ In the 
theory of turbulence, corrections to the Kolmogorov scaling 
exponents arise when one takes account, within the RG ap- 
proach, of spatially localized wave numbers of the intermode 
interactions, which lead to the logarithmic IR divergences.'' 
An estimate of the exponents was made in Ref. 21 for the 
BKPZ equation in the linear approximation, where the value 
z = 2  was found for the dynamic exponent, and the value 
,y= (2 - d)/2 for the roughness exponent. The failure of re- 
lation (1.2) for d # 2 is due to violation of the Galilean in- 
variance of Eq. (1.3) when neglecting the nonlinear term. 

We are interested in the case d = 2 corresponding to the 
critical dimension at which the trivial and nontrivial fixed 
points merge, and to find a new nontrivial fixed point it is 
necessary to use a higher perturbational approximation (the 
two-loop approximation). The BKPZ equation has been stud- 
ied by means of the two-loop approximation in recent 

2. CONSTRUCTION OF STATISTICAL SOLUTIONS 

The BKPZ equation in its structure is reminiscent of the 
equations lying at the basis of the statistical description of 
fully developed turbulence, and in some respect it is even 
simpler since the unknown function is a scalar, and not a 
vector. It thus appears possible to formulate the problem in a 
way analogous to the statistical theory of t~ rbu lence .~~  

Following this approach, we write the BKPZ equation in 
the form proposed in Ref. 25: 

Here we have introduced the notation ( r l  , t l)  = 1, 
h( r l  ,t ,) = h( 1 ) and the integration is understood to be over 
repeating space-time variables. According to Eq. (1.3) 

To describe the system statistically, it is convenient to 
use the method of the characteristic funct iona~,~~-~'  the latter 
being the functional Fourier transform of the density of the 
distribution of realizations of the field h for prescribed 
sources 7 and ?: 

where the angular brackets denote the average over the en- 
semble of realizations, which reduces to averaging over the 
random sources 7 for fixed f. Knowing the characteristic 
functional allows one to find the cumulant means and aver- 
age response functions from the relations 
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FIG. 1. 

In the development that follows, we will use the skeleton 
diagram technique to depict the Green's function G (propa- 
gator) and correlator C by thick lines with one and two op- 
positely directed arrows, respectively, as shown in Fig. 1. In 
the zeroth perturbational approximation they correspond to 
diagrams with thin lines, where 

~(O)(12) = [K(')( 12)]-', 

As is well known, the characteristic functional w[f,fl 
can be represented in the form of a functional integral over 
the fields h and h"24-27 

Usually such a representation is used to construct the 
perturbation-theory series by expanding the exponential in- 
side the functional integral in a power series in XoV. Thereby 
the possibility arises of finding the statistical moments and 
the response function in the prescribed perturbational 
approximation.28 The construction of the series is facilitated 
by constructing the terms of the corresponding series of 
Feynman diagrams. Another way of constructing the 
perturbation-theory series for the statistical moments is to 
make direct use of the dynamic equation (1.3) and solve it 
iteratively. Then subsequent multiplication of the series and 
term-by-term averaging of the so-obtained series allows one 
to obtain an expression for the statistical moments. In this 
procedure one can also use the Feynman diagram 

where an analysis of these diagrams allows one 
to find equations for the statistical moments-the so-called 
Dyson (and Wild) equations for the skeletal diagrams. 

On the other hand, the Dyson equations can be obtained 
outside the framework of perturbation theory from the for- 
malism of the characteristic functional in a way analogous to 
that employed in the theory of t~ rbu lence .~~  Toward this end, 
we make use of the invariance property of the path integral 
with respect to the operation of a shift in the functional ar- 
gument h"( 1 ) -+ i( 1 ) + cp( 1 ). Setting the functional deriva- 
tive Sw[f , j j l  Scp(1) equal to zero, we find an equation in 
the functional derivatives for the characteristic functional 
which is an analog of the Hopf equation in the theory of 
t~rbulence :~~ 

In order to obtain the Dyson equations for the correlator 
C( 12) and the Green's function (propagator) G( 12), we 
transform to new functional variables 

which in the limit f+O go over to the mean values of the 
fields h and h", respectively, where (h")  = 0. This transforma- 
tion is carried out by means of the Legendre functional trans- 
formation by introducing a new characteristic functional for 
the single-particle irreducible diagrams: 

Calculation of the mixed derivatives of W with respect to the 
fields f and H leads to the relations 

from which the extremality conditions N l i S H =  f = O  im- 
P ~ Y  
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where G - '  is the inverse Green's function, and it is natural 
to call the quantity D(12) the correlation function of the 
effective random sources. 

If we represent *[H,H] by a filled circle, then the ac- 
tion on 9 of the operators 61 SH and Sli sE? will correspond 
to insertion of an arriving or departing arrow. We also intro- 
duce into consideration quantities corresponding in graphical 
language to single-particle irreducible vertices of three types: 
those containing two arriving and one departing arrow (con- 
version of two quanta into one), one arriving and two depart- 
ing arrows (conversion of one quantum into two), and three 
departing arrows (creation of three quanta): 

In the lower perturbational approximation 

Departing from Eqs. (2.5) and definition (2.7), it is not 
hard to obtain an equation in functional derivatives for the 
functional q: 

Operating on Eq. (2.12) with the operator SI SH(2), we ob- 
tain 

Analogously, by operating on Eq. (2.12) with the operator 
6 / i S ~ ( 2 ) ,  we obtain 

The functional derivatives entering into Eqs. (2.13) and 
(2.14), represented in a form containing only C and G and 
the single-particle irreducible diagrams are calculated by 
variational differentiation relations (2.9) with respect to the 
fields H and E?, which can be carried out also with the help 
of the graphical correspondence rules.24 As a result we have 

D = -  + I D  -(3+-C)-+112#b 

FIG. 2. 

- ~(33 ' )G(44 ' ) r (3 '4 ' (2) .  (2.15) 

Substituting formulas (2.15) in Eqs. (2.13) and (2.14) gives 

~ - ~ ( 1 2 ) = ~ ( ~ ) ( 1 2 ) - ~ ~ ~ ( 1 ~ 3 4 )  

The corresponding graphical representations for the self- 
energy operator Z and correlator of the effective random 
forces D are shown in Figs. 2a and b. 

Let us now derive the Ward-Takahashi identities, which 
follow from the invariance of Eq. (1.3) with respect to a 
transformation of Galilean type for the Burgers equation, and 
which are needed as a foundation of renormalizability. From 
the form of the action functional S[h,h"] we have the easily 
verified relation 

where the operator i ( v )  is defined by the relations 

and v is an arbitrary vector parameter. 
Following the development in Ref. 31, we substitute re- 

lation (2.18) into Eq. (2.5) and calculate the derivative of the 
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characteristic functional with respect to the vector parameter malization also eliminates the divergences of the vertices and 
v at the point v=O. As a result, taking Eq. (2.6) into account, decreases the number of independent constants of the renor- 
we find malization. 

3. RENORMALIZATION AND RENORMALIZATION-GROUP 
ANALYSIS 

(2.20) In the case of interest d = 2 logarithmic UV divergences 
arise in the integrals over the wave numbers in the expres- 

After performing the Legendre transformation, we obtain the sions for the self-energy operator 2 ,  the correlation function 

generating equation for the Ward-Takahashi equalities for of the effective random forces D, and the vertex containing 

the strongly coupled (single-particle irreducible) diagrams: one departing arrow. To eliminate these divergences, it suf- 
fices to renormalize the viscosity coefficient by making the 

CW LW substitution vo+ v=Z2vo, the amplitude of the random 1 d11.t' zzii VH(l)+Atl  - VH( 1) 
i S ~ ( 1 )  

forces by the substitution Do+D =ZIDo,  and the amplitude 
of the auxiliary field i by the substitutions 6-+iR=z3i and 

* I Ao-, A = ZT AO , including the divergences in the renormal- 
+r l  - =O.  (2.21) ization constants Zi , which is the condition of renormaliza- 

iSH(1) tion theory. 
Operating on Eq. (2.21) in the first case with the operator Compensation for the effects of renormalization reduces 
SISH(2). S/iSfi(3), and in the second, with the operator to adding to the expression for the action s[h,L] counter- 
[Sli 6 ~ ( 2 ) ] [ S l i S ~ ( 3 ) ] ,  we obtain the two relations terms of the form 

Taking the Fourier transforms leads to the relations 

From Eqs. (2.23) we can obtain a representation for the ver- 
tices when the frequency and wave number of one of the 
arriving arrows tend to zero (processes with absorption of 
zero quanta):23 

Note that relations (2.23) and (2.24) are an exact conse- 
quence of the conditions for invariance of the BKPZ equa- 
tion with respect to the transformation group i ( v )  and the 
assumptions of S-correlatedness in time of the external ran- 
dom sources and the statistical homogeneity of the system; 
the specific form of the BKPZ equation was not employed in 
the derivation of these relations. It follows from relations 
(2.23) that eliminating the divergences in G and D by renor- 

which must be added to the perturbation in the construction 
of the renormalization perturbation theory. 

To eliminate ambiguity in the procedure of subtracting 
the infinite expressions, it is necessary to define normaliza- 
tion  condition^.'^,'^ In the solution of this problem by means 
of dimensional regularization in combination with the 
scheme of minimal  subtraction^^^ the additional parameter 
p with dimensions of inverse length (the mass parameter) is 
introduced in such a way as to ensure invariance of the di- 
mensionality of the actual expansion parameter with varia- 
tion of d. A more suitable and physically more transparent 
subtraction scheme is one in which the dimension of the 
space does not vary, but the renormalization coefficients are 
determined by the requirement that at the chosen normaliza- 
tion point k =  p,  w =  0 the corrections to the renormalized 
parameter values due to the interaction vanish, i.e., near the 
normalization point the Fourier transforms of the correlator 
and the propagator should have the same form as in the ab- 
sence of the nonlinear interactions, but with renormalized 
parameter values. Thereby the large additive terms due to the 
interaction turn out to a significant degree to be taken into 
account by the renormalization, and the renormalized pertur- 
bation theory is then used to calculate the remaining small 
corrections. The renormalization constants in the above- 
mentioned subtraction schemes will then differ by a finite 
quantity. 

From the Dyson equation (2.16) it follows that taking the 
nonlinear intermode coupling into account reduces to replac- 
ing the viscosity coefficient vo in the expression for the Fou- 
rier transform of the Green's function by the effective vis- 
cosity as follows: 
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To find the dynamic exponent z it is sufficient to con- 
sider the effective viscosity in the static limit w 4 0 ,  which is 
a function of the wave number k, the renormalized numerical 
parameters v, D ,  A, and the mass parameter p ,  which de- 
termines the position of the normalization point. From di- 
mensional arguments the static effective viscosity coefficient 
can be represented in the form 

where the normalization condition 6(p)  = v implies that 
f2(l,DA2/v3)= 1. 

The condition of renormalization invariance consists in 
the requirement that the result of the calculation of the 
Green's function be independent of the choice of the normal- 
ization point p. From this condition it follows that 

Analogously for the correlation function of the effective ran- 
dom forces we can take 

and the requirement of renormalization invariance leads to 
the relation 

We introduce another function, f 3 ,  defined by the relation 

(the possibility of writing f in a form independent of A is a 
consequence of the renormalizability of the theory). It fol- 
lows from (3.7) the definition that this function satisfies the 
group composition law 

From Eqs. (3.4), (3.6), and (3.8), noting the relation 
A 2 =  f:(p, l p , ~ A ~ l v ~ ) h ~ ,  we obtain 

Thus, the function 

is an invariant of the RG transformation p+pl , g ~ g  and 
is the actual wavenumber-dependent expansion parameter in 
the renormalized perturbation series (an analog of the invari- 
ant charge in quantum field theory13). The function g"(x,g) ;; 
normalized by the condition 

&?( l ,g)=g,  (3.11) 

from which together with Eqs. (3.9) it follows that it satisfies 
the functional RG equation 

From Eqs. (3.4), (3.6), and (3.8) also follow functional equa- 
tions for the functions fi(x,g): 

Differentiating the functional equations (3.12) and (3.13) 
with respect to t and then setting t =  1, we find the differen- 
tial RG equations 

4. USING THE RENORMALIZATION-GROUP METHOD 

The RG equations (3.14) and (3.15) have a universal 
character, and the details of a specific system (the BKPZ 
equation) are included in the so-called RG functions P(g) 
and yi(g), also called the Gell-Mam-Lowe functions, or 
the Wilson functions. In its quantum-field-theory formulation 
the RG method consists in the proposal to use the renormal- 
ized perturbation theory to calculate them.13 Knowing the 
RG functions to lower approximations allows one to solve 
Eqs. (3.14) and (3.15), which corresponds to summing some 
infinite subsequence of the complete perturbation-theory se- 
ries. 

Using perturbation theory to find the logarithmic diver- 
gences necessitates bringing an additional scale A into the 
theory. This additional scale is defined by the cutoff of the 
divergent integrals. In the absence of a characteristic scale in 
the problem, the functions f i  , calculated from perturbation 
theory, can only have the form 

Allowing for the counter-terms leads to the addition of terms 
proportional to powers of ln(p/A), as a result of which the 
dependence of the renormalized expressions on the param- 
eter A vanishes and the functions f i  transform to 
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FIG. 3. 

It follows from Eqs. (3.14) and (3.15) that in the calcu- 
lation of the RG functions only those terms contribute that 
are proportional to the first power of the logarithm 

while those terms proportional to higher powers of the loga- 
rithm do not contribute to the RG function, but are repro- 
duced in the solutions of the RG equations, i.e., the values 
Ci and subsequent coefficients of the expansion are deter- 
mined by the requirement of renormalization invariance, 
which corresponds to a "magic cancellation of the 
divergences. "I4 

It follows from Eq. (3.10) that 

The asymptotic behavior of the system is determined by 
the fixed points of the RG transformation, found from the 
equation P(g*) = 0, where the condition for the existence of 
a fixed point is the relation AIB<O, and the condition for its 
stability in the IR limit is the requirement A<O. A graph of 
P(g) corresponding to this situation is shown in Fig. 3. 

The asymptotic solution of the differential equation 
(3.14) for small x can be found by standard  method^'^,'^,^^ 
and has the form 

The solution of differential equations (3.15) for fi(x,g) 
is given according to Ref. 13 by 

It follows from this formula that in order to find the dynamic 
exponent it is necessary to know the values of the coeffi- 
cients A, and Bi of the terms of the perturbation series for the 
functions fi(x,g) that are logarithmically divergent if the 
regularization is removed. 

To find the coupling between the functions f i  and the 
previously introduced quantities 2 (k, w) and D(k, o ) ,  let us 
consider the power-series expansion of expression (3.2) in 
o about the point w = 0: 

Setting k= pl in Eq. (4.7) and making use of the normaliza- 
tion conditions 

(the values of the functions taken at the normalization point 
NP) and the relation uf2(pI /p ,g)  = ul f3 (p I  l p ,g ) ,  which 
follows from Eq. (3.4), we find 

where 

and C(k,o) and D(k,o) are given by relations (2.16) and 
(2.17) after taking the Fourier transform, and the correspond- 
ing (exact) graphical representations are given in Fig. 2. The 
renormalized quantities are obtained by adding the counter- 
terms, whose parameters are determined by the normaliza- 
tion conditions (4.8). 

The formula for calculating the dynamic exponent 

z = 2 +  y2(&?*)- y3(g*). 

follows from Eqs. (4.6) and (4.9). 

5. CALCULATION OF THE RENORMALIZATION-GROUP 
FUNCTIONS BY PERTURBATION THEORY AND FINDING 
THE EXPONENTS 

The graphical representations for Z(k, o )  and D(k, o )  in 
the second-order perturbation approximation are obtained by 
replacing the thick lines of the correlators and propagators by 
thin ones and the vertices by the bare vertices as prescribed 
by Eqs. (2.11) (see diagrams la  and lb  in Fig. 4). Although 
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FIG. 4. 

we are interested only in the terms that depend logarithmi- 
cally on the cutoff A, we nevertheless present the complete 
results of the calculation of Z and D to second order, since 
these elements enter into the form of the insertions in the 
fourth-order diagrams: 

X 
( k . q -  q2I2 

+ c  
[ ( w -  w ' ) ~ +  ~ ~ ( k - ~ ) ~ ] [ w ' ~ +  v2q4] 

(5.2) 
It follows from Eqs. (5.1) and (5.2) that A l =  - 1 1 8 ~  and 
A2=A3=0.  

The fourth-order diagrams are obtained by inserting the 
second-order diagrams of the self-energy operator C 2  in the 
Green's-function line, inserting the correction D2 in place of 
2 0  in the correlation-function lines, and by using third-order 
diagrams for the vertices (the corresponding diagrams are 
shown in Fig. 4). Calculation of the fourth-order diagrams is 
more difficult. However, since we are interested only in the 
coefficients B ,  multiplying In(klA), it is enough to consider 
the behavior of the integrand function near the upper cutoff 

in wave number, A ,  and set k = 0 ,  w = 0 in the expression for 
D ( k , w )  and in the expression for Z ( k , w )  after isolating the 
factors proportional to k2 and o .  An alternative way of cal- 
culating the coefficients Bi is to use the method of dimen- 
sional regularization, borrowed from quantum field theory, in 
which the coefficients Bi are found as the residues of the 
poles in E = 2 - d at E = 0. This approach combined with the 
minimal subtraction scheme was used in Ref. 22. Although 
the minimal subtraction scheme is very simple and conve- 
nient at the one-loop level, it has the shortcoming that in the 
two-loop approximation in the presence of divergences, at 
each of the loops the corresponding expression contains 
second- and first-order pole singularities, while the poles of 
interest to us are the first-order poles which are obtained as 
the product of the pole singularity of the first loop with the 
finite part of the second loop. The finite part, found as the 
difference of two infinities, is not uniquely defined, and as a 
consequence of this the approach which we have used of 
normalizing by the mass scale ,u is more reliable. 

As a result, to first-order terms in In(Wp) we have 

The result (5.3) coincides with the result obtained in Ref. 
22, and the result (5.4) differs from the result obtained there 
by the presence of a term proportional to g2 In(Mp) (in Ref. 
22 the terms proportional to the square of the logarithm are 
also written out; we have omitted them since they do not 
contribute to the RG function). 

It follows from Eqs. (5.3) and (5.4) that 

6. CONCLUSION 

The calculation of the scaling exponents which we have 
carried out here using the RG description gives results in 
satisfactory agreement with the results of approximate theo- 
retical calculations based on other approaches and which pre- 
dict values z= 1.67- 1.70 (Refs. 33 and 34). The problem of 
finding the exponents has been solved numerically by a num- 
ber of authors, and their results in a number of cases differ 
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substantially and lead to values of z from 1.6 (Refs. 35 and 
36) to 1.8 (Ref. 37). The exponents were calculated with the 
help of the RG method at the two-loop level in Ref. 22, in 
which the authors obtained the values z = 1.84 and 
X =  0.16. The reason for the difference from our result (5.5) 
is that the authors of Ref. 22 did not allow for the contribu- 
tion from the counter-terms arising in the regularization of 
the one-loop diagrams, which in the two-loop approximation 
give a finite contribution to the coefficients of the first pow- 
ers of the logarithms. 

APPENDIX 

In the Appendices we present some technical details of 
the calculation and results for the Feynman diagrams pre- 
sented in Fig. 4 and compare them with the results of Ref. 
22. 

a. Self-energy diagrams 

From inspection of the diagram (la  in Fig. 4) of the 
self-energy operator in the second-order perturbational ap- 
proximation [formula (5.1)] it follows that this diagram does 
not contain any divergences (2 does not depend on A and 
Z R  (the renormalized result) does not depend on p).  Never- 
theless, to satisfy the normalization conditions (4.8) a finite 
counter-term having the form 

g 
sZ(i)=--[- io( l - ln2)+vk2(-1n2)] ,  (Al) 

87r 

has been added to I;. 
Diagrams 2a-4a in Fig. 4 were obtained by inserting the 

second-order perturbational approximation to the self-energy 
operator in the Green's function do). This corresponds to 
adding the factor ~(')(q,w')C~(q,w')  to the integrand. Af- 
ter integrating the inner line of the large loop over the fre- 
quency or it turns out that in diagram 4a this factor is rep- 
resented in the form ~ ( ' ) ( q , i  vq2) = const and diagram 4a 
reduces to multiplication of this constant by X 2 .  This dia- 
gram does not contain any divergences (it does not depend 
on either A or ,u) and does not contribute to the RG function. 
Analogously, after integrating over frequency, diagrams 2a 
and 3a reduce to the addition of the factor G(') 
~ ( ~ , w + i v ( k - ~ ) ~ ) ~ ~ ( ~ , o + i ~ ( k - ~ ) ~ ) ,  which is repre- 
sented in the form of an expansion in o and k. q/q2 keeping 
enough terms to make out the factors w and k2 in front of the 
integral. In the expression so obtained, after integrating over 
the directions of the vector q one is left with an integral over 
q which diverges at the upper limit A. Thus, this allows one 
to find the coefficient of In A, a knowledge of which is nec- 
essary to calculate the RG function. The calculations give 
results that coincide with the coefficients of the poles in e in 
Ref. 22. The additional contributions of the counter-terms 
SX2 in diagrams 2a and 3a of Fig. 4 cancel each other out. 

Diagram 5a of Fig. 4 is obtained by inserting the renor- 
malized diagram ~ ; ( q , w ' )  in the correlation function. In the 
calculation of diagram 5a it is necessary to allow for the fact 
that D2 contains singularities in the upper as well as lower 
half-plane of complex values of or (the retarding part 
Dr(q,o')  and the advancing part Da(q,o') = Dr(q, - o r ) ) ,  

as a result of which after integrating over w' we are left with 
expressions of the form D;(q,i vq2) - In(q/p)+const and 
~ ; ( q ,  w + i v(k- q12). The latter expression expands into a 
series in w and k .  q/q2, as in the previous case for insertion 
of the Z diagram, which reproduces the result of Ref. 22 for 
the coefficient of the pole term in e .  

Diagrams 6a-8a of Fig. 4 are obtained by using the 
third-order perturbational approximation for the vertex in 
Fig. 2a corresponding to conversion of two quanta into one 
(three different diagrams). Although each of these diagrams 
contains divergences, their sum should be finite according to 
Ward's first identity (2.23). The calculation, after integrating 
over the intermediate frequency up, gives the following rep- 
resentation for the vertex: 

It is clear from Eq. (A2) that the integral over p does not 
contain any divergences in the region of large p. Expanding 
Eq. (A2) in a series in w and k.qlq2, we obtain the contri- 
bution to the coefficient of In A from the three diagrams 
6a- 8a. 

Diagram 9a of Fig. 4 describes the contribution of the 
vertex corresponding to conversion of one quantum into two, 
calculated in the third-order perturbational approximation 
(two diagrams). The contribution of these diagrams to the 
RG function is calculated analogously. 

It is interesting to note that the contributions of diagrams 
2a-9a almost cancel each other out and only the contribution 
from the singular part of the insertion D2(q,w1) in diagram 
5a remains uncompensated. Whether this circumstance is co- 
incidental or a regular result remains unclear. 

b. Diagrams of the correlation function of the effective 
random forces 

Diagram 2b of Fig. 4 is obtained by inserting the self- 
energy operator into one of the G(') propagator lines (four 
such insertions) leading to D2 (diagram Ib), while diagrams 
4b and 5b are obtained by using the third-order perturba- 
tional approximation for the vertex corresponding to the con- 
version of two quanta into one. In the calculation of the 
parameters of the RG function y ,  it is sufficient to restrict 
oneself to the case fi-+0. The vertex with zero characteristics 
of the departing arrow is obtained from Eq. (A2) for i=ij. 
As a result, it is possible to convince oneself of the validity 
of the relation 
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from which it follows that the singular parts of diagrams 2b, 
4b, and 5b cancel each other out exactly, which reproduces 
the result of Ref. 22. However, taking account of the contri- 
butions of the counter-term SZ2(4) defined by Eq. A1 gives 
the correction to diagram 2b. The correction due to this con- 
tribution after renormalization and taking the weighting fac- 
tor 112 into account has the form 

Calculation of diagram 6b of Fig. 4 leads to the coeffi- 
cient of the logarithmically divergent term coinciding with 
the result obtained in Ref. 22: 

Calculation of diagram 5b, taking the weighting factor 
112 into account, gives 

which differs from the result given in Ref. 22. After taking 
account of the contribution of the finite part of the counter- 
term SD2 = 2 D ( g / 4 ~ ) (  1 - In 2) we find 

Summing expressions (A4), (AS), and (A6) gives the 
result written down in formula (5.4). 
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