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The interaction between a vortex lattice and an ordered defect structure-a void superlattice- 
has been studied. If the vortex-defect interaction is sufficiently strong, structures with a 
constant vortex density are generated in some ranges of magnetic field, and the symmetry of their 
structures may differ from that of the void-superlattice symmetry. First-order phase transitions 
in which the structures are changed and second-order phase transitions in which 
additional vortices or vacancies are generated take place on the boundaries of these ranges. 
O 1996 Anzerican Institute of Physics. [ S  1063-776 1 (96)O 1302-21 

1. INTRODUCTION 2. FREE ENERGY OF THE SYSTEM 

The most remarkable feature of type I1 superconductors Let us consider properties of a porous superconductor in 

is the creation of the Abrikosov vortex lattice in a magnetic a magnetic field H,  , S H S KH,, , where H,, is the first criti- 

field ranging between the first (.XC,) and second ( Z c 2 )  cal field and K= XI5 is the Ginzburg-Landau parameter. In 

critical fields.'*2 In this magnetic-field range the critical su- this range the overlap of vortex cores is negligible and the 

percurrent is determined by the strength of pinning due to the superconductor free energy can be expressed in the pair- 
interaction approximation: interaction between the vortices and various structural de- 

fects. This interaction is strongest in the case of columnar 
defects generated by heavy ions with an energy of several 
gigaelectronvolts3-8 if the magnetic field is aligned with the 
defect axis of symmetry.9-" 

It is obvious that the pinning strength has a resonant 
peak when the defects are ordered and the period of the 
defect structure is equal to that of the vortex lattice. A de- 
tailed analysis of research of the mixed state of supercon- 
ducting films with periodic defect structures is given in the 
review by ~ ~ k 0 v . l ~  

Under certain irradiation conditions, three-dimensional 
ordered structures-void superlattices-with a symmetry 
similar to that of the host lattice are generated in metals. A 
structure of this kind was first discovered by ~ v a n s ' ~  in mo- 
lybdenum exposed to 2-MeV neon ions. Similar lattices were 
later detected in various metals, including niobium and its 
alloys, which are type I1 superconductors.~4~'s 

In a uniform type I1 superconductor, the mixed state is a 
regular hexagonal vortex lattice, but the energies of the lat- 
tices with different symmetries are only slightly different 
(e.g., the energy of a hexagonal lattice is 2% higher than that 
of a tetragonal lattice). Therefore we may expect that the 
interaction between vortices and an ordered structure of de- 
fects can alter the symmetry of the vortex lattice. 

The aim of the present work was to study structural 
phase transitions in an Abrikosov vortex lattice in type I1 
superconductors with a void superlattice under a magnetic 
field around .Pel. We have found that the interaction be- 
tween voids and vortices may be sufficiently strong to 
"freeze" a flux lattice commensurable with the void lattice in 
some interval of the magnetic field. When the magnetic field 
is changed beyond this range, the vortex iattice may change 
its symmetry abruptly (a first-order phase transition) or 
gradually by generating extra vortices or vacancies (a 
second-order phase transition). 

where N is the number of vortices in a sample, 
zo= (+o/4.rr)Hc, is the core energy, 4o is the magnetic flux 
quantum, E!" is the energy of interaction between vortices 
per unit length, EL: is the vortex-void interaction energy, 
H is the external magnetic field, B is the magnetic induction 
inside the sample, and L is the sample dimension in the field 
direction. 

In the limit of low vortex density, the interaction be- 
tween vortex lines can be described with high accuracy by 
the London approximation: l6 

where Ko(z) is the zero-order modified Bessel function and 
pj are two-dimensional coordinates of vortices. 

We express the pinning energy EL:, due to the interaction 
between a void with a radius R (RSC)  and a vortex as a 
Gaussian with a width 5:17 

where pk are two-dimensional radius vectors of defects and 
Vvoid is the void volume. 

3. FREEZING OF VORTEX DENSITY CLOSE TO THE 
CONDITION FOR COMMENSURABLE LATTICES 

Next we discuss the interaction between a vortex lattice 
and a cubic superlattice of defects with a parameter d when 
the magnetic field is aligned with one principal crystal axis 
of the defect superlattice. In the plane perpendicular to the 
magnetic field, the defects form a tetragonal lattice of pins 
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FIG. 1. Critical fields (.7?&, dashed lines and .P6, solid lines) versus the 
vortex-defect interaction amplitude A in superconductors with different pe- 
riods o f  the void saperlattice. 

with a parameter D ( D  = dl2 for a face-centered cubic super- 
lattice, D = d l f i  in a body-centered cubic superlattice, and 
D = d  in a simple cubic superlattice). The conditions for re- 
structuring a hexagonal flux lattice to a tetragonal one are 
obviously most favorable when the tetragonal-superlattice 
parameter a4 is equal to the void-superlattice parameter D ,  
and all the vortices are pinned at defects. In this case the free 
energy per unit volume for the tetragonal (i = 4) and hexago- 
nal ( i  = 6)  vortex lattices can be conveniently presented in a 
dimensionless form: 

where . T = F ~ ( # J ~ / ~ ~ ~ ' D ~ ) V ,  V  is the sample volume, the 
magnetic field is expressed in units of # J o / 2 7 r ~ 2 ,  n  is the 
surface density of vortices ( n ,  = ~ ( D I u ~ ) ' ,  n4= 1 ), 
~ = ( 4 ~ " 3 ( ' d ) . 7 i " , ,  is the amplitude of the vortex-defect 
interaction, 

is the interaction energy of one vortex with other vortices, 
and S, is the mean number of vortexes in a void (S4= I ) .  

The hexagonal lattice parameter a6 is determined by 
minimizing the free energy at a fixed external field 
(d.y,/dn,=O). In calculating S6 we assume that the flux 
lattice is not deformed and the vortices are distributed ran- 
domly with respect to the ordered defect lattice, from which 
it follows that S ~ = ( & D ) ' / ~ .  In reality, the energy of a 
destorted hexagonal lattice is slightly lower. 

An equation for the critical field .?/4(j(A) at which the 
tetragonal lattice is transformed to the hexagonal one (solid 
lines in Fig. 1) is derived from the equality between .y6 and 
.T4: 

Note that besides the tetragonal lattice, another pattern 
with an equal vortex density can be formed by shifting vor- 
tices by half a lattice parameter in odd rows. We shall call 
this structure a trigonal lattice. It has an elementary cell 
shaped as an isosceles triangle, which is nearly equilateral 
since the angle at its base is tan-' 2. The energy W 3  of 
interaction between the vortices in the trigonal lattice is 
smaller than in the tetragonal one (W6<W3<W4),  but only 
half of the vortices are pinned at voids. 

Since the vortex densities in the trigonal and tetragonal 
lattices are equal (n3= n 4 ) ,  the free energies of these states 
are equal and do not depend on the external magnetic field. 
These determines the threshold value A * = W4-  W 3  below 
which the lattice is trigonal. 

For A <A * the magnetic-field range in which the lattice 
is trigonal (shown by dashed lines in Fig. 1) is determined by 
Eqs. (5) and (6) with parameters of the tetragonal lattice 
substituted with those of the trigonal lattice. 

Curves of transition fields for superconductors with dif- 
ferent defect-superlattice parameters are given in Fig. 1. One 
can see that for A<A,,,in the lattice is hexagonal at all mag- 
netic fields. For A ,in<A<A* the trigonal structure with a 
constant vortex density has a lower free energy in the field 
ranges between the rising and falling pasts of the dashed 
curves (.K6<.%<.S6). For A >A * the tetragonal vortex 
lattice has a lower energy than the hexagonal lattice in the 
magnetic field range .K~<.%<.%~. B U ~  in this range it 
may be less costly in free energy to generate additional vor- 
tices or vacancies in the tetragonal lattice, and the free en- 
ergy of this structure may be lower than in a defect-free 
superconductoc '' 

4. GENERATION OF DEFECTS IN A VORTEX LATTICE 

4.1. Additional vortices 

Extra magnetic-flux quanta may be introduced into a su- 
perconductor by generating two-quantum vortices.19 But this 
configuration has a higher energy if the voids are small, and 
an additional flux line may be located in a tetragonal lattice 
in two ways (Fig. 2): 

(i) at the center of an elementary cell (Fig. 2a) with an 
additional interaction energy %I between vortices; 

(ii) by shifting one host vortex from its equilibrium po- 
sition and forming a bound pair ("dumb-bell") with the ad- 
ditional vortex (Fig. 2b); in this case we denote the addi- 
tional energy as %, . 

It follows from the comparison between free energies 
that generation of additional vortices saves free energy when 
.7?'>. 27, = min{.l/, ,.7/2} holds, where 

.Z,= 77'< I + X,. (7) 

The system behavior is determined by the parameters .7/4+6, 
.7/, , and . Z 2 ,  which are plotted against the vortex-defect 
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FIG. 2. Generation of defects in a vortex 
lattice: a) a vortex in the cell centrum; b) 
displacement of a host vortex from its 
site and formation of a "dumb-bell" pair 
with an additional vortex; c)  vacancy in 
a tetragonal lattice; d) trigonal lattice 

d with an extra vortex. - 

interaction amplitude in a type I1 superconductor with 
K =  10 and a void superlattice with DIA = 5 in Fig. 3. 

The generation of an additional vortex leads to relax- 
ation of the host vortices. It is evident that the "dumb-bell" 
configuration should occur at a smaller A  than that with a 
vortex at a cell center because it is obvious that a vortex can 
be more easily tom from its void at a lower interaction am- 
plitude. The function B 2 ( A )  is linear since the relaxation of 
other vortices is negligible. 

The form of the function %,(A) (curve 4 in Fig. 3) can 
be easily understood using Fig. 4, which shows the free en- 
ergy as a function of the displacement of neighboring host 
vortices. The curve of the free energy has two minima. When 
A  is sufficiently large, the narrow minimum is dominant 
(curve I in Fig. 4), which corresponds to the location of the 
additional vortex near a void (the plateau on curve 4 of Fig. 
3). The wider minimum is dominant at a smaller interaction 
amplitude since in this case the energy of interaction with the 
additional vortex is sufficient to displace surrounding vorti- 
ces from their sites at voids (curve 3 in Fig. 4). It is clear that 
at some A the depths of the two minima are equal (curve 2 in 
Fig. 4), which corresponds to the cusp in Fig. 3. 

4.2. Vacancies 

At a lower magnetic field, vacancy generation is thermo- 
dynamically favored (Fig. 2c). In this case the free-energy 
density in a vortex lattice containing M vacancies may be 
expressed as 

where N* is the number of vortices in a sample with full 
commensurability. This yields the condition for the critical 
field for vacancy generation: 

where E, (A)  is the relaxation energy of the vortex lattice 
around one vacancy. As follows from Fig. 3, the function 
B u ( A )  is nearly linear at all interaction amplitudes since the 
vortex displacement in this system is small and the relaxation 
energy is low. The point of intersection between the curves 
B u ( A )  and K & A )  defines the critical vortex-defect inter- 
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FIG. 3. Fields corresponding to phase transitions versus the vortex-defect 
interaction constant at DlA = 5 ,  K =  10: (1 )  field of the tetragonal-to- 
hexagonal lattice transition; (2 )  field M,, of the trigonal-to-hexagonal tran- 
sition; (3 )  field B2 at which "dumb-bells" are generated; (4) field 33, 
generating an interstitial vortex; (5) field Bv generating a vacancy in a 
square lattice; (6) field M3 generating an extra vortex in a trigonal lattice; 
(7) field B3, generating a vacancy in a trigonal lattice. 

action constant A,  beyond which vacancies are generated. 
Additional vortices (Fig. 2d) or vacancies might be generated 
in the trigonal lattice, but this would lead to a higher free 
energy since the respective transition fields B3 and B3, 
(curves 6 and 7 in Fig. 3 )  are outside the range of existence 
of the trigonal structure. 

Thus the system behavior at higher magnetic fields is 
determined by the vortex-void interaction amplitude. At low 
amplitudes the trigonal (Ami,6A 6 A  *) and tetragonal 
(A*<A<A,) vortex lattices abruptly transform to the hex- 
agonal structure (a first-order phase transition), which inter- 
acts weakly with the void superlattice and gradually changes 
its vortex density. But at larger interaction amplitudes it is 
preferable to generate additional vortices or vacancies in the 
tetragonal lattice. The additional vortices may either be in- 
terstitial ( A a A , )  or form a "dumb-bell" with a host vortex 
( A 2 S A < A l )  (Fig. 2a and 2b). 

FIG. 4. Free energy versus displacement of vortices from an additional 
vortex: DlA = 5 ,  K =  10: (1 )  A = 0.01; (2 )  A =0.0075; ( 3 )  A = 0.005. 

FIG. 5.  Transition from a vortex density of 112 to one of 215 through gen- 
eration and motion of dislocations. 

The defect generation is a second-order phase transition 
similar to that at B=SCl. In this case the interaction be- 
tween new vortices or vacancies must be taken into account 
at higher fields. This interaction is discussed in the next sec- 
tion. 

5. RESTRUCTURING OF THE VORTEX LAlTlCE 

Let us consider the magnetic field range in which the 
vortex density is smaller than that of the defects. One can see 
in Fig. 3 that the relaxation energy of host vortices due to 
vacancies is negligible, and all the vortices may be pinned at 
voids. In this case the free-energy density is 

where N1 is the number of voids at which vortices are 
pinned, and the first critical field is obviously modified: 

At 3%5%, vortices form lattices with different vortex den- 
sities. It follows from Eqs. (8) and (10) that structures with 
vortex densities n and 1 - n , are similar to each other, and 
their ranges are symmetrical on the magnetic-field interval 
extending from to .%, . Therefore we may discuss only 
the interval between and the field 
Bm= (m, + B V ) / 2  at which the structure around B,,, is 
half-filled. 

When the magnetic field deviates from Sc, then either 
vacancies can be generated in the half-filled lattice (similarly 
to the case of full filling) or a different structure can be 
generated. Calculations for a type I1 superconductor 
( K =  10) with a void superlattice ( D l h  =5) demonstrate that 
generation of single defects in the half-filled structure is not 
favorable from the thermodynamic viewpoint because the 
required magnetic field is lower than the fields corresponding 
to transitions to striped patterns with fillings of 317, 215, and 
113 (Fig. 5) through generation and motion of dislocations. 
The magnetic field ranges corresponding to phases with fill- 
ings of 317 and 215 are very narrow, and the differences be- 
tween the free energies of these phases and of the 113 phase 
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TABLE I. Struclur;~l and cnergy parameters of vortex lattices and magnetic 
lields corresponding to transitions among them. Transition liclds in the range 
of I,> 112 are mirror reflections of those at / I<  112 around the point 
A.7/,=8.22675. 10 ', e.g., A.i/,,, ..,=2A.R,-A.7/,,, .,, ,= 1.47809 
. 10- j .  

Average energy 
of vortex-vortex Transition 

Vortex density Lattice parameters interaction lields 

17 I crlD hlD a W A X =  .K- .7cl  
112 fi fi ~ 1 2  1.6473. 10. ' 
317 5 6 tan-'(112) 1.3677. lo-' 1.662576, 10 - 3  

215 5 6 tan-'(112) 4.1290.10-~ 1.662574.10-~ 
113 3 fi ~ 1 4  8.09. 10.' 1.661000. lo-' 
1 I3 3 1 ~ 1 2  7.4183.10-' 1.533600.10~~ 
1 I4 2 2 ~ 1 2  7.2076. 10- 
114 2 6 tan.-'2 5.6266. 9.895226. 
115 5 1 ~ 1 2  7.4179. lo-.' 
115 5 6 tan- ' (  112) 2.0856. l ~ ~ - ~  
115 5 fi ~ r I 4  7.8794 3.526000. 
1 I6 3 2 ~ 1 2  3.5775 lo-S 
1 I6 3 6 ta1-'2 1.1017. 

are insignificant. Therefore it is highly probable that at non- 
zero temperatures disordered striped patterns with random 
widths of stripes will be generated. The energetic and struc- 
tural parameters and transitions fields are listed in Table I. 

At a lower magnetic field, the system transforms to a 
phase with a filling of 114, which may have two 
configurations-tetragonal and trigonal-as in the case of 
full filling, and the energy of the trigonal structure is smaller 
since W 3 <  W 4  and all the vortices are localized at voids. A 
similar structure occurs for the 116 phase, and the 
pseudohexagonal configuration has a lower energy than the 
tetragonal one. 

In the magnetic field range where the vortex density is 
less than 116, the energy of vortex-vortex interaction is 
small, and it is senseless to calculate parameters of ordered 
structure because low-density ordered phases exist within 
very narrow intervals, and a disordered pattern of vortices 
localized at voids will be formed at nonzero temperatures. 

For A > A ,  the situation for interstitial vortices will be 
similar for .27.2?, , but unlike vacancies the potential well 
for interstitial vortices is flatter and the relaxation energy is 
more important. This leads to wider ranges of magnetic field 
corresponding to phases with fillings of 115 and 113. 

6. CONCLUSION 

We have studied the interaction between Abrikosov vor- 
tices and cubic void superiattices. If the vortex-defect inter- 
action is sufficiently strong, the void lattice imposes a par- 
ticular structure on the vortex lattice and may fix the vortex 
density in some magnetic-field intervals. Therefore the curve 
of B ( H )  becomes piecewise constant, i.e., the magnetic field 
range around H,,  is divided into several intervals on which 
the vortex density is constant and equals a rational fraction 
of the voids density. Transitions between these intervals may 
be abrupt. 

Our calculations demonstrate, as expected, that the wid- 
est interval corresponds to the total coincidence between the 

void and vortex lattices ( n  = 1 ), i.e., when the vortex density 
equals that of the void chains along the magnetic-field vec- 
tor. If the vortex-void interaction is sufticiently strong 
( A  > A * ) ,  a tetragonal vortex lattice is formed with all the 
vortices pinned at voids and none of the voids vacant. There 
is, however, an interval of interaction amplitudes 
(A,,, , , ,<A < A * )  where a trigonal lattice is formed with half 
of the vortices localized at voids, but with the energy of 
interaction between vortices close to that of a hexagonal lat- 
tice. This structure is highly anisotropic because the pinning 
along chains of nonlocalized vortices is many times softer 
than in the orthogonal direction. A sample may be separated 
into many "vertical" and "horizontal" domains. 

The system behavior as a function of magnetic field is 
determined by the vortex-void interaction. At small interac- 
tion amplitudes, both the trigonal and tetragonal lattices 
transform abruptly to a hexagonal phase (the first-order 
phase transition), which weakly interacts with the void lattice 
and whose density changes gradually. But at a higher inter- 
action amplitude A ,  generation of additional vortices or va- 
cancies is more favorable (the second-order phase transition), 
and additional vortices may be introduced in two ways, 
namely, by producing an interstitial defect or a "dumb-bell" 
pair with a host vortex (Fig. 2a and 2b). 

At a lower magnetic field, the defects multiply and other 
structures are realized. The entire magnetic-field range be- 
tween .el=.%Cl - A  (the first critical field taking into ac- 
count the creation of vortices in voids) and 37" (the mag- 
netic field at which vacancies are generated) is divided into 
symmetrical subranges in which the filling factor is constant. 
The subranges corresponding to structures with fillings n and 
1 -n  are symmetrical about the middle of the entire interval 
because the interaction between vortices is paired and vorti- 
ces cannot be displaced far from their voids. The widest 
subrange (80%) corresponds to the tetragonal structure with 
the one-half filling, and those of trigonal structure patterns 
with fillings of 114 and 314, which are similar to the triangu- 
lar structure at n = I ,  occupy 8.7% each. The transitions from 
these structures and low-dimensional stripe-like structures 
(317, 215, 113) are of first order and, apparently, occur 
through generation and motion of dislocations (Fig. 5). Fluc- 
tuations may lead to melting of low-symmetrical and disor- 
dered structures, as well as structures with a low density of 
vortices or va~ancies.~' 

If the magnetic field is slightly tilted with respect to the 
crystal axis, vortices may have a zigzag shape, jumping from 
one void chain to another so that the average direction 
should coincide with that of the magnetic field. The study of 
such objects, which are similar to kinks in layered high-T, 
s ~ ~ e r c o n d u c t o r s ~ ' ~ ~  is beyond the scope of this work. 

In conclusion, we would like to note that for K+ 1, 
which is the most interesting situation, the range of the 
vortex-defect interaction is much shorter than that of the 
interaction between vortices and the specific shape of its po- 
tential is not important. Therefore the structure and phase 
transitions discussed here may occur in a vortex lattice inter- 
acting with any defects (for example, cylindrical defects or 
dislocations) provided that they form a regular tetragonal 
lattice, and type I1 superconductors present a convenient 

266 JETP 82 (2), February 1996 Rud'ko et a/. 266 



model for studies of two-dimensional interacting particles in 
a short-range periodic potential. 
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