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A study of optical and magneto-optical properties and of giant magnetoresistance of FeICr 
superlattices is reported. Two independent approaches to the determination of the misalignment 
angle between magnetizations of neighboring iron layers based on measurements of the 
equatorial Kerr effect and of magnetoresistance are proposed. Experimental data are interpreted 
in terms of the theory of odd magneto-optical effects assuming that interfaces between 
layers are sharp, and a theory of alignment effects on magnetoresistance using the model of 
biquadratic exchange is developed. We conclude that there is a noncollinear magnetic ordering in 
FeICr superlattices with the initial misalignment angle being a function of the chromium 
thickness. O 1996 American Institute of Physics. [S 1063-776 1 (96)01202-61 

1. INTRODUCTION 

Metal superlattices are a new class of materials with un- 
usual physical properties. In some superlattices, such as 
Co/Pt and CO/P~, ' -~  the Kerr rotation in the ultraviolet band 
is considerably larger than in pure cobalt, hence they are 
promising for magneto-optical storage of data. Another im- 
portant feature of magnetic multilayered structures is the gi- 
ant magnetoresistive effect, which was first discovered in the 
Fe/Cr/Fe three-layered s tr~cture.~ Experiments with Fe/Cr 
superlattices5 demonstrated that the giant magnetoresistive 
effect, which is about 10% at the room temperature and 
about 50% at 4.2 K, is due to the antiferromagnetic ordering 
of Fe layers, hence due to the indirect exchange between Fe 
layers. ~ a t e r ~ - '  the researchers found out that the energy of 
exchange antiferromagnetic coupling is a damped oscillating 
function of the chromium layer thickness dc,, which decays 
with dc, and has the first maximum at 9 A and the second 
maximum at 27 A . The oscillations of the exchange energy 
have been discussed in terms of the generalized Ruderman- 
Kittel-Kasui-Yosida theory?-" 

The indirect exchange in magnetic superlattices has 
drawn considerable attention to studies of magnetic ordering 
in these structures. The magnetic ordering in Fe/Cr films was 
detected in experiments cn polarization of scattered neutrons 
and in measurements of hysteresis loops using the Kerr 
rotation.I2-l6 Ferro- and antiferromagnetic ordering, as well 
as the 90"-ordering were detected in magneto-optical mea- 
surements of hysteresis loops in the FeICrlFe system.16 In the 
Si(ll1)l~r(100~){~e(32~)l~r(10A)}~d~r(10~) structureI2 
the angle between magnetizations of neighboring iron layers 
is close to 180" at - 1 kOe and 90" at 4 kOe. A noncollinear 
magnetic structure with a misalignment angle between mag- 
netic moments of neighboring iron layers 6=5O0 was dis- 
covered in the {~e(53&/~r(17A)}~ structure.I7 

The study of the magnetic ordering pattern, including 
possible cases of noncollinear ordering, is an important step 
in understanding the nature of magnetic interaction in super- 
lattices and distinctive features of their magnetic character- 

istics. In the reported work our aim was to estimate the mis- 
alignment angles between magnetizations of iron layers in 
FeICr superlattices both in the initial state and in an external 
magnetic field. We used two approaches to achieve this aim. 
The first one is based on measurements of frequency, angu- 
lar, and field dependences of the equatorial Kerr effect, and 
analysis of data in terms of the theory of magneto-optic ef- 
fects in multilayered structures. The second approach is 
based on studies of magnetic-alignment effects on the super- 
lattice magnetoresistance and on processing the data using 
the concept of the biquadratic exchange and formation of 
noncollinear magnetic ordering. The objects studied were 
FeICr superlattices with typical thicknesses of chromium lay- 
ers dc, for which the magnetic ordering is close to the anti- 
ferromagnetic state.6 

We have also studied optical properties of superlattices 
depending on the dielectric response of a layered metallic 
structure in the band in which spectra of the equatorial Kerr 
effect were recorded. 

2. SAMPLES AND EXPERIMENTAL TECHNIQUES 

The structures containing {Fe(23 A) /~r (8  A))30 (I), 
(Fe(20 W)/~r( l l  (2). and (Fe(23 A)lcr(27 A)}12 (3) 
superlattices were fabricated by the molecular beam epitaxy 
in the Katun'-S facility. Starting materials with a purity of 
99.9% were placed in previously baked zirconium oxide cru- 
cibles. Mass spectra of the chamber atmosphere with hot 
crucibles (without evaporated metals) did not show traces of 
any materials except the usual residual gases. Metal layers 
were grown on magnesium oxide substrates, whose lattice 
parameters are best matched to those of FeICr superlattices. 
Substrates with the (100) orientation were etched chemically 
and baked in vacuum at lo-' Pa and 600 "C. A buffer 
- 120-A chromium layer was grown on each substrate. The 
substrate temperature during the growth was maintained at 
160-240°C. The vacuum in the growth chamber was 
1 0 - ~ - 1 0 - ~  Pa. The thicknesses of the iron and chromium 
layers were derived from the growth rate and time." 
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FIG. I. Intensity of X-rays diffracted from the {Fe(20A)/ 
Cr(1 l;\)},d~r(l40 A)/MgO structure versus angle in the range of small 
angles. The insert shows the (200) Bragg reflection due to Fe ,and Cr layers. 

The crystal structure of the fabricated films was moni- 
tored in-process by the diffraction pattern recorded by a 
built-in HEED diffractometer. Then the crystal structure was 
analyzed by a DRON-3M X-ray diffractometer. Diffraction 
patterns were recorded using the K,(Co) line in the two- 
crystal configuration, and the monochromator was a Si(ll1) 
plate. In high-angle (2  8) X-ray diffraction patterns of 
{FeICr }Mg0(100) superlattices, a peak corresponding to 
Fe(200) and Cr(200) reflections was recorded. In the range of 
small angles, a peak due to the superstructure was detected in 
all samples (Fig. 1). The diffraction patterns indicated that 
the superlattices grown on MgO(100) substrates were single 
crystals. The coherence length derived from X-ray diffrac- 
tion data was 180-200 A for all superlattices. 

The effective complex dielectric function .sCff=ekff 
- ie:ff was measured by the Beattie ellipsometric technique 
at a light incidence angle cp=75" in the spectral band X 
= 0.25-2.5 pm. The equatorial Kerr effect (a,>-effect) was 
measured in the spectral band 0.27-2.4 p m  on a computer- 
ized magneto-optical ~ ~ e c t r o m e t e r . ' ~  Curves of the 
a,,-effect versus angle were recorded at wavelengths of 0.27, 
0.6, and 2.4 pm,  and versus field at 0.6 pm.  

The magnetoresistance parameters were measured by the 
traditional four-terminal technique in a magnetic field rang- 
ing from 0 to 23 kOe aligned either with planes of superlat- 
tice layers or with the normal to the sample surface. 

3. OPTICAL AND MAGNETO-OPTICAL PROPERTIES OF 
SUPERLATTICES 

3.1. Optical properties 

Like a stack of plates, a superlattice is an optically an- 
isotropic structure with the axis perpendicular to its layers.20 
Since all metals in the visible and IR bands have I.sI 9 1,  the 
optical anisotropy in ellipsometric measurements of light re- 
flected from its basis plane is very small (the differences are 
of order 11Iel). 

Curves of the effective optical conductivity ueff 
= wezfil47r, where w is the circular light frequency, versus 

FIG. 2. Fffective optical conductivi:~ aeff: 0) {Fe(23 A ) / ~ r ( 8  A)},,; X )  

{Fe(20 A)/Cr(Il A)},, ; e) (Fe(23 A)/Cr(27 A)},, . Optical conductivity of 
single crystals of  Fe [Ref. 221 (dashed line) and Cr [Ref. 211 (solid line). 

the photon energy for superlattices, pure iron and chromium 
are given in Fig. 2. There is an intense absorption band2' 
centered at 2.2 eV in chromium, and its intensity and posi- 
tion are independent of its magnetic ordering. An absorption 
band in this range of photon energies is also present in the 
iron spectrum.22 According to calculations of its energy 
bands, it is largely due to electron transitions between bands 
with spin down (1). Experimental data indicate that this 
band is also not sensitive to the iron magnetic ordering.23 

One can see in Fig. 2 that the curves of the optical con- 
ductivity of the superlattices also have an absorption band 
typical of these metals, lying between those of iron and chro- 
mium almost throughout the spectral band studied. The 
analysis of these data based on the formula for re- 
vealed that the superlattice dielectric response can be ap- 
proximated as a weighted average of the dielectric responses 
of pure metals and indicated that the individual optical prop- 
erties of Fe and Cr in thin layers are presesued. An important 
point is that the high optical conductivity ueu is an additional 
confirmation of the good structural quality of the samples. 

3.2. Theory of equatorial Kerr effects in a multilayered 
structure 

Let us consider a model multilayered structure com- 
posed of plane parallel uniformly magnetized layers shown 
in Fig. 3a. Optical parameters of all materials 
( j =  1,2,. . . ,N  is the layer index) are assumed to be isotropic. 
The outside medium ( j =  1), from which the light is incident 
at an angle cp, is totally transparent. All other materials may 
be absorbing. The widths of the layers, d,, and magnetiza- 
tion directions in the layers are arbitrary. Each material is 
characterized by a dielectric E l j  and a permeability G j  ten- 
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FIG. 3. a) Diagram of light beams in a mul- 
tilayered structure in a general case; h) dia- 
gram of measurement of the equatorial K ~ I T  
effect in a Fe/Cr superlattice: E, E' are the 
electric-field intensities of the incident and 
reflected waves, cp is the angle of incidence, 
xy is the surface plane. 

sors, which are described in the optical range and in the where rk,k+l are the reflection factors defined by Eq. (2) 
approximation linear in the magnetization by the formula (indices s and p are omitted), and the phase factors 

where i is the imaginary unit, n j  is the refraction index of the 
material, and Q:) and Q:) are the magneto-optical param- 
eters ( 1  Q$ijl < 1 ) proportional to the saturation magnetiza- 
tion. In a nonmagnetic material Q:)= Q:'= 0. 

Let us determine the reflection factors of p-polarized (in 
the light incidence plane) and s-polarized (perpendicular to 
the incidence plane) light waves on interfaces between lay- 
ers. The reflection factors on the interface between the j-th 
and k-th layer are described by Fresnel's formulas 

are functions of the phase increments of light ( A  is its wave- 
length in vacuum) and its absorption in a layer with a thick- 
ness dk  . By definition, F,= 1. Order of the layer indices is 
reversed ( j ,  j  - 1, . . . , m ) ,  the following matrix is generated: 

where we have F ,  = 1 by definition. Then in structures with 
the increasing ( j < m )  or decreasing ( j > m )  order of indices, 
the reflection factors of forward (propagating along the 
z-axis) and backward (propagating in the opposite direction) 
waves are determined by the formulas (the overline denotes 
backward waves) 

If a p -  or s-polarized wave is incident on a multilayered 
where structure (Fig. 3a), the effects of magnetization on the inten- 

sity of reflected (into layer I) or transmitted (into layer N )  
g j = g ;  - i , g;  , g ;aO.  (3) light are odd in the magnetization and are called equatorial - 

Kerr effects. The amplitude of the equatorial Kerr effect, 
Let us determine the reflectivity of a multilayered struc- 

(Y= ( I -  I o ) l I o ,  where I  and 1, are the intensities of light in 
ture (without regard for the magnetization of the layers) us- 

the nonmagnetized and magnetized states, respectively, is de- 
ing the Heavens matrix technique.25 Let j ,  j  + 1 ,. . . ,m be an 
increasing set of layer indices ( j =  1,2,. . . ,N- 1 ,  

scribed by the formulas26 (indices r and t refer to reflected 
and transmitted light, respectively): 

rn=2,3, ... ,N) of a multilayered structure. The two- 
N N 

dimensional Heavens' matrix for this structure is2' 6') ~ ( 1 1 )  =2 Re R ( j )  S(p)  S ( P )  ' $ 1 )  S ( P )  = 2  Re T ( j )  A ( j )  
j=2 

s(p) s ( p )  ' 
nl- l j= 2 

(4) 
(8) 

where 
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A(i) - - i( I - F;)- sin q cos y, , 
2g j 

In Eq. (9), n, is the ambient refraction factor, cp is the light 
incidence angle, g j  is the parameter defined in Eq. (3), yj is 
the angle between the magnetization vector and the y-axis in 
the j-th layer (equatorial angle), and the reflection factors 

r;(p$,, , fj(P$,, , and rj.'p'- are determined by Eq. (7). 
Note some features of the equatorial Kerr effects deriv- 

ing from Eqs. (8) and (9). These effects are controlled only 
by the equatorial magnetization components (along the nor- 
mal y to the plane of incidence of the light). When the inci- 
dent light is s-polarized, the equatorial Kerr effect is caused 
by the off-diagonal component ,ux)= iQ!) of the permeabil- 
ity tensor (gyromagnetic effects), and if the light is 
p-polarized, it is due to the component e ~ ) = i s j Q ~ )  (gyro- 
electric effects). The following proportionality relation can 
be derived: 

from which it follows with due account of Eqs. (3) and (5) 
that in structures with absorbing layers the factors ~2;) for 
magnetized layers at a depth larger than the skin thickness 
tend to zero, and the contribution of these layers to the equa- 
torial Kerr effect is also vanishing. It follows from Eqs. (9) 
and (10) that the equatorial Kerr effect on reflected light is 
always zero at angles of incidence cp = 0' and 90". Note also 
that the sum in Eq. (8) is in effect taken only over magne- 
tized layers because in nonmagnetized layers A;;,= 0. 

4. MANIFESTATION OF EXCHANGE COUPLING BETWEEN 
IRON LAYERS IN THE EQUATORIAL KERR EFFECT 

The configuration of the equatorial Kerr effect measure- 
ments using light reflected from a FeICr superlattice 
(%)-effect) is shown in Fig. 3b. An alternating magnetizing 
field is aligned perpendicularly to the plane of incidence of 
the light (parellel to the y-axis), and the incident wave is 
polarized in the plane of incidence (p-polarization). The ex- 
perimental data were compared to calculations of the 
$)-effect by Eqs. (8) and (9). The calculation used the 
widths of the chromium and iron layers (dc, and dFe) given 

FIG. 4. Diagrams of FelCr(100) super- 
lattice magnetization in the equatorial 
field. The magnetizations of iron layers, 
M,  and M, , and the external field H are 
aligned with the surface plane, M 
= (M, + M,)/2. 

in Sec. 2 and the optical constants and Q, of iron derived 
from measurements of thick (about 1000 A) films of iron and 
chromium.I8 

Our interpretation of the magneto-optical measurements 
is based on the concept of magnetic ordering in the FeICr 
superlattice due to the exchange coupling between neighbor- 
ing iron layers separated by a chromium ~ ~ a c e r . ~ - ~  We as- 
sume that in the general case the exchange coupling in zero 
magnetic field gives rise to noncollinear ordering of the fer- 
romagnetic layers, i.e., the magnetization vectors MI and 
M2 of neighboring layers are turned through an angle 8, 
with respect to each other. The angle 8, ranges from 0 (fer- 
romagnetic ordering) to 180' (antiferromagnetic ordering) 
and is a basic characteristics of the superlattice magnetic 
structure. The FelCr(100) superlattices studied in our experi- 
ments are easily magnetized i r ~ - ~ l a n e ? ~  when the external 
magnetic field H is aligned with the sample plane and mag- 
netization vectors MI  and MZ are in the same plane with an 
angle 8(H) between them. We presume that in structures 
with iron layers of equal thickness IMll = lM21 holds the 
angles and 6, and 8, between the vectors MI  and M2, and 
the average magnetization M=(MI +M2)/2 aligned with the 
external magnetic field H are equal: 8, = O2 = 812. We also 
assume that the exchange energy exceeds the magnetic an- 
isotropy energy. Thus we have the following model of super- 
lattice magnetization with noncollinear magnetic ordering. 
When the external magnetic field is zero, the superlattice is 
separated into domains, the magnetization vectors MI  and 
M2 of two neighboring layers being aligned with the layer 
plane (xy-plane) and the angle between them equal in all the 
domains, B= go. This configuration is shown schematically 
in Fig. 4a. This pattern is translated in the vertical direction 
to other pairs of iron layers. An external magnetic field 
H=(OJI,O) causes all average magnetization vectors 
M=(M, +M2)/2 to be aligned with the external field (Fig. 
4b). If the external field is much smaller than the saturation 
field H,, the angle 6, between neighboring layers remains 
constant. This alignment takes place on the initial portion of 
the curve of magnetization versus magnetic field, on which 
the slope is large. Under a higher magnetic field the angle 
I9 becomes smaller and the magnetization gradually increases 
to reach saturation with the external field. When the vectors 
M=(M, +M2)/2 are aligned with the external field (Fig. 4b), 
the magnetizations of neighboring layers are directed at the 
same angle, 19, = 02= 012, with respect to the external field. 
Note that, according to the data of Unguris et a/.: the initial 
dimensions of the domains in the iron layers of FeICr super- 
lattices (at zero external field) are - IOOX 100 pm, i.e., 
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FIG. 5. Intensity of equatorial Ke? effect in Fe/Cr superlattices versus 
magnetic field: 1) {Fe(23 A)l~r(8 A)},,: 2) {Fe(20 A)/cr(ll A)}M; 3) 
{Fe(23 A)/~r(27 A)},, ; 4) Fe(dFe= 1000 A). 

much larger than the wavelength of the light. 
The equatorial Kerr effect in a superlattice (Fig. 3b) is 

described, according to Eqs. (8) and (9), by the equation 

$')= D cos yl + D2 cos y2, (11) 

where yl and y2 are equatorial magnetization angles of 
neighboring iron layers. It can be seen in the diagram of Fig. 
3b that in a magnetic field perpendicular to the light inci- 
dence plane the angles yl and y2 in all domains are equal to 

and 02: y, = 0, = y2 = 02= 012. The intensities of light 
reflected from different areas of the reflecting surface should 
be added, so Eq. (11) for Fe/Cr superlattices takes the form 

e 
$)= D cos - 

2 ' 

where D = D + D2 is a function of both diagonal (ex,) and 
off-diagonal (ex,) components of the dielectric tensors of the 
superlattice layers, their thicknesses, and the angle of inci- 
dence of the light, and 0 is the misalignment angle between 
the magnetic moments of neighboring iron layers, controlled 
by the external field. The parameter p=cos(8/2) is propor- 
tional to the specific superlattice magnetization [see Eq. (13) 

below]. As noted above, in a small magnetic field 
(H<H,)we have 0= 80, where Oo is the initial rnisalign- 
ment angle between neighboring layers. 

Now let us discuss our measurements. Figure 5 shows 
the magnetic field dependence of the equatorial Kerr effect 
for incident light of a wavelength A = 0.6pm and a angle of 
incidence (p = 70". Independent magnetic measurements 
demonstrated that "technical saturation" of magnetization is 
practically achieved in a field of 100-150 Oe. Therefore we 
assume that at 150 Oe the vectors M=(M, +M2)/2 are 
aligned with the magnetic field (Fig. 4b). The equatorial Kerr 
effect further increases in a field up to 10 kOe (insert in Fig. 
5b) due to the decrease in the angle 13 between magnetiza- 
tions M, and M2. Therefore we measured the initial mis- 
alignment angle between MI and M2 using the equatorial 
Kerr effect in a field Ho= 150 Oe. 

Figure 6 shows experimental data on the equatorial Kerr 
effect versus angle and wavelength taken in a field of 150 Oe 
in the (Fe(23 A) /~ r (8  A))30 supperlattice. Theoretical curves 
of the effect calculated from Eq. (12) at misalignment angles 
00= 0°, 90°, and 126" are also given in Fig. 6. Note that the 
$')-effect calculated at 8=0° equals the factor D in Eq. (12). 
These curves allow us to select optimal conditions for deter- 
mination of the angle 80, given that the amplitude of the 
$)-effect and the factor D peak around X=O.6pm and 
cp = 70". In this case the uncertainty of Bo is minimized. The 
initial misalignment angle O0 between the iron layers deter- 
mined at X = 0.6pm and (p= 70" from Eq. (12) is 126". Its 
uncertainty calculated at I ADIDI = 0.1 is A 00= + 6". The 
angular and spectral curves of the equatorial Kerr effect cal- 
culated at 00= 126" (solid line in Fig. 6) agree well with the 
experimental data. The angle 80 was derived from measure- 
ments at other wavelengths and cp= 70°, and also at 
X =0.6pm and several angles of incidence. The results are 
given in Fig. 7. One can see in Fig. 7b that at angles of 
incidence ranging from 30" to 70" and X = 0.6pm the calcu- 
lated angle O0 ranges between 126" and 128", and the angle 
derived from measurements at (p>70° is smaller because of 
the poorer accuracy of the $)-effect measurements at large 
angles of incidence. The spread of Oo values at different 
wavelengths is considerably larger (Fig. 7a). In the band of 
0.27-0.75 p m  we have Oo-126", but in the IR band this 

FIG. 6. Intensity of the equatorial Kerr ef- 
fect versus (a) !ngle and (b) wavelength in a 
{~e(23A)/cr(8~)},, superlattice in a mag- 
netic field H ,  = 150 Oe: experimental data 
are shown by dots, calculations at (I) 
0,=0', (2) 90'. and (3) 126' are shown as 
solid lines. 

CP. deg A Clm 
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FIG. 7. Measurements of the initial misalignment ~ n g l e  8,~versus (a) wave- 
length and (b) light-incidence angle in the {Fe(23 A)ICr(8 A)},, superlattice. 

angle increases to 1 40". The probable cause of this spread of 
0, at different wavelengths is that in our calculations we 
used the optical and magneto-optical constants of thick iron 
and chromium films grown on a substrate from Sitall devit- 
rified glass, and they may be slightly different from those of 
the iron and chromium epitaxial layers of our superlattices. 
The angle 0, averaged over the measured spectral band is 
(00) = 134". The relative magnetization p= cos(O12) of 
sample No. 1 derived from measurements of the $)-effect 
versus magnetic field (Fig. 5b) are plotted in Fig. 8. 

The curves of the equatorial Kerr effect versus the wave- 
length and angle of incidence of the other two superlattices 
(No. 2 and No. 3) are similar to those given in Fig. 6. They 
only differ quantitatively in amplitude and are slightly 
shifted with respect to the points A = 0.6pm and (p= 70". 
The initial misalignment angles of these superlattices at 
A = 0.6pm and (p= 70" in an external field of 150 Oe are 
listed in Table I. 

FIG. 8. Relative magnetization versus magnetic field in the {Fe(23 A)/ 
Cr(8 A)},, superlattice derived from (0) measurements of magnetoresis- 
tance and (0 )  magneto-optical measurements; the solid curve represents the 
calculations. The insert shows components of the magnetoresistancc versus 
magnetic field. 

TABLE I .  Anglc H,, hctwccn m;~gnctiz;~tions of iron layers in supcrl:~tticcs 
derived l'ron~ (a) magneto-optical and (b) niagnctorcsist;~ncc flneasuwlncnts. 

H,, dcg. 

No. Samples I b 

4. MAGNETORESISTANCE OF SUPERLATTICES WITH 
NONCOLLINEAR ORDERING OF FERROMAGNETIC LAYERS 

In this section we discuss a model which describes the 
magnetoresistance of superlattices with noncollinear order- 
ing of the magnetization in the ferromagnetic layers and 
demonstrate how the angle between the magnetizations of 
the layers and the superlattice magnetization curve can be 
derived from measurements of the magnetoresistance in a 
magnetic field aligned parallel and perpendicular to the su- 
perlattice plane. The underlying principle of this technique 
was published earlier.28 The data on the magnetoresistance of 
the Fe/Cr superlattices will be interpreted in terms of this 
model. 

4.1. Magnetization curves derived from magnetoresistance 
measurements 

Let us consider a superlattice in which the magnetization 
of ferromagnetic layers separated by layers of a nonmagnetic 
material alternates between M I  and M2. We assume that the 
absolute values of the vectors M I  and M2 are equal and 
independent of the external magnetic field H: 

We define the average magnetization of the superlattice, 
M = ( M ,  +M2)/2, and the relative magnetizations pl = M I  / 
M a ,  = M2 IM, , and p = MIM, . The absolute value of 
the relative magnetization ,u= I M I I M ~  is simply related to 
the angle 0 between the vectors M I  and M2: 

0 
p = cos- . 

2 

For simplicity, we shall consider only the case which is, 
in our opinion, most probable in FeICr superlattices, when 
the magnetization vectors M I  and M2 are in the superlattice 
plane in the ground state (H= 0).  

The shape of the superlattice magnetization curve 
p ( H )  is controlled by the total effect of the external niag- 
netic field, demagnetization fields, anisotropy field, and ef- 
fective exchange field. The latter describes the interaction 
between the magnetizations M I  and M2.  We denote the en- 
ergies due to these fields as E H ,  E M ,  E,  , and Es and derive 
the shape of the magnetization curve from the condition that 
the sum of these energies should be a minimum: 

The Zeeman energy EH and the demagnetization energy 
E M  are 
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where pz is the projection of the magnetization on the nor- 
mal to the superlattice plane. 

In the anisotropy energy we take into account only the 
axial anisotropy, assuming that the energy of the in-plane 
anisotropy is much smaller than the exchange energy: 

where H A  is an axial anisotropy field. 
As for the interaction between layers, it is reasonable to 

assume that Es is a function only of the angle between their 
relative magnetizations p, and k ,  i.e., of p :  

The shape of the function J ( p )  in Eq. (18)  is not impoprtant 
as yet. We only assume that this function has a minimum at 
some p = p, , 0 < po< 1 .  The derivative of J ( p )  at p = po is 
zero: J' ( p , )  = 0 .  

If the external magnetic field is aligned with the super- 
lattice plane, we have p ,  = 0, E M =  E A  = 0 ,  and the condition 
of minimum energy, d E l d p  = 0, yields the following equa- 
tion for the curve of "parallel" magnetization p1 l (H) :  

where H ! L =  M O J t ( l )  is the saturation field of the parallel 
magnetization. 

Equation (19)  may be considered as a definition of the 
field ~ l l ( , u )  at which the magnetization ,ull equals the given 
value p :  

If the field H is perpendicular to the superlattice plane, 
the curve of the perpendicular magnetization ,ui(H) is de- 
rived from the conditions of minimum energy, dEldp=O 
and dEldpz=O.  For H<Ho= (4 . rrM0+HA)po the absolute 
value of the magnetization ,uL(H)  is independent of H and 
equals po,  and its z-component p ; ( H )  is linear in H :  

For H , ~ H < H ~  , where H i  = H i +  4?rM0+ H A  is the satu- 
ration field of the perpendicular magnetization, the param- 
eters pL ( H )  and ,u: ( H )  are equal and are determined by the 
equation 

In  order to include the magnetoresistance, we assume 
that at any orientation of the magnetic tield the superlattice 
resistance R ( H )  depends on H only through the effect of the 
magnetic field on the misalignment angle between neighbor- 
ing layers. In fact, this assumption means that R ( H )  is a 
function of p ( H ) :  

R ( H ) = F ( p ( H ) ) .  (25)  

Let us define the relative magnetoresistance r ( H )  
= [ R ( H )  - R(O)] IR (O) .  The quantity r1 l (H)  denotes the 
magnetoresistance when the field H is parallel to the current 
density parallel to the superlattice plane and is called longi- 
tudinal. The magnetoresistance in the field perpendicular to 
the layers is called perpendicular and denoted as r L ( H ) .  
Then the following relations can be derived from Eq. (25): 

An important feature of the perpendicular magnetoresis- 
tance of superlattices with noncollinear magnetic ordering 
( p o Z O )  can be derived from Eq. (27). If the magnetic field 
ranges between 0 and H o ,  ,uL(H)  in our model is indepen- 
dent of H and equals po. Hence the perpendicular magne- 
toresistance in this range should be zero. Viewi!g the exgeri- 
mental curve of r L ( H )  measured in (Fe(23 A)/Cr(8 A)),, 
(insert in Fig. 8 )  in light of this, one can easily see that 
r l ( H )  is practically constant in a fairly wide range of mag- 
netic fields, and at higher fields it is negative. In our opinion, 
this fact is a direct indication that magnetizations of neigh- 
boring iron layers are not collinear in the initial state. 

Using Eqs. (26)  and (27) ,  we can easily derive the ratio 
v ( H ) =  p l l (H) lpo  as a function of the field from measure- 
ments of r i ( H )  and r1l(H).  The function v ( H )  has the form 

where H '  ( r )  is the magnetic field at which the perpendicular 
magnetoresistance equals a given value r .  

The numerical value of p o  can be also derived from 
measurements of ?7(H) = pll(H)l,uo. This procedure, how- 
ever, demands an explicit expression for the exchange energy 
J ( P ) .  

Equation (22)  may be considered as a definition of the field 
H '  ( p ) ,  at which the magnetization ,uL equals the given 
value p a p o :  

A relation among H ~ ~ ,  HI1, and p can be easily derived 
from Eqs. (20)  and (23): 

H - - P -- 
H '  ( P o )  Po 

4.2. Model of biquadratic exchange 

Suppose that the energy of exchange between magnetic 
layers can be expanded in powers of p, .&. Taking only the 
tirst two terms of this expansion, we present E s  as29 

where J ,  and J 2  are constants. The first term on the right of 
Eq. (29)  is called bilinear, and the second term biquadratic. 
The bilinear interaction leads to ferromagnetic ordering for 
J <0 and J2= 0, and to antiferromagnetic ordering for 
J I  >0 and J2=0 .  The biquadratic interaction (at J ,  = 0 )  
leads to a magnetic order with perpendicular magnetizations 
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M ,  and M 2 .  The sum of the two terms in Eq. ( 2 9 )  leads to 
the noncollinear alignment with an arbitrary angle 0 ,  be- 
tween M, and M 2  . 

From (p, -&) = 2 p 2 -  1 ,  the function J ( p )  in the defini- 
tion of Es [Eq. ( 1 8 ) ]  can be expressed as 

The equilibrium magnetization po at given J ,  and J 2  
can be derived from the condition of minimum E s ( p )  on the 
interval 0s ,US I .  The plane defined by the coordinates 
( J ,  , J2)  can be separated into three regions. In the first re- 
gion, J ,>O,  J 2 < J , / 2 ,  the magnetization satisfies po=O, 
which means antiferromagnetic ordering. In the second re- 
gion, J ,  <0,  J 2 <  - J 1 / 2 ,  the magnetization satisfies p,= I ,  
which means ferromagnetic ordering. In the third region de- 
fined by the relation J2> I J ,  112 the magnetic ordering is non- 
collinear and the relative magnetization is 

Below we shall discuss magnetization curves typical of the 
third region. 

Equation (19)  can be transformed with due account of 
Eqs. (30)  and (31)  to 

where 

In what follows we shall consider only the parameters 
po and H!, since they uniquely define J 1  and J 2  by virtue of 
Eqs. (31)  and (33) .  The solution of Eq. (32)  can be expressed 
as 

where 

The parameter in the function of Eq. (35)  is 

and it determines the shape of the curve , U ~ I ( H ) I , U , ,  . 
Now let us use the function v h ( H )  defined by Eq. (35)  

to approximate the experimental curve v ( H )  derived from 
measurements of the magnetoresistance. The parameter h 
will be varied in order to minimize the RMS deviation of the 
curve v h ( H )  from v ( H ) :  
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where H,,, is the upper boundary of the interval on which the 
function v ( H )  has been measured. The curve of v h ( H )  is 
best fitted to v ( H )  at h =  h o  determined by the condition 

The relative RMS error of the approximation is A v o  
= A  v ( h 0 ) .  

Having found the parameter h in this way and having 
derived the saturation field H! from measurements of 
r l 1 ( H ) ,  we can determine po of a given superlattice using Eq. 
(36) .  

Since H I  cannot be determined unambiguously from the 
curve of r l 1 ( H ) ,  we define H! as the field at which rI1(H) 
= 0 . 8 5 r i  holds, where r i  is the maximum longitudinal mag- 
netoresistance measured in our experiments. 

The curves of the ma6netoresistance versus magnetic 
field of the (Fe(23 A ) / ~ r ( 8  A))30 superlattice are given in the 
insert of Fig. 8 .  The saturation field derived from these 
curves H!-- 10.1 kOe. The solution of Eqs. (38)  and (36)  
yields the relative magnetization ~ ~ " 0 . 3 8 7 .  This parameter 
corresponds to a misalignment angle 0, = 134". The RMS 
deviation of the calculated curve from experimental data is 
reasonably small, which indicates that the theoretical curve is 
close to the experimental one. 

Thus we have determined both po and h in Eq. (34)  for 
p 1 l ( H ) .  The solid curve in Fig. 8 is a calculation of the 
relative magnetization pll versus magnetic field by Eqs. (34)  
and (35)  using po and h derived from the least-square fitting. 
The function p l l ( H )  = po v ( H )  derived from experimental 
data on S ( H )  and r l l (H)  using Eq. (28)  for g ( H )  is indi- 
cated by open squares. The relative magnetization derived 
from magneto-optical measurements is shown by full circles. 

The angle between the magnetization vectors of neigh- 
boring iron layers in the superlattice with 2 0 - A  iron and 
11-A chromium layers derived from our experimental data at 
zero magnetic field is 0 ,  = 147'. 

Thus the two techniques proposed in this paper yield 
close values of 0 ,  (Table I) and similar curves of p I 1 ( H ) .  

CONCLUSION 

We have proposed two techniques for independent deter- 
mination of the magnetic order in metal superlattices. One of 
them uses the equatorial Kerr effect, the other the effects of 
magnetic ordering on magnetoresistance. Measurements of 
the initial misalignment angle 0 ,  between neighboring iron 
layers and of the relative magnetization ( p =  cos(O/2)) ver- 
sus magnetic field using both techniques have yielded similar 
results. We found that in the superlattices studied the mag- 
netic ordering is noncollinear with a misalignment angle be- 
tween iron layers ranging from 80" to 147". 
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