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The properties of 3 ~ e - ~  rotating in an annulus in the presence of a vortex cluster are considered. 
The various textures of the order parameter are calculated, and nonexponential time decay 
of the angular velocity of a freely suspended decelerating vessel with superfluid liquid is 
predicted. O 1996 American Institute of Physics. [S 1063-776 1 (96)O 1 102-01 

Several states of the rotating B phase of superfluid 3 ~ e  
have been identified and investigated experimentally. Along 
with an equilibrium rotation at angular velocity R supported 
by an array of quantized vortices' with 2D density 
n , = 2 R l r o  (To being the superfluid circulation quantum 
h/2ni), other metastable rotating states are possible. The high 
critical velocity for nucleation of singular vortex lines in 
3 ~ e - ~  allows rotating states with macroscopic vortex-free 
regions characterized by large counterflows of normal and 
superfluid components. An interesting example of such meta- 
stable rotation is the vortex-cluster state2 in a cylindrical ves- 
sel (of radius R) with a vortex bundle of radius R, < R, sur- 
rounded by the counterflow region (R, < r < R). The number 
of quantized vortices per unit area within the bundle is 
2R/To  (as in equilibrium), but this rotating state is charac- 
terized by a deficiency AN, in the total number of vortices as 
compared to the state of full rotating equilibrium 
(AN,= T(R'- R : ) ( ~ R I ~ ~ ) ) .  

The orienting action of a dense system of vortices on the 
order parameter of 3 ~ e - ~  within the vortex bundle has been 
the subject of extensive experimental and theoretical inves- 
tigations. The case of full equilibrium (where the vortex 
bundle fills the whole volume of the rotating cylindrical ves- 
sel) has been investigated in detail (see Ref. l ) ,  as well as the 
metastable vortex-cluster carrying and totally vortex- 
free counterflow state.4 

The spatial distribution of the order parameter (texture) 
can be efficiently explored by NMR techniques. Observation 
of the cw NMR frequency spectrum allows one to identify 
various textural transitions driven by large superfluid coun- 
terflows in the vortex-free and vortex-cluster carrying states 
of 3 ~ e - ~  rotating in a cylindrical 

It is interesting to analyze possible states of 3 ~ e - ~  rotat- 
ing in an annulus (contined between two coaxial cylinders of 
radius R , and R2> R I). This double-connected geometry is 

of vortices with the B phase order parameter.6.7 
In what follows we shall consider vortex-cluster carrying 

states of 3 ~ e - ~  rotating in an annulus. In this case, the topo- 
logical distinction between the annular and hollow cylindri- 
cal geometry is of primary importance. In the first place one 
has to recognize that for the case of an annular geometry the 
superfluid circulation r i 2 ( r )  is the result of the combined 
action of real and virtual vortices. This last contribution is 
connected to superflows trapped around the inner cylinder 
(of radius R,). For the case of a vortex-controlled rotating 
equilibrium at = R, the circulation about the circumfer- 
ence of the outer cylindrical wall is T n ( R 2 ) = 2 ~ R 2 f l , R z  
= N,ro,  where Nu = N,+ N: is the total number of the real 
(Nu) and the virtual (N:) vortices. 

Consider now what happens when the rotation is accel- 
erated ( a  > flu) and new vortices are not generated. It is 
expected that in this situation a macroscopic irrotational 
counterflow region of width AR = R2 - R, is formed as in the 
case of a cylindrical vessel. The superfluid circulation around 
the boundary of the vortex cluster is Tc2(R,) = ~ T R R ;  
= N:)ro, and for i?:) = Nu we conclude that the outer radius 
of the vortex cluster is R,(fl) = R2 < R2. It is impor- 
tant to notice that, in contrast to the case of cylindrical ge- 
ometry, in an annulus the number of real vortices is not con- 
served: when f l  increases, singular vortex lines are pushed 
across the inner wall under the action of the Magnus force, 
with the corresponding circulation being trapped around the 
cylinder of radius R ,. At 0 = 62: = (R2 lR ,)252, the vortex 
cluster disappears. The counterflow velocity field w(r)  
= v,(r) - ~ , ~ ( r )  in the case of a vortex cluster state in the 
rotating annulus is given by 

expected to be quite different from the singly-connected cy- 
In the case of deceleration ( R  < R,), when the trapped 

lindrical case. An obvious difference between these two 
superfluid circulation around the inner wall of the annulus 

geometries is connected with the difference in boundary con- 
persists, a counterflow is established at the inner wall: 

ditions imposed on the order parameter of the B phase at the 
lateral walls of the container. This question was considered 
in Ref. 5, where various textures in a rotating annulus were Tfl"(R 1) 

w(Rl)=flRl--- 
computed for a vortex-controlled equilibrium state, as well 2mR -( f l - i ] , )R, ,  (2) 

as for the case of metastable vortex-free rotation with large 
superfluid counterflows. It was shown, in particular, that an and a counterflow-carrying irrotational region of width AR 
annular geometry permits accurate measurement of the vor- = R, - R ,  with R,.(R) = R I dm > R is formed. The 
tex parameters X and K characterizing the average interaction number of real vortices in the cluster again is not conserved, 
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FIG. 1 .  Radial distributions p = P(rIR,)  for various 0. in the case n > 0  and FIG, 2. Radial distributions = P(rIR, )  for various n ( f i < ~ ,  a ,  = 2) (a) a, = 0.5 (a) and corres~onding transverse NMR spectrum P ( x )  (b); here ,d co,.,.esponding transverse NMR spectrum p ( x )  (b), 
x  = ( 0  - ~ , . ) l ( n ; / 2 0 ~ ) , t i  = 300Oe,P = 30bar,TlT, = 0.7,R2 = 4 mm, 
R ,  = 2 m m .  

since they escape across the outer wall of the annulus. At 
R = R *  = (R, I R ~ ) ~ ( R ) ,  the vortex cluster disappears com- 
pletely. In the case of deceleration 

flRc(rIRc-Rc I r ) ,  R,Sr=SR,, 
w(r)  = 

R c < r < R 2 .  

The vortex cluster appears inthe case of deceleration be- 
cause new vortices cannot enter the volume from the inner 
cylinder (while at the same time, part of the vortices leave 
the annulus through the outer cylinder). Note that a vortex 
cluster cannot exist for R < R, in the case of a hollow cyl- 
inder. From (3) one can conclude that w(r)  # 0 holds even at 
R = 0. In this case we have u,(r) = 0 ,  but u,  = f l , ~ ; l r .  

In order to determine the texture of the order parameter 
of 3 ~ - ~  in the presence of a vortex cluster in an annular 
vessel one has to minimize the bulk free energy 

and fgrad stands for the contribution of the energy density 
inhomogeneity. The first line in (5) refers to the counterflow 
region and the second line to the vortex cluster domain. 

The coefficient in Eqs. (5) satisfies a = 10- 12; the order 
parameter R(A) describes relative spin-orbital rotation 
around ii by the Leggett angle a0 = arccos( - 1/4), w(r)  is 
given by (1) [or (3)], u~ is the dipole velocity and A de- 
scribes the average contribution to the anisotropy energy of 
quantized vortices within the vortex cluster. 

The last two terms in (4) describe the surface magnetic 
energy, the separate minimization of which gives the follow- 
ing values for the polar and azimuthal angles of the direc- 
trices n at the surfaces: 

P=63.4", and a = 6 0 ° ,  orp=116.6" and cu=120°, (6) 

however, it should be noted that since d l a  = 2 mm is com- 
- d H 2 1  d ~ ( i R ( i i ) s ) ~  parable with the cylinder radii, one has to minimize the 

R = R ,  whole functional (4) in order to determine the equilibrium 
texture. For this reason, at relatively low angular velocities 

- d H 2 1  d ~ ( i R ( i i ) s ) ' .  (4) the orientation of n on the surfaces is not determined exactly 
R = R 2  

by the conditions (6), but is close to them. 
In (4) fU,,( i)  describes the anisotropic (orienting) part of the The results of numerical computation of the spatial dis- 
free energy density stemming from the combined action of tribution of the order parameter axis n across an annular 
the applied magnetic field H = HA, dipole effects, macro- container are shown in Figs. I and 2 for the cases of accel- 
scopic superfluid counterflow, and vortices: eration ( 0  > R,) anddeceleration (11 < a , ) .  
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When the angular velocity R o  increases, textural phase 
transitions take place near the cylinder surfaces (for more 
details see Refs. 8 and 9). For R > 0 (Fig. 1) we first have the 
so called simple texture with ps = 63O. At R =  1 radls an 
extended texture (P(R2) = 116') develops near the outer cyl- 
inder. For R >  1.4 n is "stripped" from the external surface 
(P(R2) - 63O, a(R2) = 150°), and the direction of n is de- 
termined by minimization of the orientational contribution of 
the counterflow to the free energy. At a = 2  radls the transi- 
tion to an extended texture occurs near R ,. 

For h < 0  the textural transitions take place near the in- 
ner cylinder. For R>0.6 we have a simple texture, while for 
fl<0.5 an extended texture develops. 

The presence of a vortex cluster in 3 ~ e - ~  rotating in an 
annulus affects the behavior of a freely suspended container. 
The time decay of the angular velocity a ( t )  of a decelerat- 
ing annular vessel filled with a superfluid liquid is governed 
by the equation 

where L is the z-component of the total (liquid + container) 
angular momentum and T = - yC! describes an external fric- 
tional torque acting on the rotating vessel. 

The angular momentum generated by the mass flow j 
= pnvn + psvs is calculated as 

Equation (7) gives 

FIG. 3. The time decay of R ( t )  for a decelerating annular vessel with 
superfluid 4 ~ e  for p, I p  = 0.9 in the presence of a vortex cluster. The dashed 
line represents the time decay for the case of a vortex-controlled rotating 
equilibrium (the frictional coefficient y describes the deceleration of the 
rotating vessel in a helium gas environment at the saturation pressure). 

from which we obtain 

4 with I =Io + rp,R ,/2. 
By inspection of Eq.(12) we conclude that the 

a-dependence of R, makes the frictional decay of R(t)  non- 
exponential until t < t ,  , where t, is the time at which the 
vortex cluster disappears completely (a( t , )  = Rz 
= (R , l ~ ~ ) ~ f l , ) .  After t > t, we have the exponential depen- 
dencea(t) = flTexp[- (ylIo)(t- t,)](Fig.3). 
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tions. 

where the effective (R-dependent) moment of inertia is 
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