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The equations of the inhomogeneous spin dynamics of the superfluid B phase of 3 ~ e  are 
derived. In the hydrodynamic region, a generalization of the Leggett-Takagi two-fluid 
hydrodynamics to the spatially inhomogeneous case is obtained. Near the critical 
temperature, approximate equations for the macroscopic description of the collisionless spin 
dynamics of 3 ~ e - ~  are found. A solution of these equations is obtained that represents a coherently 
precessing inhomogeneous distribution of the magnetization; as T-, T, , this solution goes 
over into the recently discovered two-component structure in normal 3 ~ e .  It is shown that, in 
contrast to normal helium, the two-component coherently precessing distribution in 3 ~ e - ~  
exists both in a weakly inhomogeneous and completely homogeneous external field. An 
investigation is made of the relaxation of the structure and the temperature region in 
which it exists. O 1996 American Institute of Physics. [S1063-7761(96)01002-31 

1. INTRODUCTION 

In the B phase of superfluid 3 ~ e ,  the coherently precess- 
ing two-domain spin structure that exists in an inhomoge- 
neous magnetic field at temperatures somewhat below the 
temperature of the superfluid transition, T<0.8Tc, has been 
thoroughly studied. In this structure, the deviation of the 
magnetization from the equilibrium direction (SIIH) increases 
in the direction in which the field decreases and reaches 104" 
(the angle is fixed by the spin-orbit interaction). The lifetime 
of such a structure significantly exceeds the time of dephas- 
ing of the precession due to the field inhomogeneity.  omi in^ 
showed that the coherent precession in the inhomogeneous 
field is due to the flow of a superfluid spin current, which 
leads to the formation of a two-domain structure and cancel- 
lation of the spatial dependence of the Larmor frequency. 

Recently, an analogous structure with coherent spin pre- 
cession was also observed in a normal Fermi liquid [in a 
solution of 3 ~ e  in 4 ~ e  (Refs. 3 and 4) and in 3 ~ e  (Ref. 5)] in 
the collisionless region or> 1. Such a structure can be inves- 
tigated by means of the equations of the spin dynamics of a 
normal Fermi liquid: 

dS dJi 
-+-=sxw,,  
dt dx, 

Here S is the spin density, Ji is the density of the spin cur- 
rent, xn is the magnetic susceptibility, y is the gyromagnetic 
ratio for 3 ~ e  nuclei, and the Larmor frequency wL= yH can 
depend on the coordinates. Here we have written 

w2=v;(l +F;)(l +Fy/3), ~=(F7 /3 -  F;)/(l + F ; ) ,  
r1=7/(1 +Fy/3), and F; and Fy are coefficients of the expan- 
sion in spherical harmonics of the spin-spin part of the 
Fermi-liquid interaction of the quasiparticles. These equa- 
tions were derived by ~ e ~ ~ e t t ~  from a kinetic equation for 
the quasiparticle distribution function Sv(r,k,t). 

The collisionless spin dynamics of a normal Fermi liquid 
reduces in a remarkable manner to equations for the spin and 
current representing the zeroth and first harmonics of the 
function Sv with respect to k. The remaining harmonics are 
small if the characteristic scale X of the spatial inhomogene- 
ity of the function Sv is large compared with uF/om,  where 
om = yHm - oL is the characteristic frequency corresponding 
to the molecular field H, in the Fermi liquid. 

The solution of Eq. (2) shows that in the collisionless 
region or>1 there is a dissipationless diffusion current due 
to the Fermi-liquid interaction, 

and this gives rise to a coherently precessing two-component 
structure. In contrast to superfluid 3 ~ e - ~ ,  in the normal liq- 
uid a domain with equilibrium orientation of the magnetiza- 
tion is situated in a region of lower fields-the dissipation- 
less diffusion spin current in an inhomogeneous magnetic 
field flows in the direction opposite to the superfluid spin 
current. 

When the temperature is lowered below T,, the long- 
lived induction signal from the precessing spin structure per- 
sists in a certain interval of temperatures near T ,  and in the B 
phase of superfluid 3 ~ e .  Although both the magnitude of the 
signal and the nature of the relaxation processes are changed, 
since near T, the superfluid spin current is small compared 
with the dissipationless diffusion current, it is to be expected 
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that in this temperature range we shall be dealing with a 
coherently precessing two-domain structure similar to the 
one observed in the normal liquid. 

The coherently precessing two-domain structures that 
exist in 3 ~ e - ~  at T<0.8TC have been studied theoretically in 
the hydrodynamic region w K l .  To describe the structures 
that arise by virtue of the dissipationless diffusion spin cur- 
rents, we need equations for the spin dynamics of a super- 
fluid Fermi liquid in the collisionless regime. The corre- 
sponding system of equations consists of evolution equations 
for the total spin, equations of motion of the order parameter, 
and a kinetic equation for the distribution function of the 
excitations. As in a normal Fermi liquid, in the B phase of 
3 ~ e  in the hydrodynamic limit there can be a transition from 
the kinetic equation to equations for the macroscopic vari- 
ables S, (the spin density) and J, (the current of the excita- 
tions). As a result of this transition, which is made in the 
present paper, one obtains a system of equations of two-fluid 
spin hydrodynamics that generalize the well-known system 
of Leggett and ~ a k a ~ i ~  to the spatially inhomogeneous case. 

In the collisionless regime, it is no longer possible to 
replace the kinetic equation by equations for the first two 
harmonics (S, ,J,) of the distribution function Sv with re- 
spect to k. However, near T ,  one can derive approximate 
equations that describe the dissipationless collisionless spin 
dynamics. 

In this paper, we derive the equations of the two-fluid 
spin hydrodynamics (Sec. 3) and also, near the critical tem- 
perature, approximate equations of the collisionless spin dy- 
namics of 3 ~ e - ~  (Sec. 4). We find a solution of these equa- 
tions that describes a two-component coherently precessing 
structure (Sec. 5). We show that, unlike normal 3 ~ e  and like 
3 ~ e - ~  in the hydrodynamic regime? a domain wall in 3 ~ e - ~  
exists near T ,  in both a weakly inhomogeneous and in a 
homogeneous external field. 

In Sec. 6, we investigate the stability of the precessing 
structure. Section 7 is devoted to a study of the relaxation of 
this structure. 

Structure resulting from the dissipationless diffusion 
spin current can form only near the critical temperature, 
where it predominates over the superfluid spin current. The 
strengths of these currents are compared in Sec. 8. 

2. DERIVATION OF THE BASIC EQUATIONS 

Leggett's system of equations of the spin dynamics of 
superfluid 3 ~ e  in local equilibrium consists of the evolution 
equation for the total spin S and the equation of motion of 
the order parameter: 

The order parameter-the expectation value of the operator 
for annihilation of a Cooper pair--can be found in terms of 
the vector d(k) (triplet pairing): 

Here G =  ( G ,  ,&,, ,G,) is the vector whose components are 
the Pauli matrices. For the B phase, the vector d(k) has the 
form 

where RUi(n,6) is a matrix of three-dimensional rotations, n 
is the direction of the rotation axis, 0 is the rotation angle, 
and ei4 is the complex phase factor that is responsible for the 
ordinary (bulk) superfluidity, in which we are not interested 
in this paper, so that we shall ignore it in all the expressions 
given below. In Eqs. (4) and ( 9 ,  V is the angular velocity of 
rotation of the order parameter (see below), Ji is the spin 
current, which in local equilibrium is determined by the gra- 
dient of the order parameter (see below), 

is the moment of the dipole forces, and 

is the dipole energy. We shall consider motions with frequen- 
cies that are low compared with the value of the order pa- 
rameter, oeA, and with characteristic spatial scale of varia- 
tion of the quantities that is large compared with the 
coherence length. Under such restrictions, the order param- 
eter merely rotates in spin space in accordance with Eq. (5) 
but is not distorted, remaining the order parameter of the B 
phase. 

To study the dissipative spin hydrodynamics, and also in 
the nonhydrodynamic (collisionless) case, it is necessary to 
add to the system (4)-(5) the kinetic equation for the spin 
part 8vk(r,t) of the quasiparticle distribution function 
Svk(r,t): 

It is convenient to study the quasiparticle kinetics in a 
coordinate system attached to the order parameter, i.e., ro- 
tated relative to the original one by means of the matrix 
Rai(r,t) at each point (r,t). The obvious advantage of such a 
device, which is analogous to the Galileo transformation9 
usually employed for the variables associated with superfluid 
mass transport, is that in the derivation of the equations in 
the rotated coordinate system it is not necessary to differen- 
tiate the vector d(k). The kinetic equation (in the frame of 
reference determined by the order parameter) has the form" 

Here I(&) is the collision integral, and SE is the change (of 
the spin part) of the local energy of the quasiparticles due to 
the external and molecular magnetic fields and the motion of 
the condensate: 

where 5 s v , ( k -  k ,) ,  E= is the energy of the 
Bogolyubov excitations, 
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and xrlo is the magnetic susceptibility of the normal liquid 
without the Fermi-liquid corrections. As in Ref. 10, we shall 
take into account only the zeroth harmonic of the function of 
the Fermi-liquid interaction of the quasiparticles. The vectors 
V and Ai are the angular velocity of the rotation of the order 
parameter and the spin superfluid velocity, respectively. In 
the laboratory coordinate system, they have the form 

and are related by the "Josephson equation" 

where the last term appears because the rotation group is 
non- Abelian. 

It is readily seen that Eq. ( 5 )  is simply a different way of 
writing the definition (14). Our expression acquires the 
meaning of an equation if V in it is expressed in accordance 
with the relation (13), 

6p=  6v- cp' 6 E (17) 

is the deviation of the quasiparticle distribution function 
from the local-equilibrium value, cp(E) = -(1/2) tanh(E/2T), 
cp' =dcpldE. 

Preparing to go over from the microscopic description of 
the spin dynamics of the excitations by means of the kinetic 
equation to a description in terms of the macroscopic vari- 
ables of the spin and the current of the excitations, we intro- 
duce the spin density and spin current in the above coordi- 
nate system determined by the instantaneous value of the 
order parameter: 

where So= hn/2  is the maximum spin density, and n is the 
density of the liquid. The first terms on the right-hand sides 
of these expressions contain the contribution to the spin den- 
sity and the spin current from the change in the number of 
the Bogolyubov quasiparticles, while the second terms con- 
tain the contribution from the change in the states of the 
Cooper pairs. Accordingly, we define the quasiparticle spin 
S%s the first term in (18): 

and the condensate spin S1' as the second term (cf. Refs. 7, 
10): 

In local equilibrium (6p=0), 

where the susceptibilities of the quasiparticles, the conden- 
sate, and the liquid as a whole, without allowance for the 
Fermi-liquid corrections, are 

The ordinary Yosida function Yo and the modified function 
Y2 are given by 

Both these functions are equal t o  1 in the normal phase and 
vary from 1 to 0 as the temperature is decreased from T, to 
zero. 

With regard to the expression for the spin current, it is 
convenient to identify in it the term that represents the cur- 
rent in local equilibrium, 

and the term that corresponds to the deviation of the current 
from the equilibrium value: 

Thus, 

j;=~fpr+ 8 ~ ~ .  (29) 

The expression for the superfluid spin density: 

is obtained after the substitution of Sv=$'GE in (19) and 
calculation of the sums over the momenta. In the normal 
phase, p,LiSpj vanishes, and therefore in the limit TAT'. the 
current SJi goes over into the total spin current of the normal 
liquid. We have introduced the notation 
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Differentiating S%nd SJi with respect to the time in 
accordance with the kinetic equation (11) and separating in 
the derivative the terms corresponding to the same quantities, 
we obtain two equations of the spin dynamics. The transition 
to the laboratory coordinate system in the final equations 
reduces to replacement of the time and spatial derivatives in 
accordance with the rule 

where W is the vector in the spin space, and on the right- 
hand side we have its components already in the laboratory 
system. If a derivative acts on a matrix with spin indices, it is 
necessary to add the contraction corresponding to the vector 
product with respect to each index: 

As a result, we obtain the following equations (see Ap- 
pendices A and B): 

y2 1 yo- y2 
-Sq=SqX mL--FgS -viSJi+---Vi~fPC+x 
at Y Xno 1 - Y o  

For convenience, some of the terms in Eqs. (36) and (37) 
have been written in vector form and some component by 
component. It is assumed that it is necessary to take the a 
component of the vectors in spin space. We have introduced 
the following notation for the quantities that are expressed in 
terms of the quasiparticle distribution function: 

h 
Dbs=? F VFi( l  - $1 ( i x  sV),- a,, 

The final term in Eq. (36) reflects the Leggett-Takagi 
relaxation of the spin density of the normal and superfluid 
components to mutual equilibrium.7 The density of the spin 
current relaxes to the equilibrium value given by the instan- 
taneous value of Ai [the final term in (37)l. This form of the 
relaxation terms is discussed in Appendix B. 

To facilitate the comparison of our equations with Leg- 
gett's equations for the normal liquid6 and the Leggett- 
Takagi equations for superfluids? we go over from the equa- 
tions of motion for Sq and 6Ji to the equations for the total 
spin current Ji and 

which characterizes the departure from mutual equilibrium 
between the condensate spin and the excitation spin. Here, 
the parameter 

introduced by Leggett and Takagi is the fraction of the total 
spin corresponding to the superfluid component in equilib- 
rium. The equation for 17 is obtained by combining Eqs. (4) 
and (36). To derive an equation for the total current, it is also 
necessary to calculate the derivative of the equilibrium cur- 
rent J $  = p:i,pjAfi, differentiating Ai by means of (16) and 
then going over to the laboratory system: 

As a result of the calculations, we obtain the equations 
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in which, as in the equations (4) and (5), Aai is given by the 
relation (15), and V  and X by the relations 

y2 y2 
v = - m , + - S + -  r), 

X x/>o 
(46) 

which are obtained by means of (13), (22), and (41). Here 

and x is the susceptibility of the B phase of ' ~ e .  
The system (4), (5), (44, and (45) is not closed, since it 

contains B, DLp,  and Ti ,  which, generally speaking, require 
their own evolution equations; however, these equations con- 
tain new quantities that can be expressed in terms of the 
distribution function of the Bogolyubov quasiparticles. It is 
necessary to add new equations of motion for new quantities, 
etc. As a result, an infinite system of equations is obtained. 

This difficulty can be overcome in the hydrodynamic 
limit and also in the collisionless regime near the critical 
temperature. 

3. EQUATIONS OF THE SPlN HYDRODYNAMICS 

In the hydrodynamic limit w7-31, uFr /Xe1 (A is the 
characteristic spatial scale) local equilibrium is established 
over times on the order of the time of collisions between 
quasiparticles in the gas of the excitations: 

where X V s  such that the quasiparticle spin calculated in 
accordance with the expression (20) is 

In local equilibrium, the second term in the collision integral 
(BI) vanishes in the gas of the excitations (49). In the limit 
of con~plete local equilibrium in the liquid, Sv=hV16E, the 
first term is (B I) vanishes. 

In accordance with the Leggett-Takagi hypothesis: the 
relaxation to the local-equilibrium distribution of the spin in 
the gas of the excitations takes place over shorter times than 
the spin relaxation between the excitations and the conden- 
sate (this is definitely true only near T,, see Appendix B). 

Equation (49), which is the generalization of the corre- 
sponding equation of Leggett and ~ a k a g i ~  to the inhomoge- 
neous case, means that during the same (short) times the 
value of the spin current relaxes to its equilibrium value 

.A . .  
al,Pl PI 

Substitution of (49) in the expressions for B, DLp, and 
gives 

Thus, the system of equations (4), ( 9 ,  (44), and (45) is 
closed in the hydrodynamic regime. 

In fact, the resulting system is more complicated than it 
need be. Use of the conditions ~ 7 - 3  1 and U ~ T I A ~  1 enables 
us to conclude by means of Eqs. (37) and (44) that 

Therefore, in the hydrodynamic limit we can replace Eqs. 
(37) and (44) by their solutions 

The final system of hydrodynamic equations has the 
form 

Here Ji and r)  are determined by the expressions (56) and 
(57), J;: by the expression (27), S9 by the expression (41), V 
by the expression (46), X by (47), and B, D i p ,  and ri by 
(51), (52), and (53). The system (58)-(59) generalizes the 
well-known Leggett-Takagi equations7 to the spatially inho- 
mogeneous case. 

4. COLLISIONLESS SPlN DYNAMICS NEAR T, 

In the collisionless regime w ~ > 1  in the general case, the 
transition from the microscopic description of the spin dy- 
namics by means of a kinetic equation to a macroscopic de- 
scription is impossible. We note however [see (5 I), (52), and 
(53)] that as T+T, the factor (I - (@E)~)  makes B and DLB 
vanish, while I i  (see Appendix C )  tends to 
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From the equation for 1'; when T>T, holds (Ref. 6), we 
obtain 

Here will= F$wl, is the frequency of the molecular field, and 
A is the characteristic spatial scale. Thus, in the normal liquid 
when ur/Aw,,,41 holds it is possible to ignore the second 
harmonic of Sv with respect to k (the quantity 1';) compared 
with the first (the current Ji). The same is also true for all the 
higher harmonics of r'iv. The system of equations for S and 
J i ,  (4) and (45), is transformed into the closed system (I)- 
(2). 

In the liquid superfluid the terms containing the higher 
harmonics of the distribution function in Eqs. (44) and (45) 
will be small either in proportion to (I -TIT,.) or, as in the 
normal liquid, in proportion to the parameter uF/Aw,, . The 
characteristic inhomogeneity scale is determined by the 
smaller of these two lengths (see the following section): the 
inhomogeneity scale in the normal phase (Ref. 4), 
A,,= Y 2 ) ~ 2 / 3 ~ ~ ~ w L ) 1 / 3 ,  and the length 
A D = ( 5 / 1 6 ~ ) 1 ~ 2 ~ / ~ B  determined by the dipole interaction. 
Here we have set w2=v;.(I + F t ) ,  K=-F;I(I + F t ) ,  and 
cR, is the frequency of longitudinal resonance in the B phase; 
near T,, we have 0, = l R i J m ,  where 0;-2.rr.2. lo5 
s-I. With increasing distance from the transition tempera- 
ture, A, decreases and becomes less than A, for 

The estimate was made for magnetic field H=413  Oe and 
gradient VH=0.19 Oelcm, corresponding to the conditions 
of one of the experiments of Ref. 5. At zero pressure, 
Fi=-0.695. Recalling also that the nuclear gyromagnetic 
ratio for helium is y=2.04X lo4 (oe.s)-l and w,,-FtwL, 
we obtain the ratio 

The asymptotic behaviors of the Yosida functions near 
T, are such that (cf. Ref. I I) 

7T A 
1 - y2- - - 

2 T,.' 

For an estimate, we can set V - X - ( ~ ~ I ~ ) S - ~ ,  , 
A -  II(Xnz"), and estimate B, D, I' using the expressions 
(5 1)-(53). Then the contribution of (60) from the higher har- 
monics of Sv that do not vanish as TAT,. will be small of 
order the parameter (63). 

In Eq. ( 4 9 ,  all the terms except the first three and the 
last are less than the term containing the gradient of the spin 
density in order of magnitude by a factor d m ,  like the 

term p"A in the relaxation term. Ignoring these terms in Eq. 
(45), we obtain an equation for the current that is identical to 
Eq. (2) in the normal phase: 

To this equation, it is necessary to append Eq. (4) for the 
spin: 

Despite the smallness of RD-( l -TIT,), in this equation it 
is necessary to retain the dipole moment. In contrast to the 
terms omitted in Eq. (66) that are small compared with the 
gradient of the current, the moment has, generally speaking, 
the same order of magnitude as VJi ,  and it is what deter- 
mines the characteristic scale and structure of the domain 
wall in the superfluid B phase in the case of weak inhomo- 
geneity of the external field (A,,>AD). 

Equation (5) for the order parameter 

contains the variable 17. To derive an equation for this vari- 
able, we note that in Eq. (44) the terms that contain gradients 
and Ai can be omitted, since they are small compared with 
the dipole moment at temperatures not too close to the tran- 
sition temperature, i.e., for 

A problem arises when one considers the term BXX. An 
estimate shows (see below) that this term is of the same 
order as the term 7 X S  contained in Eq. (44). Therefore, in 
contrast to Eq. (45), in which all the terms proportional to B 
and D can be omitted, here, strictly speaking, it is necessary 
to derive an equation for B that contains new unknown vari- 
ables, i.e., the system of equations remains unclosed. The 
proposed method for estimating the term BXX in the equa- 
tion for v makes it possible to demonstrate that the retention 
of ?j7 in the equations of the collisionless spin dynamics near 
T, would be an unnecessary refinement. To estimate the term 
BXX, we use the expression (51) for B: 

and the relation 

Finally, we obtain 
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We emphasize once more that writing of the term in the 
brackets as 1/2+F; can be regarded as a pure estimate-we 
know it only in order of magnitude. The solution of this 
equation, precessing with frequency w,, , is 

where f i = w L - o , - ( 1 / 2 + ~ ~ ) ( y 2 ~ ~ n o ) ~ .  In the case in 
which we are interested, (ii.RD)=O as wr-+W (see the fol- 
lowing section) and for finite wr we have 161-O(l1wr). For 
17 this gives an estimate in the collisionless regime: 

Using (74), we compare the last two terms in Eq. (68): 

and this makes it possible to omit in this equation. Reten- 
tion of the term with 7, which is small in accordance with 
(75), would be excessive precision, especially since in the 
derivation of Eq. (66) we have omitted several terms that are 
small only as d m .  Note, incidentally, that retention of 
T,I is necessary in the study of dissipation in the homogeneous 
case, i.e., Leggett-Takagi dissipation. Because of the term 
BXX in Eq. (44), the Leggett-Takagi dissipation in the col- 
lisionless regime can be taken into account only qualitatively 
even near T ,  . 

Thus, the approximate equations of the collisionless spin 
dynamics of the B phase near T ,  have the form 

5. TWO-DOMAIN STRUCTURE NEAR THE TRANSITION 

We shall seek solutions of the equations of the spin dy- 
namics near the transition temperature that correspond to 
precession of the spin and the spin current with a frequency 
wp constant throughout the volume of the liquid, i.e., such 
that at each point we have d Slat =S X w, , dJildt = Ji X up. 
In connection with the experiment, we shall be interested in 
a situation in which the magnetic field and its (constant) 
gradient are directed along the 2 axis, and we shall assume 
that all quantities depend only on the one coordinate z. We 
assume that the precession frequency wp is also directed 
along the 2 axis and is close to the Larmor frequency (which 
we assume is slowly varying within the container). 

Then the spatial dependence of the spin and spin current 
is determined by the system of equations 

where RD is the dipole moment, and J= Js is the component 
of the spin current along the 2 axis. In this and the following 
sections, we shall use a system of units in which x=?. 

As in the spatially homogeneous case (see Ref. 12), to 
investigate periodic solutions of Eqs. (76)-(78) it is conve- 
nient to parametrize the matrix R of the order parameter by 
Euler angles: 

We define unit vectors l = R 2  and p= (2X l ) l l i ~  lI, which 
rotate together with the order parameter d(k), and introdu_ce 
notation_ for the projections of the spin density: Sp= (S .P), 
Sg=(S.j), and P =  S, - Sg . The matrix of the order parameter 
can also be specified by the direction of the rotation axis n 
and the rotation angle 6. Then 

cos p+cos Q,+cos p cos Q,- 1 
cos 6= 

2 (83) 

@ = a +  y, and the dipole energy is given by 

where OB is the frequency of longitudinal resonance in the B 
phase. It attains the minimum value at 6= ~ ~ = c o s - ' ( -  114). 

In these variables the equations for the spin (76) and 
ordsr parameter (78) (without dissipative terms) have the 
form (cf. Ref. 12) 

d sin /3 
- S  - 
dt P-( l+cos/?)2 

d 1 
- a= - wL+ - (P cos P + S,( 1 - cos P)), (87) dt sin2 p 

a 1 
- Q,= -wL+ (2Sz- P).  
dt 1 +cos p 

The search for solutions corresponding to precession of S 
and n with a frequency wp constant in the complete volume 
and 6=const means fulfillment of the conditions 
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In the homogeneous case, such solutions were investigated in 
Ref. 12. 

Using (88), (89), (87), and (90), we can readily find that 

s,=w, cos p+(w,-wp)(1-cos p) ,  (91) 

The vanishing of Sp means that the vector S lies in the 
plane of the vectors z" and l. Below, using the equations that 
describe the precessing structure and the boundary condition 
of absence of a spin current at the boundary of the container 
(for a container bounded on at least one side), we shall show 
that the position of this plane does not depend on z, while the 
current vector is directed perpendicular to this plane. 

Indeed, the conditions b= 6 = 0 and Eq. (83) have the 
consequence that 6=0, and, since 8=n.(s-wL) (see Ref. 
13), and the dipole moment (8), which is equal to 

is proportional to the vector n, it follows from Eq. (79) that 
VJl(S- w,). 

On the other hand, the condition P = O  entails 
V J l (2-  l ) .  These two conditions of orthogonality for VJ 
mean that either VJ is perpendicular to the plane (z":l) or 
S = U , ~  and VJ lie in the plane perpendicular to ( i -  5). 

If s=w,~ ,  then it follows from (91) and (92) that either 
the spin vector is directed along the magnetic field (P=O, 
l= 2) or the Larmor frequency of the external field is homo- 
geneous and equal to the precession frequen?~. We are not 
interested in either of these cases. Thus, VJIIP. 

In particular, this means that VJ,=O, i.e., by virtue of the 
boundary conditions 

With regard to Eq. (80) for the current, the final term in 
it leads to energy dissipation (see also Sec. 8). Therefore, a 
precessing solution with nonvanishing spin current can exist 
only in the collisionless limit T,--+W. For finite TI, the solu- 
tion can be assumed to be a rapidly precessing solution with 
a frequency that changes slowly because of the dissipation. 

Thus, to determine the distribution of the magnetization 
in the precessing structure, we shall use Eq. (95) in the form 

where u=u, -u~+KS.  
From this equation and Eq. (79), it is readily found that 

V(J. (S-o,))=O, and, hence, J l (S-  a,). Recalling e a t  
J, =0, we conclude that J is perpendicular to the plane (2, 5). 
Therefore, VS lies in this plane [see (95)], and, hence, the 
plane itself (like the plane containing w, and S) does not 
rotate in the motion in space along th? z" axis. 

The vector u lies in the plane (?,5), and therefore J l u .  
Hence and from (95) we immediately obtain an expression 
for the spin current: 

Since we are interested in solutions with precession fre- 
quency close to the Larmor value (I w, - wpl -4 wL ; hitherto 
we have not used this), we can assume U-KS. In addition, in 
the region in which gradients of the spin density are impor- 
tant they greatly exceed the gradient of the Larmor frequency 
(this will be seen from what follows; cf. also the solution for 
the normal liquid4). Therefore, for the current we obtain the 
approximate expression 

w 
J -- v p .  

'-3K 

Note that in general the angle p is not equal to the angle 
between S and the magnetic field. However, it follows from 
(91) and (92) that in the limit loL- wpl-=SwP these angles 
are equal. 

From (84) and (86), using (91), (92), (94), and (97), we 
obtain two equations for determining the spatial dependence 
of p and a: 

Since 

dUD 8 
-=-- ( :) 
d@ 15 

cos O+ - sin @(1 +cos P) ,  

the condition (98) is satisfied in the following cases:'' 

The solution corresponding to case 4) is of no interest to us. 
The solutions 2) for /3<6JL and 3) are unstable in the homo- 
geneous case,'* and we shall not consider them. 

In case I), 

cos p+cos a + c o s  p cos @= f. (101) 

This means cos P>- 114, i.e., p<OL. In this case, the dipole 
energy is stationary with respect to /3 as well, i.e., 
dUDldp=O. 

In case 2), p= 6 and 

Thus, to determine the spatial dependence of P we obtain the 
equation 

w 16 
- P 1 f = - ~ P ( ~ L - w p ) s i n  /3+- 0; sin 
3K 15 
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FIG. I. Dependence of the angle of inclination of the magnetization on the 
coordinate for the two-domain structure in the normal (right-hand curve) 
and superfluid (leli-hand curve, plotted for A,,-0.1 LA) liquid. The dornain 
wall in the superfluid liquid is narrower and displaced relative to the wall in 
the normal state. The hcavy curve is the set of points of inflection (see the 
text). 

where the step function 0 is nonvanishing (and equal to 
unity) only for positive values of its argument. If we use the 
characteristic thickness of the domain wall in the normal 
liquid 

and the dipole length 

then this equation takes the form 

z-zo p"= - - 
x;l 

where w,= mi,+ V w,.(z-zo), i.e., zo is the point where the 
local Larmor frequency of the external field is equal to pre- 
cession frequency. 

We are interested in a solution of Eq. (105) with bound- 
ary condition pl=O, indicating the absence of a current. For 
A , , < X D ,  this solution is practically indistinguishable from 
the solution for the normal liquid4 and is a two-domain s t~uc-  
ture with domain wall thickness of order A,, (Fig. 1). 

In the opposite limiting case X,+AD , the solution is 
modified (see Fig. 1). As before, this solution describes a 
two-domain structure. In one of the domains (situated in the 
region of weak fields) the spin has the equilibrium value, 
while in the other it differs in sign from the equilibrium 
value. The thickness of the domain wall in order of magni- 
tude is A,, and the wall itself is displaced from the point zo 
into the region of weak fields (i.e., by virtue of the decrease 
in the size of the equilibrium domain). Besides this solution, 
which describes rotation of the magnetization through the 
angle 7r, there also exist other solutions, which describe ro- 
tation through 37r, 57r, etc., and also solutions that are not 
stable (see the following section). 

The solution P(z) in Fig. 1 has one point of inflection. 
Indeed, it can be seen from Eq. (105) that f l = 0  either at the 
point z = z o  [if P ( z o ) ~ H L ]  or at a point z where 
z- zo= (Af , /h~)(cos  P+ 1/4)<0. This means that the point ot 

infection is the point of intersection of our solution with the 
heavy curve in Fig. 1 .  It is readily seen that the solution has 
precisely one point of inflection. 

To calculate the position of the domain wall itself rela- 
tive to the point zo, where the local Larmor frequency of the 
external field is equal to o,, , we note that Eq. (105) is the 
equation of motion of a particle of unit mass in the potential 

Here, the role of the time is played by z, and the potential 
itself depends on the time. The solution in which we are 
interested corresponds to a situation in which at large nega- 
tive z the particle is for a certain time at the maximum of the 
potential at P=O and then hops to the point P=T. If 
hl,%AD, then in the region of the "hop" the potential de- 
pends weakly on the time, and therefore we can use the 
energy conservation law U(O)=U(rr), from which it fol- 
lows that the wall is situated at the point 

This corresponds to displacement of the frequency to the 
point of the wall 

The thickness of the wall can be estimated as the hopping 
time. 

The thickness AD of the domain wall remains finite in the 
limit of a homogeneous field: Vw,-.O. This means that a 
two-domain structure can arise even in a homogeneous ex- 
ternal field. 

A two-domain structure can be observed in experiments 
using continuous and pulsed NMR. In the case of continuous 
NMR, the precession frequency w, is equal to the frequency 
of the rf transverse field, and the (absolute) position of the 
domain wall can be readily found from (107). 

In pulsed NMR experiments, the pulse of the transverse 
field deflects the magnetization in the complete container 
through a certain angle from the direction of the magnetic 
field (the z" axis), and after the transverse field has been 
switched off a two-domain structure is formed as a result of 
the flowing of the spin currents. The position (absolute, not 
relative to zo as above) of the domain wall in the two-domain 
structures in a normal Fermi liquid4 and in ' ~ e - B  in the 
hydrodynamic region2 can be uniquely determined from the 
initial data by means of the conservation law for the longi- 
tudinal component of the magnetization in the normal liquid 
or the integral of P over the volume of the sample in ' ~ e - B .  
In the case in which we are interested, neither of these quan- 
tities is conserved, and the determination of the position of 
the wall requires additional calculations. 

Uniformly precessing domain in the hydrodynanlic re- 
gime. We note that an equation analogous to (105) arises in 
the investigation of the structure of a uniformly precessing 
domain (HPD) in the region of angles 02%. In this region 
cul=~I,=O (Ref. 2), and the solution can be found from the 
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FIG. 2. Dependence of the angle of inclination of the magnetization on the 
coordinate for a uniformly homogeneously precessing donlain in the region 
of angles P * O , .  For O,,<P<m, this curve almost exactly coincides with the 
heavy line-the set of points of inflection. 

condition of minimization of the free energy, which is the 
sum of the gradient energy, the spectroscopic energy in the 
inhomogeneous external field, and the dipole energy: 

where ell is a parameter that characterizes the spin-wave 
spectrum (see Ref. 2). The corresponding Euler-Lagrange 
equation has the form 

2-20 1 
p"= X3 sin P- 7 sin picos P+ f), (109) 

AD 

where ~ = ( c ~ / o ~ ~ o , ) " ~ ,  and A D  = ( m 4 ) ( C l l / f i B ) .  This 
equation differs from (105) in having the opposite sign of j3". 
It corresponds to motion in the potential 

2-20 
U P )  = x' cos p--T ( cos p+- :I2 e (p -OL) .  

~ X D  

If it is assumed that this equation describes a homogeneously 
precessing domain for angles P<OL as well, then we can 
obtain the solution1) shown in Fig. 2, which differs qualita- 
tively from the solution shown in Fig. 1. This solution has 
three points of inflection, which can be found as in the pre- 
vious case and which correspond to intersection of the solu- 
tion with the heavy line in Fig. 2, and it also has a broad 
plateau. The behavior of this solution can be understood as 
follows: At large positive z, the particle is at the maximum of 
the potential at P=O. At z-zo, the values of the potential at 
the points p=O and p=OL are comparable2) [while U(T) re- 
mains much smaller], and the particle hops to the position 
/3=O12. After this, with decreasing z ,  the position of the 
maximum of the potential, and with it the particle as well, is 
gradually shifted toward P=n. Thus, the particle moves al- 
most along the heavy line. In the region, the spatial variation 
of the Larmor frequency is balanced by the moment of the 
dipole forces (cf. Ref. 2). Finally, for 

[i.e., for w , =  wp-(4/5)i2glwf,] the particle reaches the 
point .rr and after this remains at it. This solution reflects in a 
qualitatively correct manner the structure of the uniformly 
precessing domain for P 2  O1,. The solution has the form of a 
three-domain structure: In the region of strong fields, there is 
an equilibrium domain, adjoining which there is a domain of 
thickness 3h3/4k;, in which the angle between the magneti- 
zation and the field varies slowly from 01~=1040 to 180°, 
while in the region of the weakest fields there is a domain in 
which the magnetization has the direction opposite to the 
equilibrium direction. 

It was shown in Refs. 14 and 15 that in reality the thick- 
ness of the intermediate domain is somewhat less [and equal 
to (3-,/6)h3/4h;], since at angles P close to T there may be 
a rearrangement of the solution into an energetically more 
advantageous configuration that is not exactly precessing. 

6. STABILITY OF TWO-DOMAIN PRECESSING STRUCTURE 

In the preceding section, we derived an equation that 
determines the spatial dependence of the magnetization in a 
two-domain structure. This equation has various solutions. 
Of course, in a real liquid only solutions that are stable with 
respect to small perturbations can be realized. In this section, 
we shall show that the two-domain structure in a normal 
liquid4 is stable (see also Ref. 16), and we shall then give 
qualitative arguments supporting the stability of the structure 
in 3 ~ e - ~ .  

For the following arguments, we shall find it convenient 
to use an expression for the diffusion spin current. To derive 
it, we make the assumption that the characteristic frequencies 
6w of the motions in the frame of reference rotating with the 
precession frequency are small compared with the reciprocal 
time l / r l  between collisions of the quasiparticles: 

In the normal liquid, the role of Sw is played by hVwL, the 
change of the Larmor frequency of the external field over the 
characteristic length. In superfluid 3 ~ e - ~ ,  as we have seen in 
the previous section, there is one further characteristic fre- 
quency: Ck;/wL. 

Using (1 1 I), we can cancel ji and JiX wL in (77). Solv- 
ing the obtained equation for Ji ,  we obtain for the spin cur- 
rent the expression 

The conditions w L r 1 9  l and hVw,r,+ 1 enable us to 
simplify this expression. First, the characteristic scale of 
variation of the Larmor frequency is large compared with the 
scale over which the magnetization changes: 
IViSI -q /~9  1/(rlh)@ViWL. Thus, V(S-wL) can be re- 
placed by VS. Further, each subsequent term in the brackets 
in (1 12) is, generally speaking, greater than the preceding 
term by a factor K W L r l .  Therefore, we omit the first term and 
keep the second one, since in the case in which we are inter- 
ested the absolute magnitude of the magnetization is almost 
constant in space, corresponding to the fact that S and VS are 
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almost orthogonal, i.e., the third term is anomalously small. 
A direct estimate shows that retention of the second term in 
(1 12) given the fact that we have omitted the term propor- 
tional to VwL in the third is not excessive precision: The 
omitted term is small compared with the second term in ac- 
cordance with the parameter XVwLr1. Thus, as a result of the 
simplification we obtain for the current the expression 

Stability in the normal liquid. We show that the final 
term in (1 13) is not important for our study. It leads to rapid 
diffusion equalization of the absolute magnitude of the mag- 
netization in space, and in the absence of gradients of s=ISI 
vanishes. Indeed, it follows from the evolution equation for 
the spin in the normal liquid and the expression (113) for the 
current that 

It can be seen from this equation that the characteristic time 
for smoothing variations in the distribution of s2 is 

In the collisionless regime in the normal liquid, this time is 
small compared with the reciprocal characteristic frequency 
(AV~,)- ' ,  and in superfluid 3 ~ e - ~  (for XD4A,) it is small 
compared with the reciprocal characteristic frequency 
 in;. 

Thus, considering small oscillations near the two- 
domain solution, we can assume that s2=const and that the 
spin current is given by 

The spin evolution equation takes the form 

This equation has the energy integral 

Equation (117) is the Landau-Lifshitz equation for an iso- 
tropic magnet in a magnetic field but with negative (!) (for 
K>O) coefficient of the gradient term. This is a Hamiltonian 
equation with the energy (1 18) as Hamiltonian and the usual 
commutation relation for the spin: [S,(x),Sp(y)] 
= ieqpySy(x) G(x- y) (see, for example, Ref. 17). Quasip- 
eriodic solutions of Eq. (117) for the spin dynamics were 
investigated in Ref. 18. 

The absolute magnitude of the magnetization is an inte- 
gral of Eq. (117). The total longitudinal magnetization SdzS, 
is also an integral of Eq. (1 17). For given magnitude of the 
spin and total longitudinal magnetization, the energy is, to 
within constant terms, 

where to the energy we have added the longitudinal magne- 
tization with coefficient wp , corresponding to the transition 
to a frame of reference rotating with this frequency. The 
expression for the energy can be rewritten in terms of the 
spherical coordinates a and P of the vector S: 

The extrema of the energy (120) give stationary (in the 
frame of reference rotating with frequency w,) solutions of 
Eq. (117). The solution proposed in Ref. 4 realizes a local 
maximum of the energy (1 19). It can be seen from (120) that 
the maximum is attained when Va=O. The distribution of the 
angle /?  is given by the equation obtained by varying the 
energy with respect to P: 

w L  
(w,- wp)S sin P+ - P"=O. 

3K 

The second variation of the energy is 

For K>O, a domain with p=O is situated in the region of 
weaker fields (wL< w,), i.e., (wL- w,)cos P<O, and the ex- 
pression (122) is nonpositive for all deviations from the two- 
domain solution. At the same time, the only perturbation that 
does not change the energy is a uniform rotation around the 
2 axis, under which a changes but Va and /3 do not. 

In view of the conservation of energy, the fact that the 
solution in Ref. 4 realizes a local maximum of (120) ensures 
its stability. 

Thus, the solution that realizes the local maximum is 
stable. Walls with rotation of the magnetization through 3n-, 
5n-, etc.,16 also correspond to local maxima of (120). 

In a liquid with negative K, the coefficient of the gradient 
term in (119) is positive, and a solution corresponding to a 
local minimum of the sum of the spectroscopic and gradient 
energy is realized. 

The eigenfrequencies of small oscillations superposed on 
the two-domain structure in a normal liquid were calculated 
by ~ 0 m i n . I ~  

Stability in the superjuid B phase. In superfluid 3 ~ e - ~  
near T , ,  the energy of the dipole-dipole interaction is also 
added to the energy. The investigation of the stability of the 
two-domain structure is a complicated problem. However, 
qualitative arguments offer hope that this structure is stable. 

We note, first, that if we freeze the degrees of freedom 
associated with the change in the absolute magnitude of the 
spin and @ [i.e., we assume that Q, is a quantity that is 
completely determined by the angle /3 in accordance with the 
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rules (100) and (101) of the previous section], then the prob- 
lem takes the same form as in the normal liquid except that it 
is necessary to add the dipole term to the energy. As before, 
the solution realizes a local maximum of this energy and is 
stable. 

On the other hand, in the homogeneous case the solu- 
tions 1) and 2) of the previous section are stable with respect 
to homogeneous perturbations of all the variables, including 
S and @.I2 

In principle, oscillations near the solution in the homo- 
geneous case are not independent even for frozen S and @, 
and a careful investigation of the stability problem is needed. 
However, the arguments given above offer hope that the re- 
sult will be positive. 

7. RELAXATION OF THE TWO-DOMAIN STRUCTURE 

To study the relaxation, it is necessary to take into ac- 
count the dissipative terms in the equations. The energy of 
the liquid is (near the transition temperature, we ignore the 
gradient energy associated with the spatial variation of the 
order parameter) 

Here the firsf two terms correspond to the energy of a Fermi 
liquid with nonequilibrium values of the spin density and 
spin current (cf. Ref. 4), and the third term is the dipole 
energy. The avemging in this term is over the directions of 
the unit vector k. Calculating the time derivatives of the 
energy by means of the equations of motion (76), (77), and 
(68), we obtain for the dissipation 

The first term here corresponds to the dissipation in the nor- 
mal liquid, while the second is associated with the Leggett- 
Takagi rnechani~m.~ To estimate 7, it is necessary to use the 
equation of motion (72). 

For the structure in which we are interested, the second 
term in (124) is small compared with the first, and we shall 
not take it into account. The main relaxation mechanism is 
associated with the flowing of the diffusion spin currents. 

In the case A,.>XD, the calculations lead to the expres- 
sion 

where C is a number of order unity that is determined by the 
exact shape of the wall: 

c=A,J dzf i f2 .  (1 26) 

Assuming that the wall thickness AD is small compared 
with the length L of the vessel, for the energy of the system 
in the leading approximation in ADIL we obtain 

where 1 is the length of a domain with the nonequilibrium 
value of the magnetization. 

In the nolmal liquid, there is no dipole energy, and the 
longitudinal component of the total magnetization is 
c~nserved.~ Therefore, in the process of relaxation of the 
two-domain structure the absolute magnitude of the magne- 
tization is reduced in both domains, and the position of the 
domain wall is changed in such a way as to ensure conser- 
vation of the longitudinal component. In the superfluid liq- 
uid, the magnetization is not conserved. In addition, the de- 
viation of the absolute magnitude of the magnetization from 
the equilibrium value is due to the strong increase in the 
dipole energy. Therefore, in the process of relaxation the 
absolute magnitude of the magnetization does not change, 
but the position of the domain wall does-the equilibrium 
domain grows. For an uniformly precessing domain, this 
causes the frequency to decrease with time. In our case, the 
frequency increases. 

Since 1 is uniquely determined by z, [see (106)], and zo 
determines the precession frequency, for the variation of the 
frequency in time we obtain 

The frequency is a linear function of the time. 

8. FORMATION OF TWO-DOMAIN STRUCTURE; 
COMPETITION OF THE SPIN CURRENTS 

As the temperature is lowered, the induction signal from 
the precessing structure disappears, but at lower temperatures 
it is restored. In this region, a homogeneously precessing 
domain is observed. A structure forms as a consequence of 
the competition between the spin currents: after application 
of a pulse (in pulsed NMR experiments), the magnetization 
and order parameter, deflected from the equilibrium values, 
begin to precess in the inhomogeneous external field. This 
gives rise to gradients and spin currents. In the normal 
liquid: it is a consequence of the Fermi-liquid effects that 
the spin current of the z component of the magnetization is 
then directed toward the weak fields, while in the superfluid 
liquid in the hydrodynamic regime2 the spin current J? 
flows in the direction of the stronger fields. As a result, dif- 
ferent two-domain structures arise-in the normal liquid, the 
equilibrium domain is in the region of weak fields, while in 
the case of a uniformly precessing domain it is in the region 
of strong fields. We estimate the magnitude of these two 
currents in order to understand the temperatures at which a 
solution is realized. 

We shall assume that the pulse of the transverse field has 
deflected the magnetization through an angle of order 90". To 
estimate the gradients that arise in the case of precession in 
the inhomogeneous field, we can use Eqs. (76) and (5). The 
gradient of the order parameter at time 6t after the pulse is 
VR, ,=  Gte,p$pi(V~L), and hence A=6tVoL/2m*. Thus, 
for the hydrodynamic contribution to the spin current we 
obtain the estimate 
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FIG. 3 .  Coefficients that determine the relative importance o f  the hydrody- 
namic spin current J:' (curve I )  and the nonequilibrium spin current 6Ji 
(curve 2 )  as Functions o f  the temperature. 

The nonequilibrium current can be estimated from Eq. (37). 
Ignoring the terms proportional to Yo-  Y 2 ,  which are small 
in the complete region of temperatures, for up?,> 1 we can 
solve the equation for the current: 

Here u= o, - W P -  ( Y 2 ~ X n o )  F:S.  Substituting this expres- 
sion in the previous one, we arrive at the estimate 

The coefficients in the expressions for the two contributions 
to the current are shown in Fig. 3. They are equal at 
1-TIT,-0.15. Thus, near the transition the structure de- 
scribed in the previous sections arises, and at low tempera- 
tures a uniformly precessing domain must be formed. In the 
region of intermediate temperatures, the competition be- 
tween the spin currents evidently leads to a chaotic picture, 
and the relaxation occurs more rapidly than any of the uni- 
formly precessing states can be established. 

9. CONCLUSIONS 

In this paper, we have derived the equations of the spa- 
tially inhomogeneous spin dynamics of the superfluid B 
phase of 3 ~ e .  In the hydrodynamic regime, we have obtained 
a generalization of the Leggett-Takagi equations to the in- 
homogeneous case. As in the homogeneous case, the corre- 
sponding system of equations consists of evolution equations 
for the spin density and the order parameter, while the spin 
current is determined in the hydrodynamic limit by the val- 
ues and gradients of the spin and the order parameter. These 
equations make it possible to take into account the dissipa- 
tion in the leading order in the small parameters w r  and 
v F r / h  

In the collisionless region, we have derived approximate 
equations for the spin dynamics near the transition tempera- 
ture. They are equations for macroscopic variables: the den- 

sities of the spin and of the spin current ancl the order pa- 
rameter. They can be used to investigate the inhomogeneous 
spin structures that arise. 

The coherently precessing solution of these equations 
near the transition temperature found in this paper shows that 
in the region in which the energy of the dipole-dipole inter- 
action is already important a two-domain structure can exist 
analogous to the one that exists in the normal Fermi liquid. 
In one of the domains, the magnetization is parallel to the 
magnetic field, while in the other it is antiparallel. The shift 
of the frequency due to the dipole moment has the conse- 
quence that the precession frequency differs from the local 
Larmor frequency at the point at which the domain wall is 
situated. In the process of relaxation, the antiparallel domain 
decreases, while the precession frequency increases. 

Recently, a new long-lived coherently precessing struc- 
ture was found in ' ~ e - B  at temperatures appreciably below 
the transition temperature.I9 The increase with time of the 
precession frequency as this structure3) relaxes suggests that 
the equilibrium domain is situated in the region of weaker 
fields, as in the two-component structures in a normal liquid 
and in superfluids near T, . It is natural to assume that in this 
case too the dissipationless spin current associated with the 
Fermi-liquid interaction leads to the formation of such a 
structure. However, the estimates given in the paper show 
that the role of this current is small at low temperatures. The 
question of the reasons for the formation of the new coher- 
ently precessing state at low temperatures remains open. 
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trum Jiilich GmbH in the framework of the Landau Scholar- 
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APPENDIX A 

In this appendix, we derive the equations (36) and (37) 
of the evolution of the spin of the Bogolyubov quasiparticles 
and the nonequilibrium spin current. The spin of the normal 
component is determined by [cf. (la)] 

The time derivative of the distribution function of the 
Bogolyubov quasiparticles (after the gauge transformation) 
is determined by the kinetic equation ( 1  I), and the order 
parameter d in the ("moving") franie of reference deter- 
mined by the gauge transformation does not depend on the 
time. Using this, we calculate the time derivatives of Sil and 
SJi in the "moving" frame of reference. We give the deriva- 
tion of the equation of motion for the quasiparticle spin; the 
derivation of the equation for the current is similar. Thus, 
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In this expression, we distinguish four components: parts not 
containing gradients; those containing components of 6 E  
and Sv, one of which is even in the momenta and the other 
odd); a part containing the gradients of the distribution func- 
tion; and a part containing the gradients of 6E.  We shall 
calculate them separately. 

For the first component, we obtain, separating the term 
SY XX,  

where B is given by the expression (38). Here we have used 
the identity7 

where (d,B,A) denotes the triple product. 
In the second component, it is convenient to separate the 

term m*JyXAi, which corresponds to lengthening the diver- 
gence of the spin current of the quasiparticles: 

=p~;,pjApj+ 6Ji, 

where 

Tiso ( yo- y2 p" .=- y 8 6 ------ a ~ , p j  2 0 ap i j  5 pa;..) 

After analogous transformations, we obtain 

where D is determined by the expression (39). For the third 
component, we obtain the expression 

= - v ~ J ~ + , ~ ~ ~ v ~ D ~ ~ .  

and the fourth does not contain Sv, and therefore all the sums 
over the momenta can be calculated: 

Adding these contributions, we obtain the expression for 
the derivative of the spin of the quasiparticles in the moving 
coordinate system: 

Going over to the laboratory frame of reference [see (32) 
and (33)] and expressing JY in terms of 6Ji by means of 
(A4), we arrive at Eq. (36). The relaxation terms are dis- 
cussed in the following appendix. 

APPENDIX B 

To derive the relaxation terms, we use the form of the 
collision integral given in Ref. 7: 

The form of the first term on the right-hand side was pro- 
posed by Combescot and ~ b i s a w a ~ '  and corresponds to re- 
laxation of the normal component to relative equilibrium 
with the condensate for a fixed state of this last (i.e., for fixed 
6E) .  The form of this term is determined by requiring that it 
vanish in local equilibrium. The second term col~esponds to 
collisions of the quasiparticles with each other, i.e., to redis- 
tribution of the spin between the quasiparticles subject to 
conservation of the total spin of the notmal component. The 
form of this term is due to the fact that in such collisions the 
spin is conserved but not the spin current-the current re- 
laxes to its equilibrium value. Accordingly, 

where 

[cf. (50)]. It is readily verified that this term in the collision 
integral does not contribute to the relaxation of the quasipar- 
ticle spin. In the transition to the normal liquid we have 
r cE+~,  ;+T:, and the relaxation is described by the second 
term. During the relaxation process, the total spin is con- 

247 JETP 82 (2), February 1996 Yu. G. Makhlin and V. P. Mineev 247 



served (we note in this connection that we work under the 
assumption of an infinite longitudinal spin relaxation time 
T , ,  cf. Ref. 6). 

For the collisional term in the equation for the quasipar- 
ticle spin, we obtain 

where s".'OC is the value of the quasiparticle spin for 
Sv=cplSE, i.e., in local equilibrium. Since s ' I . ' ~  

= (x~, , Ix~~)SP,  we can, going over in (B4) to the variables 
Sq and S, reduce the relaxation term to the form 

This corresponds to Eq. (36) for Note that in the 
limit TAT,  this relaxation time tends to the lifetime of the 
quasiparticles of the normal Fermi liquid: r -+4 (Refs. 21 
and 22). 

For the relaxation of the spin current, we obtain 

where l/rl  = l/rCE+ I/#. Near the transition temperature, 
r,=,J=$. 

APPENDIX C 

On the transition to the case of the normal liquid, for 
example, in Eqs. (18) and (19), the following difficulty 
arises. In this limit, the expression [/E goes over into sign [ 
and in the expressions terms that depend on the order param- 
eter remain even in the normal liquid. The reason is that the 
matrix of the Bogolyubov transformation used in the deriva- 
tion of the expressions tends to the identity matrix as T--t T ,  
only when PO. 

The Bogolyubov transformation used in the derivation of 
the expressions in the paper is a transformation that diago- 
nalizes the energy operator of the quasiparticles in the ab- 
sence of perturbations: 

Under this transformation, the distribution function (and, 
similarly, the energy operator of the quasiparticles) is re- 
placed by 

where the unitary matrix Uk is chosen in the form 

and the matrices uk and vk are such that 

Here E = Jw2 is the energy of the Bogolyubov excita- 
tions, and 

To avoid the difficulty noted above, one can use a 
Bogolyubov transformation that goes over to the identity as 
T-+ T ,  . This transformation is identical to (C3) for [>0 and 
differs from it by the replacement of [ by 14 and reversal of 
the sign of the components nondiagonal with respect to the 
particle-hole index (i.e., a change in the sign of v) when 
[<0. Such a substitution is possible because of the nonu- 
niqueness of the Bogolyubov transformation: For each pair 
(k,-k), there are two eigenstates of the Bogolyubov Hamil- 
tonian with energy E and two with energy -E. Therefore, 
transformations that interchange these two two-dimensional 
subspaces and also rotate them separately do not change the 
diagonal form of the Hamiltonian, and this guarantees the 
necessary freedom. The Bogolyubov transformation that we 
have just described is essentially a transformation, not to 
quasiparticles with two branches of the spectrum e(k)= ?E, 
but to quasiparticles with spectrum e(k)=+sign([)E (see 
Ref. 21), going over as T A T ,  into +[. These two branches 
of the spectrum in the normal liquid correspond to quasipar- 
ticles and quasiholes. 

It can be shown that the change of the Bogolyubov trans- 
formation has the consequence that in all the expressions of 
the paper it is necessary to replace QE by IdlE. In the ap- 
proach to the transition temperature, this ratio tends to unity 
irrespective of the sign of 5. 

')1n reality, in the region of angles PCBL the angle cu depends on the coor- 
dinates, and 4, is not equal to zero but is determined by the equation 
cos 8=-114. However, the dependence of P on the coordinate for the 
solution corresponding to the domain wall of Ref. 2 is qualitatively the 
same as in Fig. 2. The angle a changes by a finite amount within the 
domain wall near zo. 

 or P<eL , the right-hand side of Eq. (109) does not contain a dipole term, 
the equation has the same form as in the "normal liquid," and the transi- 
tion from p=O to P= BL occurs over the corresponding length X. 
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