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The profile of a Bennett structure induced by an electromagnetic field in the velocity distribution 
of the particles and the spectrum of the probe field with allowance for the velocity 
dependence of the diffusion tensor have been calculated for the first time. In the case of 
Coulomb scattering of the plasma particles, the decrease in the collision rate with increasing 
particle velocity may lead to a narrowing of the Bennett structure or the probe field 
spectrum as the deviation of the wave frequency from the resonant value increases. The 
renormalization method is used to calculate the resonance's shape and width. We also provide 
estimates demonstrating that with an argon laser the effect reaches 10% and can be 
observed. The calculations done in this paper can be used to measure the velocity dependence of 
the diffusion tensor. O 1996 American Institute of Physics. [S 1063-776 1 (96)00802-31 

1. INTRODUCTION buffer gas particles, the differential operator describing dif- 
fusion is proportional to 

One way of studying collision processes in a gas in a 
contact-free manner is to investigate the resonant interaction d 

of the gas and a traveling electromagnetic wave.''2 If the 
wave frequency w is close to the Bohr frequency 
w,, ,=(E,-E,)Ih of the transition between states Im) and 
In), then due to the Doppler effect the particles that interact 
most effectively with the wave are those for which 
k - V =  w - om,, where k is the wave vector of the electro- 
magnetic wave, and v is the particle velocity. Such particles 
are involved in transitions from state Im) to state In) and 
back. As a result the population of state Im) (or In)), con- 
sidered as a function of the particle velocity, acquires a nar- 
row peak or dip (the Bennett dip3). The shape of this feature 
largely depends on the collision rate, and a change in it oc- 
curs, for one thing, because during scattering the particles 
change their velocity and consequently may leave the reso- 
nance sooner than quenching of the states Im) and In) can 
take place. 

Experimentally the distribution of the particles over the 
quantum states can be studied by directing another electro- 
magnetic field of frequency w ,  and low intensity (the probe 
field), which leaves the distribution of the particles over the 
states practically unchanged. The power absorbed from the 
probe wave is proportional to the number of particles in reso- 
nance with the wave, i.e., moving with velocities that meet 
the condition k,.v= w,- w , , ,  . Hence by changing the fre- 
quency w ,  of the probe wave we scan, so to speak, the 
velocity distribution of particles that are in state lrn) (or 
In))." 

This paper examines the case when the collision process 
can be described as a diffusion in velocity space. The colli- 
sion integral in the kinetic equation is replaced by a second- 
order differential operator acting on the velocity distribution 
function. Such a description of scattering is possible, for in- 
stance, for ions in a plasma with Coulomb scattering5x6 or for 
heavy particles in a light-particle buffer gas.7 In an equilib- 
rium plasma or in an equilibrium velocity distribution of the 

where v T  is the thermal velocity of the particles investigated, 
and <Dap(v) is the diffusion tensor. Usually the kinetic equa- 
tion is solved in an approximation in which the diffusion 
tensor is velocity-independent (see Ref. 5). In Ref. 6 the 
kinetic equation is solved with allowance for the velocity 
dependence of the diffusion tensor but in the linear approxi- 
mation in the strength of the wave field. The velocity distri- 
bution of the varticles has been brieflv discussed in Ref. 8. In 
the present paper we do a detailed calculation of the first 
nonlinear approximation for the shape of the Bennett dip (the 
particle distribution averaged over the particle velocities that 
are transverse in relation to the direction of wave propaga- 
tion) and the work of the probe field in the case when the 
diffusion tensor is velocity-dependent. 

When solving the kinetic equation in the first-order per- 
turbation approximation, we can easily write the expressions 
for the Bennett dip and the probe field spectrum in the form 
of quadruple and quintuple integrals, respectively, but such 
expressions are difficult to analyze and use in quantitative 
calculations. In this paper we suggest approximations in 
which these expressions are reduced to simple integrals con- 
taining only one component of the diffusion tensor. We also 
estimate the magnitude of the effect in conditions typical of 
an argon laser in which the low-temperature plasma is the 
active medium, and give the results of numerical calculations 
that support the approximations. 

In Sec. 2 we introduce the equations for the density ma- 
trix and discuss the velocity dependence of the components 
of the diffusion tensor of a test ion in an equilibrium plasma. 
Section 3 is devoted to calculating the first-order correction 
to the distribution function of particles that are in a definite 
quantum state, the correction being related to allowing for 
the interaction of a two-level system in state lm) or In) and 
an electromagnetic wave. In Sec. 4 we calculate the probe 
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field spectrum, an observable quantity, i.e., the power ab- 
sorbed from the probe wave as a function of the mismatch 
between the wave's frequency and the resonant frequency. 

2. THE FOKKER-PLANCK EQUATION 

Let us examine a gas consisting of identical particles. 
The Maxwellian velocity distribution is normalized to unity: 

where T is the temperature of the gas, M is the mass of the 
particles, and k, is Boltzmann's constant. We take two ex- 
cited particle states Jm) and In) with energies Em and En (to 
be specific we assume Em>En) and the resonant interaction 
of the given two-level system with a traveling electromag- 
netic wave in the form 

E(t,r) = +(E, e x d -  i(wt- kr)) + Eg e x d i ( o t  - kr))), 
(2) 

i.e., n = w -  wmnGw, where wm,=(E,-En)lh. 
Assuming that the interaction of the particle and wave is 

of the dipole type, in the resonance approximation we have 
the following quantum Fokker-Planck equations for the den- 
sity matrix? 

where the "minustplus" corresponds to the uppertlower 
level; pij is the particle density matrix (pj=pjj and 
p=pmn); Tm , Tn , and r are the relaxation constants of the 
states Im), In), and the off-diagonal elements of the pij 
matrix; G = E , ( ~ J  21 n)/2h, with 2 the dipole moment opera- 
tor; Q,W(v) and QnAW(v) are the excitation functions of the 
states I m )  and In); 53'" describes elastic scattering; Qap(v) is 
the diffusion tensor; and v is the transport collision rate, or 
the reciprocal of the time it takes a particle to change its 
velocity by a quantity on the order of the velocity proper. 

When two particles are involved in the scattering pro- 
cess, there is only one preferred direction, that of their rela- 
tive velocity. Hence the diffusion tensor Qap(v) has a single 
preferred axis, the direction of the velocity vector v, and can 
be written as 

where the longitudinal and transverse diffusion coefficients 
@ I I ( ~ )  and @,(v) depend only on the absolute value of ve- 
locity. Here and in what follows velocity is measured in units 
of vT and frequency in units of kvT. 

In this paper we obtain the shapes of the Bennett dip and 
nonlinear resonance without making any assumptions about 
the velocity dependence of the diffusion tensor. However, the 
analysis of the expressions and numerical calculations are 
done for ions in an equilibrium plasma, with 

Both QII(v) and Q,(v) decrease as functions of velocity. 
This is caused by the decrease in the Coulomb scattering 
cross section as the energy of the colliding particles grows. 

3. THE VELOCITY DISTRIBUTION OF p, 

We solve the system of equations (3) by employing a 
perturbation expansion in the parameter 1 G ) ~ .  The velocity 
distribution density pj(v) for particles that do not interact 
with the field and are in the state Ij) has the form of the 
Maxwellian distribution py)(v) = QjW(v)lrj. The first- 
order field correction to pj(v) can be written as 

.f(v)~(v) = ~(v).&f(v) ,  

(0) where N:;= P:)(~) -Pn (v). 
For v<.Tj4 1, which is typical of an argon laser plasma, 

we can explicitly calculate the operator exponents in (6) by 
employing the commutation relations between the operators 
2 and k :  

d l d  
v,@~~(v)-@~,(v)--  - - 

dva 2 dv, 
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Here the z axis is directed along k. As a result, in the limit of 
small values of v we have 

The integrand on the right-hand side of (7) is largest in 
the region 0 < t2 < r,: , O< tl <min(rPL, 
rji2v- 'I2, v 'I3). Hence the terms v.Bt2 and 
~ ( v t : ,  v2f:) are characterized by a smallness of order 
vrY1 and rnin(&?, ~j5/2v-'I2, v1I3), respectively. Ignor- 
ing these terms, we can calculate the integral with respect to 
t2 in (7): 

where @ ,(v) = ~ , @ ~ ~ ( u )  - $(d@az(v)ldv,). 
To establish the dependence of pll) on v, we must av- 

erage pll)(v) over the velocities v, , which are perpendicular 
to the z axis. If Qll(v) = @, (v) = 1 (a constant diffusion co- 
efficient), after averaging over v, we get 

e x p ( - r r l + i ( i l - v z ) t l - ( v 1 6 ) t : )  
x k  lo dt ,  

ri+(v/2)t:-ivv,tl 
(9) 

Generally, the averaging can be done approximately by em- 
ploying the renormalization rne th~d .~  Here the method 
amounts to representing @,,(v) and @,(v) by the sums 
6,,(uZ , t l ) t  a@,, and &,(v, ,t ,) + a@ respectively. The 
functions @,,(v, , t l )  and 6 , (v ,  , t l )  are chosen so that the 
first-order correction in a@,, and 80, to the integrand (the 
terms linear in a@,, and a@ ,) vanish when integration over 
v, is completed. Consequently, we arrive at the following 
expressions for &,,(vZ,tl) and &,(u,,tl): 

For pll)(v,) we get 

FIG. 1 .  The functions 6,,(u,) (curve I) and 6,(u,) (curve 2) of uZlvT in 
an equilibrium plasma. 

Integrating (5), for the ions in the plasma we get 

Figure 1 depicts the decrease in &,,(v,) and &,(v,) with 
increasing v, . Such behavior is caused by the decrease in the 
collision rate as the particle velocity grows. The difference 
between (11) and (9) is that v is replaced with a function of 
v,, which allows taking into account the velocity depen- 
dence of the diffusion tensor. In numerical calculations the 
deviation of the correction term p:.')(v,) calculated via (1 1) 
and via (8) amounted to no more than 1%, which illustrates 
the high accuracy of the renormalization method. 

The particles that interact with the field most strongly 
are those for which the detuning R is zero in their reference 
frame. These particles have a longitudinal velocity u,=R. 
Hence the function pl1)(uz) has a peak (or dip) in the vicin- 
ity of u,=O (Fig. 2). As the parameter uITj grows, the 
distribution p~')(v,) broadens, since the interaction time 
t7- decreases because of diffusive loss of particles 
from the resonance state. 

In a rough approximation the profile of p$')(v,) is the 
convolution of a Lorentzian profile of width r-and a profile 
of the form exp(-lv,lJ-}. For r24 ~ r ;  , the 
width of the profile of pjl)(v,) is proportional to 
d q .  

As R grows, the scattering rate for particles in reso- 
nance, which is proportional to the longitudinal component 
&,,(R), decreases, as a result of which the distribution 
pll)(v,) may narrow (see Fig. 2). In the model with a con- 
stant diffusion tensor, the profile of Bennett's peak is a con- 

223 JETP 82 (2), February 1996 Podivilov et a/. 223 



tour centered at v , = f l  and with a fl-independent shape, 
multiplied by the Maxwellian particle distribution function 
exp{-ul). Hence Bennett's peak is asymmetric and its width 
increases with fl. The effect of an increasing peak width at 
half-maximum becomes more pronounced as I' grows, since 
the width of the peak approaches the Doppler value. 

4. THE SPECTRUM OF THE PROBE FIELD 

Now let us introduce another electromagnetic wave, the 
probe wave 

+ EEo exp{i(w,t- kr))). (13) 

The condition that the probe field be weak means that 
I G , ~  4 [GI, where I G , ~  = ~ , ~ [ * ] ( r n l ~ l n ) / 2 ~ .  We assume 
that the probe wave also interacts resonantly with the two- 
level system, i.e., a,= w, - w m n 4  w, . The wave vector k 
is assumed to be directed along the z axis (in the positive or 
negative direction). Since 

(at S1 ,a,- kv T), we everywhere neglect the difference be- 
tween the wave numbers. In this approximation, we have 
k,= ~ , k ,  with K,= + 1. 

The expression for the power absorbed from the probe 
wave is 

qS1 , f l , )  = - 2fiw,, dvRe(iC* e~~ ' ( "2~ ' -~a ' )p ) .  J CL 
(14) 

To find p we must modify the system of equations (3) by 
introducing the interaction with the probe field: 

We now write <flO,fl,) in the form of a series expan- 
sion in powers of intensity: 

The indices k and 1 correspond to the order of the perturba- 
tion in IGI2 and IC 12, respectively. At k=  I and 1=0 the 
quantity l ~ , l ~ @ ~ ) ' ~ ( f l , S 1 , )  is the absorbed power in the 
approximation in which the effect of the strong wave and the 
transitions induced by the probe wave are ignored. The cor- 
rection to the absorbed power due to transitions caused by 
the probe wave is proportional to lc,I4 and is ignored here. 

FIG. 2. The functions p : ' ) (u , )  at R = O  (the dashed curves) and R =  ku , .  
(the solid curve),  with T= 10-2ku, ,  T,= 1 O 3 k u , ,  and v/17,= IO-~ ' .  For a 
constant diffusion tensor (the inset) the width of the peak increases 
with R .  

For v 6 T j 6  1 the change in the shape of .@')(O)(fl,) 
brought on by Coulomb scattering is insignificant, with the 
result that we must examine @')(')(fl,fl,),  whose expres- 
sion can be written as 

where the .9i,j(Sl,fl,) are the different contributions to 
.@')(')(fl,fl,) corresponding to the different interaction 
processes: 

The quantities and :P2,j correspond to cascade processes, 
i.e., a sequence of interactions with the photons of the strong 
and probe fields, and .V3,j and iP4,, to two-photon processes,4 
i.e., a simultaneous interaction with two photons of the elec- 
tromagnetic field and transitions through a virtual level. The 
quantities !Yl,j and :F2,j are caused by changes in the level 
populations brought about by the strong field (the saturation 
effect), while y3J and ydj describe the nonlinear interfer- 
ence effect and field splitting. 

When ~ , = 1  holds, the term with (K , -  I )v i  can be 
neglected in comparison to rj.  But if we have K,= - 1, 
both :Y3,j(fl,fl,) and:Y'4j(c(l,fl,) rapidly oscillate in u, and 
after integration with respect to u ,  yield a negligible contri- 
bution to !4 ' )il)(fl,fl,) in comparison to :PIj(fl,fl,) and 
:P2,j(fl,fl,). We analyze the expressions for .fl,j(fl ,il,) 
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for the case of codirectional waves we have, K,= 1, since for 
calculating . / I ) (  ' ) ( b L , b L , )  in the case where K,= I holds 
one can use the expression 

We introduce a new variable T =  t3+  t  in : Y l j ( f l , f l , )  and 
:Y3,j(fl,fl,) and another new variable r= t 3 -  t l  in 
:P2, j ( f l , f l , )  and 9"4,j(fl,fl,).  This removes the terms of the 
form u, t ,  in the exponent. In the first case we have to inte- 
grate with respect to T from t l  to rn and in the second from 
- t l  to rn. Hence the contributions of .Y1,,(fl,fl,) and 
.f73,j(fl,fl,) are small compared to those of .Y2,j(fl,fl,) and 
Y'4,j(fl,fl,), respectively (this can be verified by analyzing 
the expressions obtained for .YZvj and .9P4,j; the above as- 
sumption has also proved to be true in numerical experi- 
ments). 

The expressions for P i J ( R , f l , )  are integrals with re- 
spect to t ,  , t 2 ,  and t3  that acquire their values in the region 
o < t 3 < r P 1 ,  O < I , < T J ' ,  o< t ,<min(r - l ,  I ' ~ ' ~ v - ~ ' ~ ,  
v -  'I3). Assuming that v e  T  je 1 and using commutahon re- 
lations similar to those in Sec. 3  between the operators 

Pi, and k, we get 

The terms (v /6)@, , (n)r?  in the exponent have been dis- 
carded because they make a negligible contribution after in- 
tegration with respect to u , .  We write @,, (v )  as the sum 
&zz(t , f l , f L , ) +  a@, , ,  where the first-order correction in 
a@,, to the integrand (the terms linear in a@,,)  vanish in the 
process of integration with respect to v .  The term 
6 z z ( t l  , f l , f l , )  must satisfy the equation 

1 du ,  enp-': exp(- r r + i ( f l , -  u , ) ~ )  

After integration with respect to T a narrow profile (of width 
r )  emerges, centered at u,= f l ,  . We can therefore assume 
that 

Replacing @,,(v) by its average value &,,(fl , )  and in- 
tegrating Eqs. (18) and (19) first with respect to u,  and then 
with respect to T ,  we arrive at the following expression for 
the nonlinear correction to the power absorbed from the 
probe field for the case K,= 1 :  

e m  Qll 
@ l ) ( l ) ( f l , n , ) - 4 J ; ; n w m ,  -- - 

When K,= - 1 holds, we must replace f l ,  by -a ,  and 
discard the second term in the square brackets. 

The first term in the square brackets is the population 
correction to the absorbed power. If we replace r by r / 2  and 
f l ,  by u , ,  it coincides, within a factor, with Eq. ( I  1 )  for the 
nonlinear correction to the population difference p;f)(u,) 
- pjI1 )(v,). This means that at K,= - 1 the contour for 
. , / ' ) ( ' ) ( f l , R , )  has the same shape as the contour for pl;' 

X ( U , ) - ~ ~ ~ ) ( U , )  for a double value of T. Like the Bennett 
dip, at K,= - 1 the probe field spectrum . 99 ' ) ( ' ) ( f l , f l , )  as a 
function of f l ,  may narrow as f l  grows (Fig. 3). The effect 
of spectrum narrowing is greatest when the diffusion width is 
much smaller than the Doppler width but much greater than 
the homogeneous width T, or I'lkur4 I .  

When K,= I holds, we must allow for the second term, 
which corresponds to two-photon processes. In the region 
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FIG. 3. The v/T,-dependence of the relative narrowing of the absorption 
spectrum .@l)("(R ,a,)  as 0 varies from 0 to kv , (for K,= - 1 ), obtained 
as a result of numerical calculations by Eq. (21). The different curves cor- 
respond to different values of T, from T = 0  (the upper curve) to 
T = 7 X  10-2kuT, with a growth rate of ~ O - ~ k v ~ .  

la,- e v'I3 with T2Tj4  v, the shape of the peak is pro- 
portional to the square root of the Lorentzian, just as it is in 
the model with a constant diffusion coefficient:'' 

Re 94,j(R,fl,)mRe 

The width of the peak is independent of the collision rate v 
and, hence, of a ,  while the height of the peak is proportional 
to vl/2&l/2 ,, (a,) and coincides with that of the "population" 
peak 92,j(C!,IR,). In the region I a,- v'I3 and to lead- 
ing order in v(l2,- a ) - 3 ,  collisions have no effect on the 
lineshape, but the integral of 94,j(fl,fl,) with respect to 
a, vanishes, as it does in the absence of collisions (Fig. 4). 

5. CONCLUSION 

Summing up, we may say that in the case of Coulomb 
scattering of particles with T 4 kv T ,  the probe field spectrum 
narrows as the frequency of the strong field departs from the 
center of the line. The physical reason for this is that the 
spectrum width is determined by the homogeneous width 

FIG. 4. The shape of the peak corresponding to two-photon processes for 
T =  1 0 - ~ k u , ,  R=O, and T j =  10-~kv, with V= 10-5kvT (the solid curve) 
and v =  10-4kvT (the dashed curve), in arbitrary units. 
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Aol,,,=2T and by the diffusion width Aodif ,  the latter de- 
pending on the collision rate: A o  k v T f i ,  where T~ is 
the ion lifetime in the state I j), T ~ =  T j  . As we move away 
from resonance, the wave begins to interact with faster ions. 
The collision rate v for fast ions is low, since the Rutherford 
cross section decreases as the energy grows. Thus, as the 
detuning from resonance increases, the diffusion width 
A o  fi decreases. It would be more correct to call this a 
decrease of diffusion width rather than spectrum narrowing. 
As A wh0,40 and the detuning varies from 0 to kv T ,  the 
relative narrowing begins at 1 - J~ , , (vT) /&, , (~ )  and 
reaches 20% (see Fig. 3), where &,,(v,) =(@,,(v)), is the 
zz-component of the diffusion tensor averaged over trans- 
verse velocities (see Fig. I). 

The effect may be masked by atomic collisions with a 
different velocity dependence of the cross section and by 
Stark broadening. In an argon-laser plasma with characteris- 
tic parameters (the plasma temperature is 1 eV and the ion 
number density is 11100 of the atom number density), the 
Coulomb scattering is stronger than ion-atom scattering. For 
an electron number density N,- 1 0 ' ~ c m - ~  and an electron 
temperature T,=.S eV, the Stark linewidth of the ion is of 
order logs-', which is much smaller that the Doppler line- 
width kvT- 10'~s-'. For parameter ratios characteristic of 
an argon-laser plasma, T - 10-~kv and VTJ ' - lop2, the 
relative narrowing amounts to about lo%, i.e., the effect is 
experimentally observable. 

Of particular interest is the direct measurement of the 
diffusion tensor components in the velocity space as func- 
tions of the particle velocity. Bowles et al." described an- 
other way of measuring the diffusion tensor. A powerful 
short light pulse generates a Bennett structure, whose evolu- 
tion is then studied. This method is possible only when the 
ion number density Ni is low (otherwise the structure spreads 
out too fast, and this would require high-speed registering 
devices; in Ref. 11 N i  did not exceed 5 X 1 0 ~ c m - ~ ) .  Our 
method can be used at low and high ion number densities. It 
can be employed for measuring the averaged diffusion tensor 
&,,(v,) if the width of the probe field spectrum is largely 
determined by diffusion. The narrowing effect can be used to 
find the fraction of Coulomb scattering in the total cross 
section. 
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