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A study is made of ion transport in gases and weakly ionized plasmas under the influence of a 
strong electric field under conditions when the velocity distribution of the ions is non- 
Maxwellian and anisotropic. An expression is obtained for the ion flux due to variation in space 
and/or time of the reduced electric field, on which the distribution function depends. The 
corresponding ion transport coefficients are determined for some model collision integrals. 
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I. INTRODUCTION 

Study of the processes of collisional ion transport in 
weakly ionized gases and plasmas has both scientific and 
practical interest.'-' The transport of charged particles deter- 
mines many properties of laboratory and ionospheric plas- 
mas. Analysis of experimental data on transport coefficients 
makes it possible to establish the ion-atom (ion-molecule) 
interaction potential.2.375 Data on these coefficients are 
needed to analyze the results of investigations of ion- 
molecular reactions in a plasma. Ion transport processes are 
taken into account in the modeling of electric discharges in 
gases and in some atmospheric effects. 

Ion transport in gases and plasmas in an electric field has 
been the subject of numerous experimental and theoretical 
studies?'6 which have treated both equilibrium conditions 
(weak fields) and strongly nonequilibrium ones (strong 
fields), when the ion energy distribution is non-Maxwellian. 
Most of the investigations have been devoted to ion drift and 
diffusion. In a plasma, gradients of the charged-particle den- 
sities are always associated with gradients of the electric 
field, the gas density, etc. Therefore, the transport equations 
must also take into account the fluxes due to the inhomoge- 
neity of these parameters and behave like thermal diffusion. 
Ion thermal diffusion may also be important in the analysis 
of the error in the measurement of the ionic mobility in gases 
by the drift-tube m e t h ~ d . ~ . ~  

These ion transport processes in gases and plasmas have 
been quite fully studied; on the other hand, all studies have 
been made for equilibrium conditions (see, for example, 
Refs. 7-9), However, it is known9-l2 that the description of 
the analogous transport processes for electrons in a strong 
electric field, when the energy distribution is non- 
Maxwellian, differs appreciably from the one adopted for 
equilibrium conditions. In the absence of equilibrium, the 
system of hydrodynamic equations is changed, and unusual 
fluxes appear in them. Mechanical extension of these results 
to ions is not justified, since the description of the electron 
processes uses the fact that the electron mass is small relative 
to the mass of the neutral particles. This last makes it pos- 

sible to employ the well-known two-term approximation,'3 
which is associated with the weak anisotropy of the electron 
energy distribution. For ions, this approximation is not ad- 
equate except in rare cases. On the other hand, the descrip- 
tion of ion transport in gases and plasmas can be somewhat 
simplified because of the comparatively small (in contrast to 
the electron case) number of inelastic processes that affect 
the energy di~tribution?.~ Thus, interest attaches to the study 
of ion transport in gases and in nonequilibrium weakly ion- 
ized plasmas when the electric field and of the other param- 
eters on which the ion energy distribution depends vary in 
space and time. Although ions become nonequilibrium under 
more stringent conditions than electrons, these conditions are 
nevertheless realized in a gas-discharge plasma'4 and in 
drift-tube experiments?73 Therefore, this problem warrants a 
detailed investigation. Only the first steps have been taken in 
this direction. For example, there have been studies of the 
relaxation of the ion drift velocity in a gas when a strong 
electric field is suddenly switched on'' and of the change of 
the ion distribution function in a time-dependent field.16 

In the present paper, the approach used earlier to de- 
scribe  electron^""^ is generalized to ions, i.e., we make a 
study not restricted to the two-term approximation of ion 
transport in weakly ionized gases and plasmas under the in- 
fluence of a strong electric field when the ion velocity distri- 
bution is nonequilibrium and anisotropic. We obtain expres- 
sions for the coefficients that describe the ion transport when 
the electric field and of the other parameters on which the ion 
velocity distribution depends vary in space and time. We 
determine these transport coefficients for some model colli- 
sion integrals for ions interacting with neutral particles. 

2. BASIC EQUATIONS 

We consider a weakly ionized gas or plasma in an elec- 
tric field that is sufficiently strong that the ions satisfy the 
conditions 
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Here q is the ion charge, E is the electric field strength, A is 
the relaxation length of the ion energy, T is the temperature 
of the gas, v is the relaxation frequency of the ion energy in 
collisions, and v,-,,I is the frequency of Coulomb collisions. 
If the first inequality is satisfied, the ion temperature is 
strongly "decoupled" from the gas temperature, and when 
the second inequality is also satisfied the ion velocity distri- 
bution function becomes non-~axwellian.~,~ For the most 
typical case T=300 K and ions and neutral particles having 
nearly the same masses, these conditions reduce to 

where N is the density of the neutral particles, and a is the 
ionization cross section. It is more difficult to satisfy the first 
condition in the case of ions in their own gas; this is due to 
the process of resonant charge exchange, which is character- 
ized by a large scattering cross section and, accordingly, a 
small value of A. It is harder to satisfy the first inequality for 
ions, which almost always exchange energy with the neutral 
particles more efficiently, and easier to satisfy the second 
condition then for electrons. The given range of parameters 
of the considered system is encountered in drift-tube 
e~~e r imen t s l -~  and in gas discharges.14 

Under these conditions, as was shown earlierlo9'l (see 
also Refs. 9 and 12) for the example of electrons, the system 
of hydrodynamic equations describing the motion of the 
charged particles simplifies and reduces to a single equation 
for their density. On the other hand, it is necessary to take 
into account in it the fluxes due to the spatial and temporal 
variation of the parameters (EIN, etc.) on which the energy 
distribution of the charged particles depends. All this is 
equally true for ions. However, the derivation of the expres- 
sions for the electron transport  coefficient^^-'^ uses the well- 
known two-term approximation,'3 which is based on the 
small value of the electron mass. It is of interest to develop 
an approach analogous to that of Refs. 10-12 for ions too, 
using the Boltzmann equation for an arbitrary mass ratio of 
the charged and neutral particles. This is the main aim of the 
present paper. 

Under these conditions, the ion velocity distribution 
function f(v) is described by the linear Boltzmann equation 

where n and m are the ion density and mass, and S is the 
collision integral for interaction of the ions with the neutral 
particles. Here the distribution function is normalized by the 
condition 

When Eq. (1) is integrated over the velocities, we obtain a 
balance equation for the ion density: 

and Q describes bulk processes of creation and annihilation 
of ions. Substituting (3) in (I) ,  we obtain 

(5) 

Following the approach developed in Refs. 11 and 12, 
we assume that the distribution function f(v) depends on a 
certain scalar parameter y, which varies slowly in space and 
time: 

where 

For simplicity, we also set Q=O and n=const, i.e., we shall 
not consider the well-studied processes of ion diffusion. 
Then the function f(v) in the inhomogeneous nonstationary 
case can be found by means of perturbation theory with re- 
spect to the small parameters AIL and w lv : 

The zeroth approximation is found from Eq. (5), neglecting 
all the terms that describe the spatial and temporal variation, 

and from the normalization condition (2), where f is replaced 

by f o .  
The equation for the first-order correction has the form 

dfo df 0 - - f o  div wo+v -=J(foq) 
dt d r  

with normalization condition 

which follows from the analogous conditions for f and fo.  
In a space having only one distinguished direction-the 

direction of the electric field-the arguments of the function 
f o  are the ion velocities parallel (vII) and perpendicular (v,) 
to the field. As independent variables, we choose vll and v 
= (v i  + v;)"~. In accordance with (9), f o  also depends on 
the parameter y =EIN, which varies in space and time. 

Under these conditions, Eq. (10) can be rewritten in the 
form 

dfo de dfo 
- fowo div e+ - v -+ - v@v:Vc3e=J(focp), 

dull dt dull 

where we have the mean ion velocity 
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where e=EIE is the unit vector along the electric tieltl, a@b 
is the tensor with components a i b j ,  and the colon denotes 
contraction. Because the functional J is linear, the solution of 
Eq. (12) must be sought in the form 

where i ,  and i ,  are unit vectors along the x and y axes of a 
rectangular coordinate system with z axis along e; u ,  , and 
u,,, are the corresponding components of the vector v ,  . The 
equations for the cylindrically symmetric scalar functions 
Fill , F ,  , and F ,  ,,, have the form 

where A ,  B, C ,  p are, respectively, scalar, vector, and tensor 
(second-rank) functions. To ensure that they all have the 
same dimensions, the time derivatives have been divided by 
wo,  which is the ion drift velocity in the homogeneous sta- 
tionary case and is determined from (4) by substituting fo in 
place o f f .  

From the fact that the different terms in (12) are inde- 
pendent, we obtain equations for A, B, C ,  and p: 

Substitution of (8) and (13) in (4) with allowance for the 
above gives for the mean ion velocity in the time-dependent 
inhomogeneous field the expression 

where j is the second-rank unit tensor. [In the derivation of 
(16) and (17), we have taken into account the constancy of 
the magnitude of e.] It should be borne in mind that here and 
in what follows we understand by dfoldvll  the derivative 
(d fo ldv l l )u  . The normalization condition (11) remains as be- 
fore with cp replaced by A ,  B, C ,  and b, respectively. The 
scalar function A depends on the same arguments and param- 
eters as fo ,  i.e., cylindrical symmetry is preserved for it. 
Similarly, the vector and tensor functions must be expressed 
in terms of linear combinations of the vectors and tensors 
that occur on the left-hand sides of the corresponding equa- 
tions. Thus, it follows from (15) that 

where 

foullAdv, by= fov@B d v ,  J 
D fov@C dv ,  D,= f 0 v @ k d v .  J " J 

qere D ,  is a scalar, D, and D,, are second-rank tensors, and 
D ,  is a third-rank tensor. 

The expression (24) can be significantly simplified by 
taking into account the cylindrical symmetry of many func- 
tions and the following relations for an arbitrary function 
g(u,ull): 

where the scalar functions BIl and B ,  satisfy the equations 

and 

and 

Similarly, from (16) we obtain 

C = v , C ,  

For the tensor b, it follows from (17) that Using them, we obtain 

216 JETP 82 (2). February 1996 Aleksandrov et a/. 216 



where 

Thus, in a system of coordinates for which one of the axes is 
parallel to the vector E the tensor D, has diagonal form and 
is characterized by two scalar quantities-the coefficients of 
the corresponding transport parallel and perpendicular to the 
field. Here the situation is analogous to the diffusion trans- 
port of ions described by coefficients of longitudinal and 
transverse 

Similarly, for D,, we obtain 

where 

It follows from this that 

i.e., the ion flux due to the time dependence of the direction 
of the electric field is due to just a single coefficient, like the 
flux associated with the variation of y. However, in contrast 
to the latter, the flux is directed, not along the electric field, 
but along the vector deldt .  

Takitg into account the expression for the tensor F', we 
find for D ,  

where 

As a result, the final term in (24) reduces to 

A 

D ,  :VC3e= Dee div e+ Dev(eV)e ,  

i.e., the ion flux due to the variation in space of the direction 
of the electric field is described by two scalar coefficients. 

With allowance for the results given above, the expres- 
sion (24) reduces to 

de 
- D,,  - - 

wodt 
Dee div e -  DCv(eV)e .  (25)  

All the coefficients we have introduced have the dimensions 
of a diffusion coefficient and describe nonlocal (to first order 
in AIL) and inertial (to first order in o l v )  effects for the ion 
velocity distribution function, i.e., (25) contains six scalar 
coefficients. 

The coefficients D yl and D y l l  describe anisotropic "ther- 
mal diffusion" of the ions, since the parameter y determines 
their mean energy in the nonequilibrium case. In an equilib- 
rium medium, the coefficient of thermal diffusion can be 
either greater or less than It is natural to assume that 
the coefficients introduced above can also change sign de- 
pending on the collision integral, the value of EIN, and the 
other parameters of the problem. 

In its structure, the expression (25) recalls the expression 
obtained under analogous conditions for the mean electron 

although the expressions for determining the 
corresponding transport coefficients in the case of ions and 
electrons differ strongly. The main difference between the 
ion and electron fluxes is the appearance in (25) of terms 
proportional to deldt and (e .V)e .  This last circumstance is 
due to the appreciable anisotropy of the ion velocity distri- 
bution function, which is absent in the case of electrons, for 
which ( d f o l d u l l ) , , ~ O  and D,,= Dev=O. 

Under certain conditions, the distribution function can 
depend not only on EIN but also on other parameters: the 
gas temperature, degree of ionization, fraction of excited par- 
ticles, etc. The space or time variation of these parameters 
must give rise to additional ion fluxes, which can also be 
described using the approach developed above. 

3. DETERMINATION OF TRANSPORT COEFFICIENTS FOR 
MODEL COLLISIONS 

In the general case, the calculation of the ion transport 
coefficients in a gas under these conditions is a complicated 
numerical problem that is most often solved by the moment 
method or the Monte Carlo method.'-' These approaches are 
very formalized and directed toward obtaining a definite re- 
sult. One obtains much greater physical transparency and 
simplicity in the approaches that are aimed at the solution of 
the Boltzmann equation for model collision 
which can be applied to by no means all real systems and 
only in a restricted range of variation of the external condi- 
tions. The results of the application of these approaches to 
determine the ion transport coefficients introduced in the pre- 
vious section are given in the Appendix. 

One of these approaches, the so-called Lorentz model, 
has been used earlier" to describe electron transport. In par- 
ticular, in the framework of this model analytic expressions 
were obtained for the coefficients when only elastic colli- 
sions are important and the scattering cross section varies as 
a power of the relative velocity of the colliding particles. 
These results can also be naturally applied to the description 
of the transport of light ions in a buffer gas consisting of 
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heavy particles. However, this case is encountered relatively 
seldom in the case of ions. In the Appendix, we have ob- 
tained expressions for these coefficients for more typical ion 
transport models. They include the motion of ions in their 
own gas in a strong electric field, ion transport in the case of 
a constant collision frequency (Maxwell's model), and mo- 
tion of heavy ions in a gas of light neutral particles (Ray- 
leigh's model). 

4. CONCLUSIONS 

In this paper, we have considered ion transport having a 
thermal diffusion nature in weakly ionized gases and plasmas 
in a strong electric field when the ion energy distribution is 
nonequilibrium. Our results differ appreciably from the well- 
studied case with the equilibrium distribution function that is 
realized in the weak-field limit. First, as for ion diffusion, the 
fluxes are strongly anisotropic. Second, they can no longer 
be expressed in the form of a product of the corresponding 
coefficient and the gradient of an effective ion temperature 
that depends on T and EIN. In addition, in contrast to the 
previously studied case of electrons, for ions fluxes propor- 
tional to d eldt and (e.V)e also arise. A physical example of 
the realization of situations in which these additional fluxes 
can play a decisive role is that of a plasma in a rotating 
electric field and in a solenoidal field. In particular, circularly 
polarized rf or microwave radiation is of interest from the 
point of view of the stabilization of some discharge 

In this case, the field is constant in magni- 
tude and varies in time only in its direction. The additional 
flux causes the instantaneous direction of the total ion flux to 
efficiently lag the field. When a homogeneous magnetic field 
varies sufficiently rapidly in accordance with a linear law in 
time, so that the electric solenoidal field is strong in the sense 
of this paper, the main role is played by the additional flux 
proportional to (e-V)e, which characterizes the "inertia" of 
the ion drift motion along the field. 

It should be noted that physically the analyzed fluxes 
differ appreciably from the classical thermal diffusion fluxes 
that are initiated by an inhomogeneous background. In the 
above, we have studied a situation in which the background 
is homogeneous and the fluxes are due to variation of the 
electric field in space and time. 

These ion transport processes can be important primarily 
in experiments with drift tubes made to measure the mobility 
and diffusion coefficients of ions in gases in a strong electric 

The error of the measurement of, for example, the 
ion mobility is -1, and an important contribution to it can 
come from inhomogeneity of EIN and other parameters. In- 
deed, in accordance with the estimate of Ref. 2, the ratio of 
the thermal diffusion flux of the ions to their drift flux under 
the conditions of the experiments can reach 1%. For heavy 
ions in a light gas, this ratio is even greater, since in this case 
the coefficients of longitudinal thermal diffusion are propor- 
tional to mlMBl (Rayleigh's model; M is the mass of the 
neutral particles). 

Significant progress can be expected in this branch of 
physics if we can learn how to measure the ion transport 
coefficients introduced above. For example, the coefficient 
D ,  can be obtained by analyzing experimental data for drift 

tubes when an alternating electric field is applied to the elec- 
trodes. Analysis of these coefficients together with the mo- 
bility of the ions and their diffusion coefficients would make 
it possible to obtain additional information about the cross 
sections and interaction potentials for ions interacting with 
neutral particles. 

The effects studied above may also be important in a 
weakly ionized plasma. Although electron transport is fre- 
quently the most effective in an electron-ion plasma, the 
ambipolar fields that arise have the consequence that the total 
ambipolar diffusion and the thermal diffusion of the plasma 
are determined mainly by the slower ions.2' In addition, 
more and more attention has been devoted in recent years to 
ion-ion plasmas?2 the stationary characteristics and stability 
of which depend on ion transport. We note that such plasmas 
are not encountered only in strongly electronegative gases, in 
which almost all the electrons are attached to neutral par- 
ticles. For example, in the positive column of a glow dis- 
charge there can be radial stratification of a plasma consist- 
ing of electrons and positive and negative ions.23-25 Near the 
column axis, there is an ion-ion plasma, while near the col- 
umn wall electrons and positive ions form the plasma. 

APPENDIX 

Motion of ions in their own gas in a strong electric field 

Suppose that in the case of motion of ions in their own 
gas the main channel for scattering by neutral particles is 
resonant charge exchange leading to exchange of the veloci- 
ties of the colliding particles. At the same time, the motions 
of the ions parallel and perpendicular to the field are "sepa- 
rated," and the ion drift velocity in a strong field appreciably 
exceeds the thermal velocity of the neutral particles 
(mwi* T). In the range of EIN values of interest, the charge 
exchange cross section a can be assumed to be independent 
of the particle velocity. Then the collision integral, the dis- 
tribution function of the ions, and their drift velocity in the 
uniform time-independent case are (Refs. 1-3, 17) 

where 0 (vII) is equal to unity for vll>O and zero for uI1<0, 
and S is the delta function. 

We first consider ion transport along the field. The solu- 
tion of the corresponding equations with allowance for 
(A1)-(A3) can be written in the form 
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The corresponding coefficients are determined by integrating 
the functions given above. They are 

8-5- wo 
De,=O, Dev=O, D,=-- 

8lr N a '  

lr-2 wo D =--- "'0 
e D,=- 

lr N u '  3 lrN, ' 

To determine the ion transport coefficient in the trans- 
verse direction, Dyl, there is no need to solve Eq. (19). 
Instead, following the approach employed to find the trans- 
verse diffusion coefficient D, of  ion^,'-^.'^ we multiply both 
sides of this equation by v, and integrate it in the velocity 
space. We obtain 

where the brackets denote averaging over the velocities. The 
coefficients D yl , Dev , and D,, vanish because the motion of 
the ions at right angles to the field does not depend on the 
parameter EIN. 

The Maxwell and Rayleigh models of ion motion in a gas 

We consider the transport processes discussed above us- 
ing the so-called Maxwell and Rayleigh models of ion mo- 
tion (Refs. 1-3, 17, and 26). In the first, one takes into ac- 
count only elastic collisions of the ions with the neutral 
particles, and the interaction potential is assumed to be a 
polarization potential. Here the particle collision frequency 
v=Ngu does not depend on the relative velocity g. In the 
second model, one considers the transport of heavy ions in a 
gas of light neutral particles (mlM%l); in the case of a suf- 
ficiently strong electric field, this leads to a "needle-shaped" 
ion distribution function f(v), for which the drift velocity wo 
is appreciably greater than the thermal velocity of both the 
neutral particles and the ions. In the Rayleigh model, one 
usually takes into account only elastic collisions with cross 
section that varies as a power on the velocity: aocgPP. 

In the determination of the drift velocity wo and the dif- 
fusion coefficients D, and Dll under the assumptions made 
above, there is no need to find the distribution function f(v) 
with allowance for the corrections for the inhomogeneity of 
the electron density. Instead, one can use the moment 
method, which gives the necessary collision integrals (Refs. 
1-3, 17, 26, and 27). We apply a similar approach to obtain 
the required transport coefficients in the Maxwell and Ray- 
leigh models. 

Multiplying both sides of the equations for A,  B, , BII,  
C, and F ,  by v, or vll, integrating them over velocity, and 
simplifying the collision integrals by analogy with the case 
of ion diffusion (Refs. 1-3, 17, 26, and 27), we obtain 

where v, is the momentum-transfer frequency of ion colli- 
sions with the neutral particles. 

In the Maxwell model, P= 1 and vl = 1.105v, where 
v=21rq~(aplp)1'2, cup is the polarizability of the neutral 
particles, and p is the reduced mass of such a particle and an 
ion. Here the drift velocity and the mean squares of the lon- 
gitudinal and transverse velocities of the ions are1-3,17326 

where v2=0.772v is the viscosity collision frequency of the 
ions with the neutral particles. 

In the Rayleigh model ( m S  M), the drift velocity is de- 
termined from the relation 

and (vi) and (vf) are found 

and 

In this model, D,-D+(-- D, , -mwgl~ v, and 
Dl[- D, - W ~ I V ,  hold, i.e., certain coefficients that describe 
the ion fluxes of thermal diffusion nature are appreciably 
greater than the diffusion coefficients. This is because the 
ionic fluxes considered above are due to the nonlocality of 
the ion distribution function. Generally speaking, they are 
determined by the ion drift velocity. In contrast to them, the 
ion diffusion fluxes are determined by the random 
v e l o ~ i t ~ , ~ ~ , ~ ~  which in the Rayleigh model is - ( m l ~ ) " ~  
times smaller than wo. 
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