
Collective effects in the quantum scattering of radiation 
V. N. Tsytovich 

Institute of General Physics, Russian Acadeniy of Sciences, 117924 Moscow, Russia 
(Submitted 26 May 1995; resubmitted 5 September 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 109, 384-392 (February 1996) 

Quantum effects in the collective scattering of radiation by relativistic electrons are calculated 
under the assumption that the photon energy is much less than the electron rest energy. 
The ratio of the photon energy to the mean thermal kinetic energy of the electrons is assumed to 
be arbitrary. Conditions under which the quantum effects can suppress the classical 
collective effects in the scattering are established. O 1996 American Institute of Physics. [S 1063- 
776 1 (96)00502-91 

I. INTRODUCTION 

The quantum scattering of radiation by free electrons can 
be described by the classical Klein-Nishina formula.' For 
nonrelativistic electrons, the quantum correction to the 
Thomson scattering cross section uT=8.zre4/3rngc4 is 
a=aT+ amKN, 6aKN= -2uTfiwlrnec2 (Ref. 1). In many 
practical applications, one is interested in the scattering of 
radiation, not by individual electrons, but by a collection of 
them having a definite density n,, when collective effects 
can be important. In the classical limit, collective effects 
arise at wavelengths greater than the Debye electron radius 
A,= ( ~ , / 4 m , e ~ ) " ~  (T ,  is the electron temperature, and n, is 
their density); in this case, the scattering cross section is not 
equal to the Thomson cross section and depends strongly on 
the collective parameter a,= A2/8.zr2A2, decreasing sharply 
when it increases. 

Although the general expressions of the classical (non- 
quantum) collective scattering are fairly well known, no 
simple analytic expression exists in the literature. It can be 
obtained using dispersion relations for the permittivity and 
has the form: 

for simplicity, we have set wSwp,, where w,, is the electron 
plasma frequency; the condition A,< A 4 2 .zrcl ope corre- 
sponds to the fairly wide range of frequencies ope < w 
S W ~ , C I U ~ , .  

Hitherto, quantum effects have not been calculated in 
collective scattering, and not even the first quantum correc- 
tions in the collective scattering regime have been investi- 
gated. The present paper is devoted to quantum effects in 
collective scattering in the case when the parameter 
hwlmec2, which occurs in the noncollective corrections, is 
small. This modest problem encounters considerable difficul- 
ties. The present brief exposition of the results of investiga- 
tions that have been made is devoted to overcoming the 
mathematical and physical difficulties in the solution of this 
problem and to possible applications to the Comptonization 
of radiation and radiative transfer in the interior of the sun. A 

useful result is not only the modification of the quantum 
corrections of order fiwlrnec2 by the collective effects but 
also the appearance of additional quantum effects in collec- 
tive interactions; these can be significant even if fiwlmec2 is 
assumed to be small. 

We note that the Klein-Nishina corrections can be writ- 
ten (if we divide and multiply by T,) in the form 

where u T~ = (T, lm,) 'I2 is the mean thermal velocity of the 
electrons, and 

is the ratio of the photon energy to the mean thermal energy 
of the electrons. The expression for the Thomson cross sec- 
tion (the cross section without allowance for collective ef- 
fects), like (1) (when allowance is made for collective ef- 
fects), is valid if one can ignore the relativistic corrections, 
which in order of magnitude are equal to (u+,/c2)uT. There- 
fore, the Klein-Nishina corrections are greater than the rela- 
tivistic corrections when z+ 1. The limit of applicability of 
the relation (2) can be expressed in terms of the parameter z 
in the form z G c2 /u~ , .  

The present investigation is devoted to quantum collec- 
tive scattering under the restrictions 

when the quantum corrections are dominant compared with 
the relativistic corrections. At the same time, if the quantum 
corrections are small, it is convenient to separate the factor 
u$jc2 and write the expression for the cross section in the 

form 

where a,, is given by the expression (1). In this case, the 
problem is to determine the factor T(z,6,), which, in gen- 
eral, can be a more complicated function of z in the interval 
(4) than the function that corresponds to the expression (2), 
but in the limit 4 4 1  it must go over to T(z,S,)= 22 in 
accordance with (2). 

The treatment given below does not presuppose that the 
quantum corrections are small, but it is assumed that the 
parameter zu;,lc2 is small, i.e., that the quantum corrections 
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corresponding to the noncollective scattering regime are 
small. Therefore, in the general case we shall obtain a result 
that does not presuppose smallness of the quantum contribu- 
tions, and then the expression (5)  will not be used. In the 
collective regime, there arises the new parameter z2v;,lc2, 
which may be either small or large [in the latter case, we 
have C I V ~ , ~ Z ~ C ~ I U ~ , ,  which does not contradict the con- 
dition (4) when v T e  lc  4 1 ]. When z 9 clu Te holds, the quan- 
tum corrections need not be small, and they may even com- 
pletely suppress the collective effects in the scattering. 
However, it is true that this range of frequencies is not large, 
and for applications the case in which the quantum correc- 
tions are small has the main interest. 

2. SOME GENERAL RELATIONS FOR QUANTUM 
SCATTERING 

In the general case, the scattering probability can be rep- 
resented in terms of the square of the absolute value of the 
scattering matrix element M multiplied by a 6 function that 
expresses the quantum law of conservation of energy and 
momentum in the scattering. In the conservation law, the first 
quantum corrections in the parameter 2hwlmec2 are very 
readily found: 

where {k,w) is the Cvector of the incident wave, and { k ' , o r }  
is the Cvector of the scattered wave. The following term in 
the expansion has an additional factor of order holm,c2 
compared with the final term in (6). In the relation (6), be- 
sides the quantum corrections it is sufficient to take into 
account the first Doppler corrections [the second term in Eq. 
(711: 

2 

where x is the cosine of the scattering angle. It is necessary 
to include the first Doppler corrections because they are odd 
in y and we are concerned with the problem of determining 
all the quantum corrections containing the factor v$,lc2. At 
the same time, the quantum corrections in collective scatter- 
ing can enter in the first power in v Te I C  and have a different 
parity with respect to y.  Indeed, for the parameter s that 
determines the classical collective effects in the scattering 
(see Ref. 2), we obtain from the relation (6) with allowance 
for the quantum corrections 

The second term on the right-hand side has opposite y parity 
to the first, and the third is obtained with allowance for the 
first Doppler corrections. Thus, in the quantum corrections in 
(8) effects that are both even and odd in y are taken into 
account. In accordance with the inequality (4), we ignore the 

square of the linear Doppler corrections and the quadratic 
Doppler corrections, retaining only the quantum corrections. 

3. SCATTERING MATRIX ELEMENTS 

The greatest difficulties arise in the calculation of the 
scattering matrix element, which consists of two compo- 
nents, namely, the matrix element for scattering by an indi- 
vidual ("bare") charge Mind and the matrix element for col- 
lective scattering (by the screening Debye "cloud") MCOll: 

Of course, interference (partial canceling of the matrix ele- 
ments) makes it impossible to calculate the two effects inde- 
pendently, and in the classical limit the interference leads to 
the rapid decay of the scattering cross section noted previ- 
ously [described by the expression (l)]. 

As can be seen from (7), the parameter z v T e / c  can arise 
in the limit zv;,lc2 < 1 in the problem of the collective 
quantum corrections. Leaving this parameter arbitrary for the 
time being, we first expand only in the parameter zv+,lc2. 
Subsequently, we shall also expand with respect to the pa- 
rameter zv Te / C  to terms of second order in order to take into 
account all the contributions containing v;,lc2. 

In the general case, the matrix element Mind corresponds 
to the Klein-Nishina formula (or, more precisely, the square 
of its absolute value leads to the Klein-Nishina formula). 
Using the standard expressions of quantum electrodynamics, 
we can verify that the first quantum corrections to the Thom- 
son matrix element of the classical scattering are strictly 
equal to zero, while the corrections (2) are solely due to the 
recoil effect in the scattering described by the final term in 
the conservation law (6). The matrix element Mind contains 
only the small parameter zv+,lc2 and not the parameter 
zvTe l c .  Thus, the matrix element Mind can be set equal to the 
classical Thomson matrix element. 

The situation with regard to the collective matrix ele- 
ment is more complicated. Usually, it is obtained from the 
general theory of fluctuations. For the quantum relativistic 
case this is an extremely complicated problem, and hitherto 
such calculations have not been made. Our tactic is to solve 
for the square of this matrix element and then find its sign 
from the correspondence principle (by considering the clas- 
sical limit). As is well known (see Refs. 23 and 3), for non- 
relativistic particles the matrix element M,,,, is proportional 
to the coefficient of the nonlinear density of the charge ex- 
cited in the plasma by two waves-the incident and the 
scattered-and is inversely proportional to the longitudinal 
permittivity E @- ,,,,- ,t at the beat frequency. The probabil- 
ity of purely collective scattering (with neglect of the ordi- 
nary Thomson scattering) can be found from the equation for 
the quasilinear diffusion of particles by the scalar potential 
generated by the nonlinear charge density of the two waves 
at their beat frequency.2 A general relativistic quantum qua- 
silinear equation is found in Ref. 4. Here, we shall use this 
circumstance to find the quantum corrections. The relativistic 
quantum quasilinear equation [see Eq. (1.122) in Ref. 41 can 
be used here by expanding its coefficients with respect to the 
parameter hwlrn,,c2. We find that the first quantum correction 
of order iiolm,c2 in these coefficients is strictly equal to 
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zero. Thus, it is shown that the matrix elenlent MCoII can be 
expressed in terms of the nonlinear coefficient of the qua- 
dratic charge density and in terms of the linear permittivity 
by the same expression (Ref. 2, see also Ref. 3) as in the 
classical description except that the nonlinear coefficient of 
the charge density and the linear permittivity must be de- 
scribed by the quantum expressions. 

To find these last, we use the perturbation theory devel- 
oped in Ref. 5 in the equation for the relativistic quantum 
density matrix. For the longitudinal permittivity we obtain 
the result found earlier in Ref. 6, and for the coefficient of 
the quadratic charge density we find a rather cumberson~e 
expression containing squares of energy denominators with 
virtual pair production. Rather lengthy calculations show that 
in the limit fi+O both expressions go over into the well- 
known classical expressions. Further, ignoring the quadratic 
terms in the parameter fiwlm,c2, we can write the linear 
electron permittivity at the beat frequency, which occurs in 
the denominator of the collective scattering matrix element, 
in the form 

4rre2 
E-=E( , -w ' ,k -k '=  1 + dp 

(k- k'12 1 i?;;jS 

where Qp is the electron distribution function (the electron 
occupancies). Finally, rather lengthy calculations for the co- 
efficient of the quadratic charge density show that to zeroth 
order in the parameter v;,/c2 and neglecting the quadratic 
corrections in the parameter fi wlm,lc2, the coefficient can 
be expressed in terms of the approximate quantum relation 
(10) for the electron permittivity by the same expression as 
in the classical limit (see Ref. 2). 

This means that if the matrix element of the Thomson 
scattering is taken as unity and the ionic contribution to the 
total permittivity is ignored (this is admissible for the scat- 
tering cross section averaged over the electron distribution, 
in which the fraction of electrons with velocities of the order 
of the ion thermal velocities is small-this, naturally, holds 
for a thermal electron distribution), then the matrix element 
of the collective scattering will be equal to - (E- - I)/E- , 
and for the total matrix element we obtain in these units 

The canceling of the terms in the matrix elements is very 
important, but now the role of the collective effects reduces 
to the appearance of the factor I I ~ E - ~ ~ ,  in which the quantum 
effects have so far been taken into account only under the 
assumptions (4). Using the expansion (7), we can readily 
establish that under conditions for which the quantum cor- 
rections in (10) are small, expanding with respect to them is 
equivalent to expanding with respect to the parameter 
zuT,lc, and not with respect to the Klein-Nishina parameter 
zv~.,1c2. Of course, in the case of expansion with respect to 
the parameter Z V ~ , I C  it is necessary to take into account the 
terms quadratic in this parameter, i.e., the terms of order 
z2u;.,/c2, since the linear terms vanish in the case of aver- 

aging over the Maxwellian distribution of the electrons. In 
addition, we have posed the problem of the calculation of all 
the quantum corrections (under conditions when the quantum 
corrections are small) containing the small factor u;.,/c2. Un- 
der conditions for which the quantum corrections remain 
small, the term of relative order z2v~ , l c2  is admittedly small, 
but still much greater than the Klein-Nishina term zv;,lc2 
by virtue of the condition z 9  1. Thus, in the collective scat- 
tering regime the quantum corrections to the scattering can 
be much greater than those that follow from the Klein- 
Nishina formula. However, it must be borne in mind that the 
z2u;,,lc2 corrections arise solely as a result of collective ef- 
fects, and therefore in the range of frequencies in which the 
collective effects become unimportant the quantum correc- 
tions must decrease sharply and tend to the Klein-Nishina 
corrections of relative order z u ~ , / c 2 .  

4. SCATTERING CROSS SECTION 

Using the results presented above, we obtain the scatter- 
ing cross section averaged over the electron thermal distri- 
bution in the form 

where E- is given by the expression (10). 
The quantum expression for the permittivity that occurs 

in the scattering cross section can be represented in terms of 
the well-known function that determines the classical scatter- 
ing cross section, 

and in terms of the quantum parameter [below the approxi- 
mate expression for it is written down by means of the ex- 
pansion (7)] 

In the first approximation, the parameter K has the order 
zvTelc. 

From (lo), we obtain 

- 
1 - W ( S -  K )  

S - K  
( 1  5) 
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Bearing in mind that 

we obtain in the limit K+O the classical expression for the 
screening factor in the scattering: 

5. LIMITING CASES 

We consider first the case when the quantum corrections 
are small, i.e., Z V ~ , / C <  1,  but by virtue of the condition z P l  
they can exceed the corrections (modified by the collective 
effects) which are equal in order of magnitude to the Klein- 
Nishina corrections. 

The expansion of (15) with respect to the parameter K 

has the form 

and with allowance for the expansions (7), (8), and (14) 

where the final term containing the second derivative of 
W(y) arises both from (17) and from the expansion of W(s) 
with respect to the deviations of s from y. The relation (18) 
does indeed show that the collective effects are determined 
by the z2v;,lc2 corrections (naturally, the term which is le- 
near in this parameter will not occur in the final result by 
virtue of the symmetry of the thermal distribution with re- 
spect to y). Expansion of the expression (12) with respect to 
these two parameters zv$,lc2 and z2v&/c2 gives the factor 
T(z,s,) multiplying aT~$, /c2  in the expression for the 
quantum corrections to the collective scattering [in accor- 
dance with the definition (5)]: 

where 

and 

The relation (21) and the first term of (20) are obtained with- 
out allowance for the corrections described by the second 
term of (17) by representing the integrand in a form contain- 
ing the corrections Sy to y in the expression W(s) = W(y 
+ Sy) and the corrections Sx to x in the expression for 1 -x 
- Sx when the expansion (7) is used in oi,/(k - kr)'v$, and 
the terms even in y are retained. There is then an integration 
by parts with respect to y, and the differentiation with re- 
spect to x is represented as differentiation with respect to the 
frequency using the dependence of the parameter 6, on the 
frequency (Sea l/02). 

The correction (20) goes over into the Klein-Nishina 
correction in the limit S,+O [at the same time T(Se)-+2], 
whereas the correction (21) vanishes in the limit 6,-+0, but 
for 8,-1 and zB1 the collective correction (21) greatly ex- 
ceeds the correction (20). Thus, in the collective scattering 
regime the quantum corrections to the scattering are much 
greater than those that are described by the noncollective 
scattering. In the limit 6,P 1, numerical calculation of the 
integrals gives 

We now consider the case zvTe/c+ 1 ,  which, naturally, 
is compatible with the condition (4) adopted for a plasma 
at nonrelativistic temperatures. Then we have KP 1 and 
W(K)= W(- K)=- 1/22,  and this leads to the following ex- 
pression for the screening scattering factor: 

I 

For K - Z U ~ , / C  G S;L4 (which, naturally, requires fulfillment 
of the condition 6,Pl) the scattering is suppressed by the 
collective processes, but the quantum effects significantly re- 
duce it. For K~s: '~ ,  the value of the screening factor is close 
to unity, and therefore the quantum effects suppress the col- 
lective reduction of the scattering cross section, and it ap- 
proaches the Thomson cross section. The range of frequen- 
cies in which these last inequalities are satisfied is relatively 
narrow, but the result itself is of fundamental interest. For 
applications, the case in which the quantum collective cor- 
rections are small is the most interesting one. 
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6. DISCUSSION OF THE RESULTS 

The effects described here must play an important role in 
radiative transfer and in radiative heat conduction. The value 
of the effective parameter z is determined by the opacity, 
which, in its turn, depends on the derivative of the Planck 
distribution with respect to the temperature. This derivative 
is proportional to z4eZl(ei- I ) ~ .  For the z-independent ef- 
fects, the effective value of z is determined by the maximum 
of the last expression and is close to 3.8. For the quantum 
effects proportional to z2, the effective value of z will be 
close to 6, and this makes it possible to obtain estimates by 
means of the approximation employed here. In the problem 
of the deficit of solar neutrinos, the solution could consist of 
reconciliation with a theory of radiative transfer that takes 
into account collective effects and increases the transparency 
of the interior of the sun.7 As zeroth approximation, one may 
use the estimates of the plasma parameters in the interior of 
the sun obtained without allowance for the collective effects. 
Then we have vTe/c = ~ / ~ O , , Z U ~ ~ / C  = 0.3 and 2 ~ 0 . 0 4 5 ,  i.e., 
one can expect corrections of about 4-5%. This is a value 
that in the problem of the deficit of solar neutrinos is rather 
appreciable. An exact result can be obtained only by means 
of complicated numerical calculations similar to those made 
in Ref. 7 and taking into account the broadening of the Ra- 
man resonance, 1 + SeW(y)I(l -x)--0. 

The quantum corrections are also very important in a 
different problem, namely the Comptonization of radiation, 

when for isotropic radiation the main term with the Thomson 
cross section cancels on account of the balance of the direct 
and reverse processes, and the entire effect is determined by 
the relativistic and quantum corrections to the scattering 
cross section. In the collective scattering regime, they will be 
determined by the relations described here. 
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