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The J-matrix method, which is successfully used in atomic and nuclear physics to construct both 
many-particle wave functions of bound states and continuum states, is applied to the 
problem of the single ionization of the He atom by fast electrons, including the case when the 
residual ion is in the excited state. The theoretical calculations are compared with the 
available experimental data and also with the calculations of other authors. O I996 American 
Institute of Physics. [S 1063-776 1 (96)00302-61 

1. INTRODUCTION d3un 
8 ~ a ~ b  - - 

The process of single ionization of an atom by a fast dfi,dfibdEb ( 2 ~ 1 ~ ~ 0 ~ ~  

electron that leaves the residual ion in an excited state has 
attracted the interest of experimentalists in recent years."2 x C ~m IAX,(P~ ,Q) + A ! ~ ( P ~  ,Q)I~ ,  (1) 

These processes, considered together with ordinary (e,2e) 
collisions in which the residual ion remains in the ground where 

state and double ionization [(e,3e) collisions], make it pos- 
sible to understand at a significantly deeper level the mecha- ~:)m(pb ,Q)= ( mi;(Pb ; r l  9 r2 ) f i d~ ( r l  .r2)dr1dr2. 
nisms and dynamics of electron interaction with complicated (2) 
many-electron systems. 

At the present time, most (e,2e) experiments with exci- 
tation of the ions are made in the so-called dipolar coplanar 
geometry, in which the energies of the incident, Eo, and scat- 
tered, E,, electrons are nearly the same and are of order a 
few kilo-electron-volts. Such kinematics is characterized by 
a small energy and momentum transfer to the atom. The 
typical differential cross section has the form of a two-hump 
curve symmetric with respect to the momentum transfer vec- 
tor Q=po-pa . The peak around the positive direction of the 
vector Q is called the binary peak and arises largely from a 
direct collision of the incident and atomic electrons. The 
backward peak is the result of complicated interaction of the 
ejected electron with the residual ion. It is noteworthy that 
the backward peak in the case of (e,2e) reactions with exci- 
tation is much stronger relative to the direct peak than in 
reactions that leave the ion in the ground state. This can be 
understood qualitatively, since in these reactions the greatest 
probability corresponds to the process in which an electron is 
excited in the ion as a result of slow secondary collisions of 
the ionized electron with the atomic electron. However, the 
quantitative description encounters appreciable computa- 
tional difficulties associated with the need to include the con- 
tributions of a large number of virtual reaction channels. 

If we consider helium, the simplest target, then the dif- 
ferential cross section of single ionization with excitation, or 
the triple differential cross section (TDCS), in the dipolar 
kinematics can be written in the form (in this paper, we use 
atomic units) 

Let (Eo,Po). (E ,  ,pa), and (Eb ,pb) be, respectively, the 
energies and momenta of the incident, scattered, and ejected 
electrons; the quantum numbers (nlm) describe the excited 
state of the ion-in the given case, a hydrogenlike atom with 
charge Z=2  of the nucleus. In writing down the expressions 
(1) and (2), we assumed that the fast electrons eo and e, are 
described by plane waves and that the first Born approxima- 
tion holds. This is more or less true in the case of ionization 
from the outer shell of the atom. 

The transition operator f i  can be written both in the 
length representation (L representation), 

and in the velocity representation (V representation): 

where AE is the energy transfer to the atom. It is easy to 
show that the amplitudes (2) are the same in both represen- 
tations if @im(pb ;rl  ,r2) and qo(rl ,r2) are exact solutions of 
the many-particle Schrodinger equation 

and describe, respectively, a bound two-electron system (in 
the given case, the helium atom) and the two-electron system 
with one electron in the continuum. The function 
milm(pb ;rl  ,r2) has the asymptotic behavior 
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The use of the approximate expressions +o and +,in, [in 
view of the impossibility of exact analytic solution of Eq. 
(3)] leads to a difference between the results obtained in the 
L and V representations. The extent of the difference can 
indicate the quality of the calculation of the wave functions. 

Note that in the expression (2) the function +o is sym- 
metric with respect to interchange of the coordinates rl  and 
r2, while the function q$i, is not symmetric on account of 
the choice of the asymmetric asymptotic behavior (4). Then 
the amplitude A(,:?, describes the mechanism of ionization by 
direct impact, while the amplitude A$!, corresponds to the 
so-called shake-off mechanism, when the incident electron 
"shakes off" one of the atomic electrons to an excited or- 
bital, and the second atomic electron is ejected from the atom 
as a result of the abrupt change of the intra-atomic field. 

Most theoretical calculations of the amplitudes A(,;?, and 
~ $ 1  are based above all on some model representation of 
the ground-state function +o, namely, either in the form of a 
sum of Hartree-Fock orbitals or in the form of a certain 
variational sum of the type 

where r,,=Ir, -r21. In its turn, the representation of the final- 
state function &, varies from a simple product of two func- 
tions, which is obvious from (4), to more serious forms ob- 
tained by calculating by the coupled-channel method, by 
means of bispherical harmonics, etc. Without discussing the 
advantages and shortcomings of the existing theoretical cal- 
culations, we mention the recent paper of Kheifets et al. 
(Ref. 3), and also the earlier studies of Burkov et 01.: 
O'Mahoney and ~ota-~urtado:  Dupre et al.? Robaux 
et a1.,6 and  weed? 

A feature common to most of the calculations is insuffi- 
cient accuracy in the calculation of the wave function $;,. 
This leads to a strong discrepancy between the curves of the 
differential cross sections in the L and V representations. In 
particular, it leads to a loss of orthogonality of the functions 

$4, and 43,. 
To calculate in this paper the differential cross sections 

of processes of single ionization with excitation, we use the 
well-known method of pseudostates in conjunction with the 
J-matrix method,*-'' which has proved itself well in nuclear 
and atomic physics and makes it possible to use the fairly 
well studied diagonalization scheme to solve problems in- 
volving the continuous spectrum. 

2. THEORY 

In the J-matrix method, the wave functions of both the 
continuous spectrum and of the bound states are represented 
in the form of expansions with respect to basis functions. To 
facilitate the calculations, it is desirable to keep the set of 
basis functions as small as possible. In the given case, it is 
convenient to use basis functions symmetrized with respect 

to interchange of the coordinates r,  and r2 and, therefore, 
determine imtnediately a symmetrized function (all calcula- 
tions are made only for singlet states): 

The use of the symmetrized wave function (5) makes it 
possible to obtain an expression for calculation of the differ- 
ential cross section in the form 

In the pseudostate method, it is assumed that one of the 
electrons can be in a pseudostate characterized by quantum 
numbers (n '1 'm I ) .  The number of pseudostates is finite. The 
second electron is in a state that can belong to either the 
discrete or the continuous spectrum. The total wave function 
of the two-electron system is sought approximately in the 
form 

where 9' is the symmetrization operator, xnj l ' ( r2)  are the 

radial wave functions of the pseudostates, and a;;Lm'(rl) 
are coefficients that can nominally be regarded as wave func- 
tions of the second electron. 

The wave functions of the pseudostates are found by 
expanding in square-integrable basis functions: 

where the functions Qnl(x) form a Laguerre basis, 

tl is the basis parameter, and L,"(x) are the associated La- 
guerre polynomials. 

The number N1 determines the accuracy of the calcula- 
tion of the wave functions.1° This parameter can be chosen 
independently for each partial wave. 

For numerical calculation of the wave function 
fitlrn(pb ; r l  ,r2), it is convenient to separate the total orbital 
angular momentum L of the two electrons and its projection 
M and write the final-state wave function of the ~ e +  ion and 
the ejected electron in the form of an expansion 
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where (nlnr)  are the quantum numbers of the ~ e +  ion in the ~ = ~ 2 / 2 +  eIll is the total energy, is the energy of the 
final state, (Ap) are the quantum numbers of the ejected elec- pseudostate, and the basis vectors I(vA)(nl):LM) in the co- 
tron, I"(nfl 'A')  is the index of the reaction channel, ordinate representation have the form 

where 

The expansion coefficients aklr1 r(E) are the solution of 
the infinite system of algebraic equations 

2 a ' ; , r l r ( ~ ) ( ( n ' l ' ) ( v ' h ' ) : ~ ~ ~ ~ - ~ ~ ( ~ ~ )  
MT' v f = O  

where H is the Hamiltonian corresponding to Eq. (3). 
This system of equations is solved numerically by means 

of the J-matrix method.' The main approximation of the 
J-matrix formalism as applied to the given problem9.'0 con- 
sists of the neglect of the matrix elements of the residual 
interaction 

for v' > Nit, and (or) #>NAN. AS a result, the system of 
equations (8) is decomposed into two parts-an interior 
(J'GN,~') and an exterior (#>NAft). The infinite system of 
equations for J'>NAo can be solved exactly analytically, and 
its solution is given essentially by the exact Coulomb func- 
tions of the ejected electron in the chosen discrete represen- 
tation multiplied by the wave functions of the pseudostates 
of the residual ion. For d'<Nxl*, the system of equations (8) 
can be solved by the diagonalization method. The matching 

of the interior and exterior solutions makes it possible to 
determine the characteristics of the continuous spectrum of 
the two-electron atomic system. 

The ground-state wave function of the He atom is found 
by expanding in the basis set (7): 

Therefore, to determine , rz) it is sufficient to diagonal- 
ize the matrix of the Hamiltonian H in the basis (7). 

The obtained wave functions of the ground state and 
continuous spectrum make it possible to calculate the so- 
called double differential cross section (DDCS) for scattering 
of fast electrons by the He atom for the case when the He ion 
is left in the state ( n l )  and integration is performed over the 
angle of the ejected electron, 

and also the partial differential cross section of single ioniza- 
tion: 

where dl is the anisotropy coefficient: 

L 
Summed over the orbital angular momenta I, the cross 

J;(Q)= 2 av,r,,(E)((n'l ')(v'A'): section (9) has the form 
~ ' r '  

n = \ 1 ( 2 ~ +  1 ) ( 2 ~ +  1) (2Lt+  1)(2h1+ 1). 
L X L ' ~ '  where 
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FIG. 1. Differential cross section d3u,,ldCl,dClbd~, (in atomic units) for 
the He(e,2e)He+ reaction ( n =  I). The kinematic conditions are as follows: 
E,=5500 eV; a) Eb=5 eV, 0,=0.35"; b) Eb=10 eV, 0,=0.32"; c) Eb=75 
eV, 8,=1°. The experimental points are taken from Ref. 2. The solid curve 
represents our calculations, the dashed curve is the calculation by the 
coupled-channels m e t h ~ d , ~  and the dot-dash curve is the calculation in the 
model of orthogonalized Coulomb waves.' 

3. CONCLUSIONS AND DISCUSSION 

In Figs. 1-3, we give the results of calculations made in 
accordance with the scheme presented in the previous sec- 
tion. The experimental data are taken from the studies of the 
group of ~ a h m a m - ~ e n n a n i ~  (Figs. 1 and 2) and Stefani's 
group' (Fig. 3). In Table I, we give our calculated values of 
the double differential cross sections and the anisotropy pa- 
rameters corresponding to Figs. 1-3. 

In the calculations of the present paper, we have used 
basis functions with total orbital angular momenta L =0, 1, 2, 
3, 4. The number of basis functions N 1  taken into account in 
each partial wave 1 for each value of the total orbital angular 
momentum L and also the parameters <, of the Laguerre 
basis are given in Table 11. The diagonalization calculation of 
the ground state in the chosen basis (see Table 11) gave a 
fairly accurate value of the ground-state energy: 
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FIG. 2. Differential cross section d3a,,ldCl,dClbd~, (in atomic units) for 
the He(e,2e)Hef reaction (n=2). The kinematic conditions are as follows: 
E,=5500 eV; a) E b = 5  eV, 0,=0.35O; b) E b =  10 eV, 0,=0.32°; c) Eb=75 
eV, 0, = 1 O. The experimental points are taken from Ref. 2. The solid curve 
gives the results of our calculations, the dashed curve the results obtained by 
the coupled-channel r n e t h ~ d , ~  the dot-dash curve the calculations in the 
model of orthogonalized Coulomb waves: and the curve with two dots 
gives the result of calculation in R-matrix form of the strong-coupling 
m e t h ~ d . ~  The multiplication coefficients for the theoretical curves are indi- 
cated in the figure. 

E,= -2.90362 a.u (the more accurate theoretical calculation 
in the nonrelativistic model with infinitely heavy nucleus that 
we employed is Eo= -2.90372 a.u; the experimental value is 
Eo= -2.90370 a.u, see Ref. 1 I). 

FIG. 3. Differential cross section r l 3 u , , / d C l , d R b ~ i ~  (in atomic units for the 
~e(e.2e)He'  reaction (n=2). The kinematic conditions are as follows: 
E,,= 1200 eV, E6=20 eV, 0,,=4". The experimental points are taken from 
Ref. 1. The solid continuous curve gives our calculations, and the dashed 
curve gives the results of one of the potential 
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TABLE I.  Differential cross scctions d3a, , l t l l l , ,df l , , t l~, ,  and anisotropy parameters (for A s 4 )  

The calculations were compared with other theoretical 
results, in particular with the model of orthogonalized Cou- 
lomb waves (OCW in foreign publications), the model based 
on a multichannel R matrix (FBMC: first Bohr multichan- 
nel), and the coupled-channel method proposed recently in 
studies of McCarthy's group (CC: close coupling). 

We describe briefly the main characteristics of the mod- 
els. 

The model of orthogonalized Coulomb wavesI2 is cur- 
rently widely used for estimates and uses a "good" ground- 
state wave function of the helium atom, in particular the 
function from the handbook of Clementi and ~ o e t t i ' ~  for 
n = 1 and the function of Tweed and ~ a n g l o i s ' ~  for n =2. The 
ejected electron in the final state is described by a Coulomb 
function with charge Z= 1 for n = 1 and an adjustable param- 
eter 1 S Z S 2  for n =2. 

In the method of strong channel coupling, the initial and 
final states are described by means of the multichannel R 

TABLE 11. Number of basis functions taken into account and the parameters 
of the Laguerre basis (6) for different partial waves used in the calculation 
of the ground state and excited states of the He atom (for different total 
angular momenta L). 

matrix,I5 and this automatically leads to their orthogonality. 
The calculations differ in the number of channels taken into 
account and include either three or five pseudostates. 

In the coupled-channel m e t h ~ d , ~  a multiconfiguration 
Hartree-Fock wave function of the He atom is used, and the 
final wave function is calculated by the coupled-channel 
method in the momentum representation in the first approxi- 
mation in accordance with perturbation theory. In this sense, 
the model of orthogonalized Coulomb waves is a zeroth ap- 
proximation. 

We note some general features characteristic of practi- 
cally all types of calculations. 

First, all calculations for n= 1 give practically the same 
picture: The binary peak (around +Q) is more powerful than 
the backward peak, and for low energies Eb the calculated 
values are approximately the same amount below the experi- 
mental values in the region of the backward peak, although 
with increasing energy Eb this difference is eliminated. 

Second, in the case n=2 the binary-peak-backward- 
peak ratio is definitely less than for n = 1.  At the same time, 
most calculations give results that are low relative to the 
experiment, although the coefficient of "multiplication" de- 
creases with increasing E,, . The only exception is the model 
of orthogonalized Coulomb waves, which in various modifi- 
cations gives results that are much too large or gives strong 
fluctuations of the theoretical curves16 in poor agreement 
with the experiment. 

We now consider the physics of the processes that make 
it possible to explain qualitatively the observed effects. Fig- 
ure 4 is an approximate scheme of the electron orbits in the 
He atom (the energy of the single-particle state is 24.6 eV) 
and in the ~ e +  ion (energies 54.4 eV for n = 1 and 13.6 eV 
for n=2). The essence of the first Born approximation, 
which is used to obtain the expressions (1) and (2), is a 
single direct collision of a fast incident electron with one of 
the helium electrons. 

Suppose that we even "switch off" the interaction be- 
tween electrons I and 2 in the final state. Then the following 
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FIG. 4. 

development of the events is the only one possible: The elec- 
tron with respect to which the impact occurred leaves the 
atom, and the second electron "descends" to the inner orbit 
with the ground-state energy of the ~ e +  ion solely as a result 
of interaction with the nucleus. This process, described by 
the term ALLl!, (2), corresponds to ionization with transition 
of the residual ion to the ground state (n = 1) and leads to a 
strong binary peak in the cross section. Here all the models 
of the final state, even the simplest, give similar results, since 
the process is almost classical. 

In contrast, if the interaction of the helium electrons 1 
and 2 in the final state is "switched on," the second electron 
goes over, with a very small probability and solely as a result 
of purely quantum tunneling effects, to the orbit further from 
the nucleus. This corresponds to excitation of the residual ion 
at the end of the reaction (n =2). Such a process is possible 
only if allowance is made for the potential V , 2  in the calcu- 
lations of the final-state function when as a result of the 
secondary interaction of electrons 1 and 2 the bound electron 
goes over to the higher orbit. This immediately removes a 
model like the orthogonalized Coulomb wave model from 
among the "good" models. At the same time, there can also 
be another mechanism, in which the primary interaction of 
the incident electron and one of the helium electrons carries 
the latter into the excited state, while the second electron 
goes over at the same time into the continuum as a result of 
internal interactions. This mechanism corresponds to the 
term A::,),,, [the expression (2)]. The balance of A:,;;, and A::;, 
changes the binary-peak-backward-peak ratio in the case 
n =2. The observed lowering of the calculated values relative 
to the experiment in the region of the backward peak does 
not yet have a quantitative explanation and is apparently due 
to the behavior of the wave functions at intermediate dis- 
tances from the nucleus. 

Finally, the difference observed in the calculations of 
McCarthy's group between the cross sections obtained using 

the L and V formalisms (the latter gives somewhat better 
results) is due to the inadequate accuracy in the calculation 
of the wave functions and, in particular, reflects the nonor- 
thogonality of the functions of the final and initial states. 
However, when the V forn~alism is used, the matrix elements 
tend to zero at Q =0, and this makes it possible to speak of a 
certain quasiorthogonality." 

Our calculations have been made in the L representation. 
We have established the convergence of the calculations with 
increasing number of values of the total orbital angular mo- 
mentum, partial waves, and size of the basis ( N , )  taken into 
account. 

A certain discrepancy between the results of our calcu- 
lations and the experimental data can, in our opinion, be 
explained by the inadequacy of the first Born approximation, 
since the analogous calculations of photoionization of the He 
atom" (for which the dipole approximation is entirely ad- 
equate) give excellent agreement with the experiment. 
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