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The problem of the induction of intermittent behavior by fluctuations in the rate constant of a 
reaction in a system described by the Smoluchowski equation is solved. The critical 
values of the noise level above which the system separates into regions with enhanced and 
reduced concentrations of a substance are obtained. Engineering applications of this behavior are 
proposed. O 1996 American Institute of Physics. [S 1063-776 1 (96)0220 1 - 1] 

1. INTRODUCTION 

Theoretical investigations of the Smoluchowski 
equation,' which describes the diffusion of molecules in a 
potential field and their reactions with molecules of the me- 
dium, pertain to a traditional and fundamental subject in 
physics. This equation is encountered in descriptions of phe- 
nomena in diverse areas of science, such as the passage of 
particles through a membrane: biochemical reactions within 
a protein globule,3 and intramolecular reactions4 (the transfer 
of an electron, electron energy, a photon, or individual 
groups of atoms): 

Here n(r , t )  is the local density of some reactant R;  k( r )  is 
the coordinate-dependent rate of the reaction between mol- 
ecules of R and molecules of the medium s,  whose concen- 
tration is assumed to be constant; V is the gradient operator; 
D is the diffusion constant; and 6= kBTa is a parameter that 
determines the intensity of fluctuations (the so-called noise 
level), where kB is Boltzmann's constant and Ta is the abso- 
lute temperature. The term in square brackets in Eq. (1) takes 
fluctuations of the medium into account, which can be de- 
scribed by Brownian motion in the potential field U(r) .  

In the absence of a reaction, i.e., when k(r)=O, Eq. (1) 
has a solution that describes a state of equilibrium: 

pose of the present work is to describe the contribution of 
such fluctuations to the dynamics of the system (1) in the 
rate-limiting step of the reaction. 

Let us consider a one-component system with a reaction 
and diffusion, whose behavior is described by the following 
stochastic partial differential equation: 

Here we took into account fluctuations of the rate constant of 
the reaction by introducing the stochastic term h (n )v ( r , t )  
into Eq. (I) ,  where h(n) is a certain function of n that de- 
scribes the noise-induced deviations from deterministic be- 
havior of the system, and v(r , t )  represents ordinary Gauss- 
ian white noise with zero mean and intensity a= a(Ta) :  

A formal solution of Eq. (4) in terms of path integrals 
along trajectories was given in Ref. 7. Each trajectory 
n=n( r , t ) ,  which is a solution of Eq. (4), is realized with a 
certain probability, specified by the probability functional 
P[n(r , t ) l :  

neq=ZP'  exp(- U(r)/  6), where 

In the absence of diffusion, i.e., when D = 0 ,  each state 
n(r , t )  decays at a characteristic rate k(r): 

A description with consideration of the combined effect of a 
reaction and diffusion was given in Ref. 5. 

Growing interest has recently been aroused by a descrip- 
tion with consideration of fluctuations of the control param- 
eter, i.e., the rate constant of the r e a c t i ~ n , ~  which are taken 
into account by introducing an additional stochastic term, 
i.e., the so-called multiplicative noise, into Eq. (1). The pur- 

Here p ( r , t )  is a certain real auxiliary field, and we have 
introduced the notation h '  = 6h/Sn, 

The discretization constant y ( O s ~ l ) ,  which is equal to 112 
in the Stratonovich interpretation of the stochastic differen- 
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tial equation (1) and is equal to zero in the Itoh 
interpretation: is used for generality. As will be shown, our 
approach presupposes a definite choice of y. 

We calculate the trajectory that makes the largest contri- 
bution to the probability functional (6) using the saddle-point 
m e t h ~ d . ~  Then the most probable (optimal) trajectory satis- 
fies the following variational equation 

dn/dt=g(n)+DAn+ah(ph- yh') 
-dpldt=pg'- ygl'+DAp+u(ph'- yhU)(ph- yh'). 

(11) 

The system of two coupled deterministic reaction-diffusion 
equations obtained as a result of this procedure for the initial 
component and a certain auxiliary field makes it possible, in 
principle, to describe both very rare events, in which the 
behavior of the system is determined mainly by one trajec- 
tory, and the optimal, i.e., most probable, behavior of the 
system, which is averaged over an ensemble of realizations. 
However, to obtain solutions in explicit form, it is necessary 
to invoke additional arguments regarding the domain in 
which noise plays a significant role. 

The correct interpretation of the equations must be based 
on the fact that the solutions of this system are the most 
probable (optimal) trajectories of the random process de- 
scribed by the stochastic differential equation (4). Then the 
most probable behavior of the system is described for the 
most part by the Smoluchowski equation (I), which is rep- 
resented by the first three terms in the equation for the con- 
centration of the system (11). The influence of noise be- 
comes significant in the final stage of the reaction, when an 
approximate balance is established between the forces repre- 
senting free diffusion, which strives to transform the initial 
distribution into a uniform distribution, the potential field, 
which strives to lead the initial distribution to the state de- 
scribed by the potential minimum, and the reaction, which 
takes place at a coordinate-dependent rate. 

Since a appears in explicit form in Eq. (7), it should be 
possible to isolate a small parameter related directly to the 
noise. This would make it possible to directly supplement the 
optimal trajectory method with procedures from the 
multiple-scales method and perturbation theory. As a result, 
the dynamics of the system (4) will separate into motion in 
two mutually orthogonal subspaces, the behavior of the so- 
lutions lying in the "noise-induced" subspace being repre- 
sented by solutions of the Ginzburg-Landau equation, and 
the dynamics of the system in the other orthogonal space 
being described by the Smoluchowski equation (1). We shall 
describe the observed intermittency in terms of the concen- 
tration peaks and troughs which appear. 

2. PERTURBATION THEORY 

It was shown in Ref. 9 that a noise-induced transition'' 
can be observed in a system with a reaction, diffusion, and 
external multiplicative noise of intensity a somewhat a criti- 

cal value (a= a,) in the absence of an external field U(r). 
We now refine the value of a, for a system described by the 
stochastic differential equation (4). 

We introduce the small parameter 

where selection of the value of ni makes it possible to 
"keep" the value of E small in order to describe the behavior 
of the system both in the immediate vicinity of a,(nz- 1) 
and far from the critical value of the noise (ni b 1 ). 

It was shown in Ref. 11 that the effect of multiplicative 
noise reduces to the fact that the concentration of a substance 
can increase at random points in space (noise-induced attrac- 
tors) at the expense of a decrease in its concentration in other 
regions of space. In effect, the noise plays the role of a "jani- 
tor" who sweeps molecules of the substance into the 
attractors/piles. 

It is natural to assume that white noise does not influence 
the reaction rate or the effects of external forces. In this sense 
there is a certain similarity between our approach and the 
method proposed in Ref. 5 to describe the kinetics of reac- 
tions with restricted diffusion "perpendicular to the reaction 
coordinate." For example, the following "noise-induced" 
variables will be "perpendicular coordinates" to r and t, re- 
spectively, in our case: 

We introduce the following functional relations: 

Next, we assume that the new and old variables are indepen- 
dent, yielding the following replacements in the differentia- 
tion operations in Eq. (7): 

Assuming that nde,(r,t) is a solution of the Smoluchowski 
equation (I), we rewrite the functional .F in the following 
form: 

+p(-wn,+DA,n,-dnI/dT)- yg'], (17) 

where 

We note that by modifying . F i n  such a manner, we simply 
neglected the trajectories associated with solutions of the 
Smoluchowski equation that are realized with a probability 
of unity. Then the most probable fluctuation satisfies the 
variational equation 

From (19) we have a system of coupled equations, 
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I dn,ldT=-wnl+DARnI+nl(pnl- ye),  
-dpldT= - wp- ygN.s+DARp+p(pnl-E y). (20) 

Neglecting terms that are small when 8-0, we obtain 

Returning now to the original variable p, we note that we 
have obtained the same system of equations as if we had 
chosen the Itoh interpretation of the stochastic differential 
equation (1) from the start. This means'' that at the phase 
transition point a= (T, instantaneous fluctuations do not cor- 
relate with the state of the system at the same moment in 
time. In other words, in the vicinity of the critical point the 
phase space of the system {n,p} E N is actually the direct 
sum of two mutually orthogonal subspaces 

with the subspace Ndet comprising all attractors of the deter- 
ministic Eq. (I), ndet E N ,  while the "noise-induced" sub- 
space Nl is a direct product, n @ p  = N ,  . 

The resulting system of equations (21) can be greatly 
simplified and reduced to a single equation via the following 
replacements: 

Then (21) transforms into the nonlinear Schrodinger equa- 
tion: 

Performing the reverse replacements, we obtain solutions of 
the original system of equations (21): 

where W ( R ,  T) satisfies the Ginzburg-Landau equation 

The operation [...lrea' in the expressions (25) indicates that 
the solution of the Ginzburg-Landau equation must be made 
"real" by analytic continuation of the free parameters in a 
way that satisfies the original system of equations (21). 

The Ginzburg-Landau equation (26) naturally appears 
in many problems when small deviations from supercritical- 
ity are described, being a so-called amplitude equation, to 
which numerous partial differential equations reduce.12 

The following solution of the Ginzburg-Landau equa- 
tion (26) was obtained in Refs. 9 and l l: 

The limiting case in which the reaction constant does not 
depend on the coordinate and there is no potential, i.e., 

was thoroughly analyzed in Refs. 9, 1 1, and 13. For example, 
the following solutions of the corresponding stochastic dif- 
ferential equation were found: 

Then, comparing the solutions (25) and (29) in the limit (28) 
with consideration of the definitions (13) for R and T, we 
ultimately obtain the following solution of the stochastic dif- 
ferential equation (4): 

The replacement of g r ( r )  by the expression (9) leads to the 
following equation for the noise level a at which an increase 
in the exponential term in (30) is possible: 

The conditions under which the critical noise level is ex- 
ceeded are determined by the regions in space within which 
a local increase in concentration occurs. It should be noted 
that the Ginzburg-Landau equation (26) is invariant under 
the replacement R-+ (R +A) ,  but it is not invariant under the 
replacement r+ ( r  + a), where A and a are arbitrary param- 
eters. It can be concluded from this that the coordinate R is 
the "intrinsic" coordinate of the "center of mass" of the 
noise-induced perturbation, which can appear at arbitrary 
points in space within the regions defined by the condition 
(31). 

3. DESCRIPTION OF NOISE-INDUCED INTERMITTENCY 

As noted in Refs. 13 and 14, a field distribution n(r,t) 
that gives rise to structures accompanied by high peaks with 
a large concentration of the substance and a short lifetime or 
a small spatial expanse is typical of systems described by a 
stochastic differential equation with multiplicative noise. The 
gaps between these structures are characterized by a low 
concentration of the substance and a large expanse. The gen- 
eral term describing such a situation is intermittency. 

The behavior of a system described by the stochastic 
differential equation (4) exhibits intermittency when the 
critical values of the noise level ac( r )  are exceeded [the set 
of these values is a continuum owing to the fact that each 
point in space has its own value of u,(r)]. The solutions 
describing peaks and troughs are represented, with consider- 
ation of (12), by the plus and minus signs, respectively, in the 
expression 

n=nde,lr21/21elcosh-1[(al~)'12r] exp[(u-w)t]. (32) 

We note that these solutions refer to different points in space 
for which the condition (31) is satisfied. 

We can now refine the meaning of the term "rate- 
limiting step of a reaction:" it is the step in which both terms 
in the solution (32) are of the same order at t > t ,  : 

ndet(r,t*)- e c o s l ~ ' [ ( a / ~ ) ~ ~ ~ r ]  e ~ p [ ( a + ~ ' ( r ) ) t , ] .  (33) 

AS follows from (6), (17), and (30), the probability of 
the realization (existence) of the optimal trajectory after a 
certain time t,,,,, up to some multiplicative factor, is 
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Then for the solutions (30) we have 

Thus, we have confirmed our main assumption that white 
noise does not influence the reaction rate or the action of 
external forces: the probability of the realization of a noise- 
induced structure does not depend on external factors, which 
determine only the regions in space where intermittency can 
occur. 

4. CONCLUSIONS 

We have shown that consideration of fluctuations in the 
reaction rate constant of a system described by the Smolu- 
chowski equation leads to behavior of the system that differs 
significantly from the deterministic case when certain critical 
values of the noise level are exceeded. A definite similarity to 
another familiar type of reaction known as a diffusion- 
limited reactionI5 can be drawn. 

In the long-term stage of such a reaction the pure reac- 
tion rate no longer appears in the asymptotic expressions for 
the concentration and (or) in the expressions characterizing 
the statistical properties of the various structures formed as a 
result of the reaction. The diffusion coefficient, in these ex- 
pressions is indeed the source of the name of this type of 
reaction. 

As we have shown, reactions which can be described by 
Eq. (4) and proceed at a multiplicative noise level above the 
critical level are also characterized in the long term by the 
formation of random structures. Although the pure reaction 
rate k ( r )  appears in Eq. (32), the noise level, which controls 
this process, takes on decisive importance in the long run. In 
analogy to diffusion-limited reactions, we call such reactions 
noise-limited. Although the term random-force-dominated 
reaction kinetics was proposed in Ref. 16, our term is more 
appropriate, since the word limited refers directly to the final 
stage of the reaction. 

The possible engineering applications of this phenom- 
enon relate to chemical analyzers and separators. Essentially 

all of these devices have some minimal sensitivity threshold, 
which the designers endeavor to reduce by isolating the sys- 
tem from all sources of noise. An alternative and more pro- 
ductive approach from an economic standpoint might in- 
volve solutions that allow a source of external multiplicative 
noise to reach the critical noise level for the particular sys- 
tem. 

It can also be expected that the proposed theoretical ap- 
proach will be employed frequently to describe phenomena 
in systems with biomolecular kineticsI7 owing to its descrip- 
tive nature and broad capabilities for interpreting the origin 
of the external noise. 
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