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It is shown that multicenter excitations determine the universal low-energy spectral properties of 
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1. INTRODUCTION 

The anomalous low-temperature properties of amor- 
phous systems that are totally different in nature demonstrate 
the pronounced universal character of their behavior (or, at 
least, its very nearly universal character). These properties 
have been described using the widely known tunneling 
model, which is based on a representation of an ensemble of 
randomly distributed double-well systems.'92 A key assump- 
tion here was that the distributions of the two-well systems 
with respect to the magnitude of the relative displacement of 
the levels in the wells A and the logarithm of the interwell 
tunneling amplitude A, are uniform. The first part of this 
assumption seems indisputable. However, the assumption 
that the distribution with respect to ln(Ao) is uniform together 
with the simultaneous requirement that it hold over a very 
broad range of A, (to account for the logarithmic distribution 
of the relaxation times rover many orders of magnitude) in 
the general case does not have sufficient foundation. 

It seems to us that the universality of the low-energy 
spectral properties of amorphous systems appears as a result 
of a many-particle interaction between defect centers having 
a dynamic degree of freedom. The unavoidable appearance 
of such centers is attributed to (besides some other possible 
causes) the removal of the "spatial degeneracy" characteris- 
tic of crystal structures by local stresses. A vivid example of 
this is provided by a crystalline chain (or ribbon) experienc- 
ing compression in the longitudinal direction. Instead of one 
orientation in space, there are now at least two orientations 
with similar energies and with a degree of freedom corre- 
sponding to transitions between the configurations. In this 
sense we obtain a variant of a double-well center. The amor- 
phous structure developed will unavoidably have an appre- 
ciable concentration of such dynamic defect centers. If a 
double-well model is used to describe them, the distribution 
with respect to the tunneling amplitudes A, can be compara- 
tively arbitrary. Of course, such a primary system of double- 
well centers itself will not have universal spectral properties. 

The main purpose of the present work is to investigate 
the shaping of the low-energy spectral properties of amor- 
phous systems appearing as a result of the interaction of the 
primary centers and multicenter clusters. We see that as the 
energy decreases, an increasingly large number of clusters 
become involved in this process. At the same time, the rela- 
tive role of the primary structure of the defect centers dimin- 
ishes. As a result, we arrive at a universal structure of spec- 

tral properties that is essentially insensitive to the 
distribution of the parameters of the primary defect centers. 
The amplitudes of the many-particle transitions then have a 
nearly uniform logarithmic distribution. This predetermines 
the logarithmic distribution of the relaxation times, and the 
appearance of enormous values of r is attributed to displace- 
ment of the center of gravity to the excitation of large clus- 
ters. 

The entire treatment relies heavily on the assumption 
that the absolute value of the interaction between the defect 
centers decreases with the distance according to a l/R3 law 
(or as l/Rd, where d is the dimensionality of the space, in the 
general case). It is generally known that such a law always 
holds in a dielectric medium owing to the indirect interaction 
between the defects through the deformation field. In a metal 
the indirect interaction mediated by the conduction electrons 
leads to the same law. In all cases the distances are large 
compared with the interatomic distances, but we are inter- 
ested in just such distances. 

It should be noted that several years ago Yu and 
~ e ~ g e t t ~ . ~  hypothesized that a 1/R3 law for the interaction 
between defects might be responsible for the universality of 
the anomalous properties of amorphous systems. However, 
the question of the nature of the excitations in this case re- 
mained open. The results obtained in the present work pro- 
vide evidence supporting that hypothesis. 

In the case of the 1 1 ~ ~  law the logarithmic increase in 
the effective interaction region with the size of the system is 
a significant point. It suggests that a renormalization group 
procedure can be used. Such a procedure was first demon- 
strated by ~evitov' in the problem of the localization and 
delocalization of elementary excitations in a system with a 
dipole-dipole interaction. The use of a similar approach al- 
lows us to obtain a general renormalization group equation, 
whose solution leads to the main results. 

When low-energy excitations are found in a system of 
interacting centers with T 4 0 ,  correct determination of the 
ground state is of fundamental importance. Its stability re- 
quires positive values for the energies of any many-particle 
excitations, thereby introducing a hierarchy of constraints. 
The influence of the latter on the density of states is similar 
to the familiar Coulomb gap in semiconductors,6-8 although 
it appears in a different form. In the problem under consid- 
eration the constraints introduced by the stability require- 
ments are very significant and must be taken into account 
from the very outset. 
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To make the problem clear from a physical standpoint, 
we begin with a treatment of spectral properties in the limit 
of weak interaction between the centers, restricting ourselves 
to two-particle and three-particle interactions. 

2. MANY-PARTICLE EXCITATIONS. WEAK INTERACTIONS 

Let us consider an amorphous medium with randomly 
distributed, double-well defect centers with an arbitrary dis- 
tribution of the parameters. The interaction Hamiltonian of 
such a system in the standard pseudospin representation has 
the form 

The magnitude of the interaction between centers can be rep- 
resented in the form 

U..=u. . /R3. .  
' J  [ J  l J  (2.3) 

We assume that the interaction constants ui j  for different 
pairs of centers are uncorrelated and have random signs. In 
that case we can write 

We assume that the energy spread of the centers W is large in 
comparison to the interaction of the centers at the mean dis- 
tance: 

where n is the density of the centers. In this case the distri- 
bution of the energies of the one-particle excitations (with 
Aoi=o) 

is essentially given by the original spread of the m i .  
The distribution function of the parameters of the origi- 

nal centers in the absence of a correlation between E~ and Aoi 
can be represented in the form 

(a is the volume of the system). Since the distribution func- 
tion is calculated per unit volume, 

We adopt the natural assumption that the transition ampli- 
tudes Aoi lie in a restricted energy range with the character- 
istic value 

A,,< W .  (2.9) 

We begin by considering the density of states at low energies 

This allows us to omit the term V in the Hamiltonian (2.1). 
The stability of the ground state requires that ci>O. This 

also applies to many-particle excitations. Considering the 
case of a weak interaction between centers in this section, we 
restrict ourselves to an analysis of the role of two-particle 
and three-particle excitations, whose stability conditions can 
be written in the form 

To first order in the interaction, the contribution of the pair 
excitations to the density of states can be found directly: 

Since the small values E ; ,  E W contribute to the integral, 
the functions P o ( A )  are replaced by the limiting values 
Po(0) .  The notation (...), signifies averaging over the u i j .  
Taking into account that si>O, we find 

Here O ( x )  is a standard unit step function. Let the interaction 
region be restricted to the radius R,, , which corresponds to 

3 UolR,,PAo*. (2.13) 

In the range of energies A < u ~ / R ~ ,  only the positive u i j  
make a contribution. Assuming that the distribution of the uij  
is symmetric about zero, we have 

Here 

The value of Rmin can be specified to logarithmic accuracy 
by the relation 

and the contribution of the incidental nearby pairs, which 
cause a shift of the level exceeding W, can be ignored. 

The second term in parentheses on the right-hand side of 
Eq. (2.14) is small compared with 5 1, and we ultimately 
find 

The dimensionless parameter X= m U o l  W is small com- 
pared with unity. The perturbation theory considered in this 
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section foresees that the product ~5 is small. In a first ap- 
proximation with respect to this product, the density of states 
of the one-particle excitations P ,  ( A )  is also renormalized 
owing to the condition of stability with respect to all the 
two-particle excitations .sij [see (2.1 l)] involving the subject 
center i. The general expression for P , ( A )  in this case can 
be written in the form 

If 6 ( c i j )  is rewritten as 

and it is taken into account that this expression differs from 
unity only in a small part of the phase space, we have 

Under the same assumptions as in the derivation of (2.12), 
we ultimately obtain 

This expression demonstrates the tendency for a decrease in 
the density of states of the one-particle excitations (a "dipole 
quasigap"). 

Three-particle excitations contribute to the density of 
states of the low-frequency excitations in the second order 
with respect to ~ 5 .  Again, taking into account that centers 
with energy ~4 W are involved in three-particle excitations 
with a total energy A< U,IR; ,  , we have 

(for simplicity, we chose a concrete pair of vectors in the 
triangle i jk, and the corresponding symmetrization will be 
restored at the end.) 

After removal of the 6 function due to the integration 
with respect to e k ,  the following four inequalities demarcate 
the integration phase volume ( E  i> 0, A-0): 

The largest contribution (to logarithmic accuracy) to the in- 
tegral is made by configurations in which one side of the 
triangle (let it be R i j  in the present case) is small compared 
with the other two. Such a choice introduces the additional 
factor 3 into (2.21), since any of the sides of the triangle 
could be selected as the smallest side. In this case R i j - R j k .  
We introduce the variable y = e i + e j .  It follows from the 
first two inequalities in (2.22) that 

U i j < y < U i j +  U i k +  U j k .  (2.23) 

The inequalities (2.23) presume that uij>O, and when 
Rik-Rjk  , if follows from (2.22) that uik+ujk>O.  

Then 

In accordance with the remark already made, here we omit- 
ted terms quadratic in U i k  and U j k .  

When the remaining integrals of U i j U i k  in (2.21) are 
taken, we switch from integration with respect to Rik to in- 
tegration with respect to R i j ,  setting R i j < R i k :  

where 5=ln(R,,IRmi,) [see (2.15)]. The integral of U i j U j k  
leads to a similar result. 

The last step is the averaging of the product 
u i j ( u i k + u j k ) ,  each of whose cofactors is positive. The as- 
sumption regarding the symmetry of the distribution function 
for u i j  is transferred directly to the sum uik + ujk  : 

We finally arrive at the following expression for the density 
of states (2.2 1) [see (2.15)]: 

Two contributions to P I  appear in the same order with re- 
spect to ~ 5 .  The first is associated with the stability of the 
three-center excitations containing the center whose excita- 
tion is being studied. The second is attributed to the fact that 
in passing from (2.18) to (2.19) we took into account only 
the contribution which is linear with respect to the instability 
condition. The bilinear contribution must be taken into ac- 
count already in the order under consideration. It is easy to 
understand that the corresponding correction to P I  has a 
positive sign. The calculations lead to the following result: 

a lza- In the approximation under consideration the renorm 1' 
tion of P2 is associated with the condition of stability of all 
the pairs sharing a center with the pair under analysis, as well 
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as the groups of three which include that pair. Again, omit- 
ting the calculations, we present the final result: 

P ~ ~ P o ( O ) X ~ { I  - x ~ ( I u I  + ~ 2 I ) / u o ) .  (2.26) 

An analysis of (2.24), (2.25), and (2.26) makes it pos- 
sible to draw several conclusions. The low-energy density of 
states P ( A )  depends on the single dimensionless parameter 
xt, which is a correlation parameter by nature. At a suffi- 
ciently low value of the energy A the function P ( A )  does not 
depend at all on the energy. As xt increases, the role of the 
many-particle excitations increases, while the role of the 
one-particle excitations decreases. This also applies to larger 
configurations: P,,a(x[)*-'.  It can be concluded from the 
form of the expressions obtained that many-particle excita- 
tions begin to dominate when ~5 2 1. 

3. DYNAMICAL PROPERTIES WITH CONSIDERATION OF 
THE PAIRWISE INTERACTION BETWEEN DEFECT 
CENTERS 

Let us now include intracenter transitions in the discus- 
sion, i.e., let us turn to the complete Hamiltonian (2.1) with a 
nonzero V (2.2). In order to highlight the special role of 
excitations involving more than one particle in this case, we 
consider the limit ~ ( 4 1  and analyze the contribution of pair 
(two-center) excitations to the spectral characteristics of the 
system. As will be shown, already in this case the distribu- 
tion function of the effective parameters exhibits a uniform 
distribution with respect to the logarithm of the transition 
amplitude (and thus with respect to the logarithm of the re- 
laxation time) under an arbitrary PA(Ao) in (2.7). 

Let us identify the Hamiltonian of an individual pair. 
When (2.6) is taken into account, we have 

We transform to a representation in which the one-center 
Hamiltonians are diagonal. In spin space this transformation- 
corresponds to rotation of the quantization axes: 

Here Ei = is the excitation energy of a two-level 
center. 

Using (3.2), we find the Hamiltonian of a pair H ,  in the 
new representation: 

H,= ho+ h ' ,  (3.3) 

We assume below that 

This allows us to set E; l E , =  1 in (3.4) and (3.5). Then for 
the energy of an up-up pair excitation, from (3.4) we have 

The transition amplitude between the ground and excited 
states of a pair is determined by the last term in (3.4) in 
second order with respect to h '  . However, the contribution of 
h' vanishes up to terms quadratic in A,,. As a result, the 
transition amplitude is 

Let us now determine the distribution function of the 
parameters A and A. characterizing pair excitations: 

Taking (3.6) into account, in this expression we replaced Ei 
by E; in the arguments of the S functions. Bearing in mind 
that E ~ ~ W ,  as in the preceding section, we took P o  out of 
the integral sign in the zeroth argument. The appearance of 
the absolute value lu 1 in the second S function is due to the 
fact that the distribution function was defined for the abso- 
lute values of the transition amplitudes, i.e., Ao>O in (3.9). 

To consider the low-energy spectral properties, we as- 
sume that 

In this case the first 6 function automatically eliminates only 
pairs with u>O. Then removing the second 6 function by 
integrating over R I 2 ,  at fixed Aoi we have 

The range of permissible values of A, is dictated by the 
boundaries of the region where R is defined. Here it is sig- 
nificant that at each value of R the characteristic values of the 
energies of the one-particle excitations in (3.9) be 
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Taking this into account, we find approximately 

In (3.11) the 8 function permits two energy regions. In the 
first case we have the requirements 

Since we are interested in the limit of small A and A,, it is 
natural to assume that the second inequality is stronger, i.e., 

In this case the lower limit of the integral in (3.1 1) is given 

by 

&n,inTA01A02/2A0. (3.16) 

The inequality (3.6), which we assumed from the start, now 
requires 

(the subscripts 1 and 2 appear symmetrically in the original 
expression (3.9); therefore, the inequalities (3.17) and (3.14) 
naturally hold after the replacement 1-2). 

The integral in Eq. (3.11) is determined by the lower 
limit and is simply equal to l/tzmin. 

The second region corresponds to 

It can, however, be shown that the second of these inequali- 
ties is at variance with (3.8) and (3.12); therefore, this region 
does not make a contribution to J (3.11). 

Using (3.16) for the final calculation of (3.11) and recall- 
ing (3.9), we have 

Here the 0 function in the integral appeared as a consequence 
of the inequalities (3.15) and (3.17). 

We use A, to denote the characteristic scale correspond- 
ing to the distribution PA. Assuming that 

and that PA does not have singularities at zero, we ultimately 
tind [see the normalization in (2.7)] 

where x is defined by (2.15). The inequality (3.19) for A is 
easily satisfied, since there is no lower bound on A. The 
lower bound on A, introduced by the inequality (3.1 3), 

is easily combined with (3.19), opening up a broad range of 
variation for A, in which (3.20) is valid. 

Thus, pair excitations of interacting double-well centers 
with a totally arbitrary distribution P1(A, , )  that is nonsingu- 
lar at zero have a distribution of the transition amplitude that 
is characteristic of the universal properties of amorphous sys- 
tems in the general case. 

We note that if u,~R~,,>A,, [see (3.13)], we have 

This result coincides with (2.17). 

4. DERIVATION OF RENORMALIZATION GROUP EQUATIONS 

The results obtained in Sec. 2 demonstrate that the ef- 
fective interaction constant xt,  which is responsible for the 
formation of multicenter clusters with collective excitations 
having an energy tz- 0, increases logarithmically with the 
volume of the region under consideration. In a big enough 
system, a situation corresponding to a strong interaction is 
realized nearly always, at least when TAO. All this is a 
direct consequence of the interaction of the centers according 
to a l / R d  law in d-dimensional space. 

The appearance of multicenter clusters with a probability 
of order unity requires x t  - 1. Since x 4 1, the correspond- 
ing size of the region is exponentially large: 

Here R ,  is the distance scale on which a particular arbitrary 
cluster finds a partner with which it forms a more complex 
cluster. 

We begin, as in Sec. 2, with V=O in the Hamiltonian 
(2.1). Let the radius of the interaction region be restricted at 
first to R ,+R,,, and let the distribution function of the col- 
lective excitations involving n centers with an energy 
e< U , I R ~  be denoted by P,,(E,R ,). We determine the 
change in the distribution function when the interaction ra- 
dius increases to R2 : 

Here 

and the probability of the fo~mation of new clusters with an 
excitation energy ~ < u , I R ;  is low according to this param- 
eter (see Sec. 2). At the same time, the formation of new 
clusters occurs statistically at distances R 9  R ,  . This allows 
us to treat the clusters as point formations. On the other 
hand, the displacement of the energy into the region 
e -  U o l R ~  suggests that the energy of the collective excita- 
tions of both clusters should be of the same order. Since 
other intracluster excitations will have an energy e> U , I R ~ ,  
this means that clusters enter larger formations as single ob- 
jects. 

It is clear from the structure of the results in Sec. 2 for 
P,, that the probability of a ternary union of clusters will be 
down by an additional factor of x ln(R,IR ,), and that the 
probability of an m-fold union will be down by 
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[XI~(R,IR,)]'"~. Therefore, when the difference 
PI,(&,R2) - Pl,(&,R I )  is calculated, we can restrict ourselves 
to consideration of only the pairwise unions. 

As the interaction radius increases, the value of PI, de- 
creases due to the "dipole-gap" effect, since the number of 
configurations that must satisfy the stability condition in- 
creases. On the other hand, there is an increase in PI, due to 
the pairwise interaction of small clusters. The general equa- 
tion then has the form 

Here E ( ~ )  is the excitation energy of a k cluster; ukm is the 
interaction constant of k and n1 clusters. The same arguments 
that were used to go from (2.18) to (2.19) allow us to switch 
from the product in the first term in (4.3) to the sum, which, 
conversely, determines the instability condition. 

By considering an excitation energy E < U,IR;, we can 
calculate the right-hand side of (4.3) in the limit E-+ 0. In 
this case the contribution to (4.3) after the transformation 
just noted is made only by the configurations with ukm30.  
As before, we assume that a distribution of the ukm that is 
symmetric about zero is realized. Bearing in mind (4.2), in 
calculating the right-hand side of (4.3) we can assume that 
the distribution functions do not differ from Pk(&,Rl). Tak- 
ing into account all that has been stated, we have 

P,(O, R2) = P,,(O, R 1 

This expression can be calculated directly. As a result we 
obtain 

Noting that P,, varies little in going from R l  to R2, we arrive 
at the general renormalization group equation 

Here we have adopted the notation [see (2.15)] 

It should be noted that the solution of Eq. (4.6) correspond- 
ing to a definite t [or t(R)] gives the distribution function 
corresponding to the energy range c <  U ~ I R ~ .  

We seek a solution for R = R,,. The limiting radius R,, 
yields the largest spatial region in which the cluster under 
consideration can combine with some other cluster to form a 
larger object. At finite temperatures R,,=RT and U ~ I R + = T  
(at large distances the interaction between the clusters is 
smaller than T, and their excitations are independent). If the 
cluster excitation energy E is less than T, the P, do not 
depend on 8. Otherwise, R,, reduces effectively to R,, 
which is defined by the relation ~ ~ 1 ~ z - c .  Thus, to logarith- 
mic accuracy the final solution takes the form f7,(tn,): 

Note that if all clusters with n > l  are omitted from Eq. 
(4.6), the renormalized equation takes the form 

which has the simple solution 

At T=O this solution coincides with the result previously 
obtained for a one-particle density of states (see Refs. 7 and 
8). We shall see below that consideration of clusters with 
n> 1 results in significant alteration of this result. 

If it is assumed that the coefficients bknl are multiplica- 
tive, i.e., 

[bkn,=const is a special case of (4.8)], it turns out that Eq. 
(4.6) has an integral of the motion 

m 

rl=C kP,,(t). 
k =  1 

(4.9) 

To prove this, we multiply the left- and right-hand sides of 
(4.6) by n and sum from n = I to m. We transform the second 
term on the right in (4.6): 

P n - I  
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After the replacement of variables nz = n - k, this expression 
cancels identically with the first term on the right in (4.6). 
When t+O, we obtain PI,-- and, consequently, 

Let us now find the generalized renormalization group 
equation that takes into account the dynamical character of 
the problem, i.e., let us turn to the complete Hamiltonian 
(2.1) with a nonzero term V (2.2). 

Each cluster is characterized not only by an excitation 
energy A (when Aoi=O), but also by a coherent amplitude 
Ao, which couples the excited state to the ground state. We 
introduce the distribution function of the parameters for an m 
cluster, P,(A,L,R). For the ensuing treatment, instead of do 
it is convenient to use the variable 

Returning to Eqs. (4.3) and (4.4), we should introduce 
the new distribution functions and additional integration with 
respect to L I in the "outgoing" term. As a result, for this 
term in (4.5) we have (A+O) 

The appearance of the 0 function (4.13) is a result of the 
requirement that the cluster energy E = d m  be small 
compared with the interaction at the current distance R. In 
(4.13) this leads to an upper bound on the tunneling ampli- 
tudes of the excitations, for which the stability requirements 
can be significant. 

The "incoming" term is a sum of terms that are struc- 
turally similar to (3.9) and correspond to the pairing of k and 
n-k clusters. The transition amplitude of an n cluster 
formed from k and n-k clusters can be represented in a 
form analogous to (3.8): 

Using (3.12), we can rewrite this result in an approximate 
form: 

Taking into account that the dependence of the coupling con- 
stants u ~ , , , - ~  on the number of particles in the clusters is not 
stronger than a power function (see Sec. 6), while the tran- 
sition amplitudes depend exponentially on the number of 
particles, we can neglect the difference between the coupling 
constant and Uo. Then the S function appearing upon the 
transition to integration over the expanded parameter space 
can be written with consideration of the preceding definitions 
in the form S(L- L ,  - L2- 35,) .  Using this expression for 
the "incoming" term, we find 

X(0, L ~ . R I ) S ( L - L I - L : ! - ~ ~ ~ )  

~ ~ ( I L I ] - ~ < I > ~ ( I L ~ ~ - ~ ~ ~ ) ~ ~ ( R ~ I R I ) .  (4.1 4) 

The same arguments that were used to go from (4.1) to (4.5) 
and then to (4.6) make it possible to arrive at the generalized 
renormalization group equation: 

Here 

P , ( L , ~ )  =P,~oJ,T)IP,(o). 

5. SOLUTION OF THE RENORMALIZATION GROUP 
EQUATIONS WHEN b,,=const 

The solution of Eq. (4.6) depends on the form of the 
coefficients bkm . We begin by considering the simplest 
model (luknIl)=const, which maintains the main qualitative 
features of the problem. In this case 

bkm= I .  (5.1) 

We sum both sides of Eq. (4.6) over n and introduce the total 
density of states 

After transforming the second term on the right-hand side of 
(4.6) in analogy to (4. lo), we find 

With the initial condition k ( 0 ) =  1, the solution of this equa- 
tion has the form 

When this expression is used, the equation for n = 1 takes the 
form 

and has the solution 

Substituting (5.4) and (5.3) into (4.6), we easily find 
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In the general case, 

The structure of this expression and (5.5) determine the gen- 
eral form of the solution, 

whose validity is easily verified directly. The asymptote of 
this expression at t% 1 is 

Two significant conclusions follow from a comparison of 
(5.8) and (5.3). When t 9  1, the low-energy density of states 
is uniformly comprised (in the model under consideration, 
but see the next section) of all m-particle excitations with 
m s t .  In this case the total density of states (5.3) [with the 
notation of (4.7) and (2.15)] 

ceases to depend at all on the initial distribution of the defect 
centers. 

Let us consider the solution of the generalized equation 
(4.15) in the adopted model (5.1). First let 35< IL,~, where 
JL,J =ln(Ao,lW). We are interested in the solution corre- 
sponding to typical values AoeAo,. In this case none of the 
0 functions in the integrand in (4.15) imposes any con- 
straints, and they can all be omitted. We sum the left- and 
right-hand sides of (4.15) over n and introduce the total dis- 
tribution function P(L,t). As a result, we obtain 

Here P(t) is defined by (5.2). We introduce the Fourier 
transform 

For the Fourier components we obtain 

This equation can be solved using the substitution P=  llz. 
Taking into account the initial condition 

P ( ~ , t = o ) =  PA(Q) (5.12) 

and the explicit form of (5.3), we find 

As previously noted, we are interested in the behavior of the 
distribution function when I L I  % I L* 1 .  In (5.1 1) the corre- 
sponding contribution is made by Fourier components with 
small Q, for which we necessarily have 

We expand the denominator of (5.13) in small Q, retaining 
linear terms. We take into account that PA(Q).-; 1 -iQL, 
(from a rigorous standpoint, this is the definition of L,): 

Here 

Substituting (5.15) into (5.11), we find 

The self-consistent nature of the approximation made during 
the derivation of (5.15) and, consequently, of (5.17) suggests 
that tS 1. As was shown above, under just this condition the 
center of gravity of the distribution of the low-energy exci- 
tations shifts toward multicenter clusters. The latter, in par- 
ticular, have values of 1 L 1 that are large compared with I L, I. 

It follows from (5.17) that the distribution function ac- 
tually does not depend on L over the range 

when t% 1. This means that the distribution function has a 
universal form that exhibits a logarithmically uniform distri- 
bution of tunneling amplitudes 

This expression is valid over the broad range of A. specified 
by (5.18): 

The ratio Ao,lW<. 1 is actually a small parameter. In (5.20) 
the progressive displacement of the lower boundary of per- 
missible values of do with increasing t is typical. The occur- 
rence of the factor (A0,lW)' has a clear physical meaning. 
As has been established [see (5.8)], when t% l the low- 
energy density of states is governed by many-particle exci- 
tations of clusters with n s t .  Indeed, it is clear from the treat- 
ment of two-particle excitations that the range of permissible 
values of A, is shifted downward to A;,~w [see (3.21)]. 
This value is dictated by the inequality (3.13). If we refer to 
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the general equation (4.15), we can easily see that a similar 
inequality holds. However, it takes the following form for 
each term in the sum over k at fixed n: 

where (A~~) ) , , , ~ , ,  is the minimum coherent amplitude of a k 
cluster. The inequality is identical for all terms in the sum: 

[in fact, it follows from (5.8) that n,,- I=t]. Nevertheless, 
the estimate (5.21) does not take into account the decrease in 
the size of the phase volume due to the fact that an increas- 
ingly narrower range of R near Rnlin is responsible for the 
range of the lowest values of A,. Just this circumstance re- 
sulted in the appearance of the factor f ( t )B  1 in (5.20), 
which, however, does not make any qualitative changes in 
the picture described. 

We have thus far analyzed the solution of Eq. (5.10) 
under the condition 35 < I L * ~ .  The results enable us to un- 
derstand how this solution can be extended to 3 5> 1 L, I, 
where the integrands in (5.10) must contain 8(I L , I  - 3 &) [see 
(4.15)]. As 5 increases, the ensuing constraints require the 
displacement of ~ 6 ~ )  toward smaller values. This means that 
as 5 increases, the two-particle clusters are excluded, then the 
three-particle clusters are excluded, and so on up to 
n,,=ltl. Since, on the other hand, 

the limiting value of t,,,, must be found from the relation 

which can be rewritten in the form 

In these expressions t=,y&,,, and (5.22) is a self-consistent 
equation for tnlm : 

It was assumed during the analysis performed above for 
t P  I that X I  L*1/3P 1. The result (5.23) indicates a sharp dis- 
placement of the lower boundary of A. toward smaller values 
[in (5.20) t+t,,]. 

Substituting (5.23) into (5.17), we find the final expres- 
sion for the distribution function: 

The integral of this expression with respect to L coincides 
with (5.3) when t P  1. 

The distribution function has the universal form 

over the range of A, specified by the inequalities (5.20), but 
now with the replacement t ~ t , , ,  . We stress that this result 
does not depend on the character of the distribution of Aoi 
for the original defect centers. 

6. SOLUTION OF THE EQUATIONS WHEN bkm = fi 

In the preceding section we considered the solution of 
the renormalization group equations under the assumption 
that the interaction between clusters does not depend on the 
number of particles in a cluster. In real systems such a de- 
pendence exists in the general case, and it can be important 
in shaping the universal properties of amorphous systems. 

The interaction between clusters is determined by the 
sum of the pairwise interactions of centers in different clus- 
ters. Accordingly, the interaction constant is determined by 
the sum of the pairwise interaction constants 

uktrr= C uij. 
i c k  
j c nr 

If each center can be effectively assigned a certain scalar 
charge, which has a symmetric distribution with respect to 
the sign after averaging over the configurations of the cluster 
or due to certain physical factors, the coefficients in Eqs. 
(4.6) and (4.15) take the form 

Such a situation arises, in particular, in amorphous metallic 
systems, where the indirect interaction between the centers 
mediated by the conduction electrons is decisive. This inter- 
action has the form (2.3) with 

As we have seen, the interaction between clusters is effective 
at distances that are large compared with the size of the 
clusters. In this case 

Here R is the distance between the centers of the clusters, 
n=RIR, and ri and rj are the positions of centers i and j in 
different clusters. 

The interaction of k and m clusters is characterized by 
the quantity 

Since kFRkP I (Rk is the size of the k cluster; k>2), aver- 
aging over the cluster configurations with selection of a defi- 
nite sign for the sum in the square brackets gives a value 
- &( 6). (If cos(2kFR)>0, sums with identical signs are 
selected; otherwise, sums with opposite signs are selected.) 

In amorphous insulators the feasibility of using Eq. (6.1) 
calls for special analysis. It can be roughly based on the fact 
that in a deformation interaction there are at least six inde- 
pendent components of the stress tensor of an individual cen- 
ter, which determine the coupling between centers. 

We consider Eq. (4.6), introducing coefficients of the 
form (6.1): 

167 JETP 82 (I), January 1996 A. L. Burin and Yu. Kagan 167 



Since the multiplicative condition (4.8) holds, the equation 
has the integral of the motion (4.9). When t% I, the contri- 
bution of large n becomes significant in (4.9), and the sum 
can be replaced by the integral 

The dependence of the coefficients in Eq. (6.3) on the 
number of particles in the clusters renders the structure of the 
solution complex and nonobvious. This necessitates a pre- 
liminary analysis of Eq. (6.3). We begin with some exact 
assertions, which follow from the structure of Eq. (6.3). We 
sum the left- and right-hand sides of (6.3) with respect to n. 
With consideration of the definition (5.2), we have 

On the other hand, 

It would seem that the asymptotic behavior of 13, when t j  
can lead to one of two results: a) P , p O ,  b) P ,+const+O. In 
the former case the function l I l 2 ( t )  must have the asymptote 

It turns out that case (b) cannot occur at all. In fact, in that 
case 

- 
and P I  tends exponentially to zero as t+m, in contradiction 
to (b). Substituting (6.7) into (6.5) and noting that P ( t )  is a 
positive definite quantity, we quickly obtain 

Thus, l I l 2 ( t )  and the zeroth moment of the distribution func- 
tion F ( t )  asymptotically tend to zero at large t. 

The first moment (6.4) is preserved by virtue of the mul- 
tiplicative relationship, and does not decay with increasing t. 

Let us now find the equation for the second moment. For 
this purpose we n~ultiply both sides of (6.3) by n2 and sum 
over n. In the "incoming" term in (6.3) we utilize the rela- 
tion 

The first two terms compensate the "outgoing" term exactly. 
Consideration of the latter term leads to the equation 

The asymptotic decay of I,,,(t) and P ( t )  with increasing t 
and the absence of such decay in the case of I ,  indicate that 
the contribution of the large n, which compensates the decay, 
becomes significant for the first and higher moments. The 
second moment already increases with increasing t, as fol- 
lows from (6.9). This obviously occurs for all the moments 
Irn( t )  with rn> 1 [in particular, for 13/2(t)] owing to the 
dominant contribution from large n. 

When t is small, the functions P,,(t) with n> 1 increase 
with increasing t, since P,,(o) =0. On the other hand, when t 
is sufficiently large, P,(t) should decrease and cause the 
overall decay of P ( t ) .  Thus, P,(t) for a given n passes 
through a maximum. As t increases, the value of n corre- 
sponding to the function P,(t) passing through a maximum 
at the respective value o f t  increases. In fact, it is the position 
of the front n,,(t), which propagates toward larger n as t 
increases. The comparatively rapid motion on the front pre- 
vents all the moments I,(t) with m >  1 from decreasing as t 
increases. We turn to Eq. (6.3) and rewrite it in the form 

Bearing in mind that an asymptotic solution has been found 
for t P  1 and, therefore, for n,,(t)P I ,  let us consider the 
range of n corresponding to the inequality 

It stands to reason, and will be proved below, that unlike I ,  
and I,, I l12(t)  is determined by the lower limit. In this case 
the last term on the right in (6.10) behaves approximately as 

It is not difficult to show that the first term on the right in 
(6.10) is determined by k-nl2 and that the role of the 
fringes of the integration range k- I and n -  k- l is negli- 
gible. As a result, this term also acquires the structure (6.12), 
and it thus turns out that the entire right-hand side of Eq. 
(6.10) has this structure. Here the overall sign must be nega- 
tive to reflect the decrease in P,, with increasing t when 
n<nn,,(t). The resulting approximate equation is easily 
solved: 

Since the sums corresponding to the first and higher mo- 
ments converge at the upper limit, in (6.9) [as before in (6.4)] 
we can switch from summation to integration. The negligible 
role of the fringes of the summation range allows us to 
switch from summation to integration in Eq. (6.3) or (6.10), 
which now takes the form 
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We use the equations for the first and second moments to 
establish the relation between n,,,, and t .  Substituting (6.13) 
into (6.4), we find 

We see that n,,,(t) increases exponentially with t .  The ex- 
ponential increase in n,, is also maintained in the more 
refined form of the distribution 

In this case 

If 1312(t) and 12(t)  are calculated with the distribution (6.15) 
and plugged into Eq. (6.9), under the assumption a -=% n,, 
and with consideration of (6.16) we find 

For the compatibility of (6.16) and (6.17) we must set a= I. 
Note that we have intentionally maintained the inverse linear 
dependence of k,  on t. Such a dependence is dictated by the 
bilinear structure of the right-hand side of Eq. (6.14) with 
respect to Pk . 

The exponential increase in n,, is a significant feature 
of the problem under consideration. It is dictated by the de- 
pendence of the coefficients in the original equation (6.3) on 
the number of particles in a cluster. When we considered the 
case in which the coefficients do not depend on the number 
of the cluster in the preceding section, we found that n,, 
increased only linearly with increasing t. 

We now show that the solution (6.15) with a= 1 satisfies 
the general equation (6.14). Substituting (6.15) into the left- 
and right-hand sides of Eq. (6.14), we find 

where the dimensionless coefficients have the form 

It is easy to verify that the coefficient A is identically equal 
to zero. For the coefficients B and C we found B-25 and 
C-10. Assuming that I n n 9  I, we can neglect the term 
c l n 2 .  It then follows from (6.18) that the solution in the 
form (6.15) with a = l  does, in fact, satisfy Eq. (6.14). De- 
termining the value of 7, we ultimately have 

We note that we can, in fact, find the solution exactly by 
retaining the lln2 term. This solution has the form 

If we plug the value found of 7 into (6.16), we have 

Attention should be focused on the large numerical coeffi- 
cient in the exponent. This result indicates that excitations of 
large clusters occur by t-  1. The solution (6.20) or (6.21) 
corresponds to n < n,,(t). 

A numerical investigation of Eqs. (6.3) confirmed both 
the onset of the regime (6.13) and the exponential increase in 
the limiting scale of the active clusters n,,, . 

We now include intracenter transitions in the treatment. 
In this case the problem reduces to solving Eq. (4.15) with 
the coefficients bknl determined according to Eq. (6.1). We, 
however, will not perform a general analysis of the solution 
of that equation, but we shall derive an approximate solution 
on the basis of the results of the preceding section. 

As the analysis of (5.20) and (5.21) made clear, the char- 
acteristic amplitude of coherent transitions for an n cluster 
A r )  can be represented in the form 

Using (6.21) for the general distribution function, we have 

After the trivial integration, returning to the old notation of 
(4.7) and (4.16), we find 

Here 

is the effective number of particles in the clusters responsible 
for excitation with a transition amplitude A,. The smaller the 
value of A,, the greater the corresponding value of nef f .  Also, 
the amplitude A, in (6.23) is restricted to the following val- 
ues: 

The exponential increase in q ( t )  according to (6.22) causes 
the upper bound on A, to be extremely weak. The expression 
(6.23) holds over essentially the entire interesting range of 
small A. and, accordingly, long relaxation times. 

169 JETP 82 (I), January 1996 A. L. Burin and Yu. Kagan 169 



The derived distribution differs comparatively little from 
a uniform distribution in In Ao. It is interesting that this oc- 
curs despite the appreciable decay of P ,  with increasing n. 
As opposed to (5.25), (6.23) contains the factor I ~ ~ ( W / A ~ )  in 
its denominator and the factor In(neff t"), which is even more 
weakly dependent on Ao, in its numerator. Although their 
roles are unquestionably minor, they should cause some de- 
viation from the logarithmic distribution of the relaxation 
times when Ao-+O. 

The distribution (6.23) is logarithmically weakly depen- 
dent on the parameters of the original centers, as well as their 
density. This is one more important aspect of universality. It 
is interesting that the naturally arising numerical coefficient 
in (6.23) also predetermines a purely quantitative scale that 
can be compared with experiment. 

In obtaining these results we did not take into account 
the contraction of the phase volume discussed in the preced- 
ing section, which produced the factor f in (5.20). Since the 
limiting scale of the active clusters is now determined by 
~ ( t ) ,  rather than t, the factor (A~,/W)'P(') should appear in 
(5.22) instead of (A~*/W)('). The exponential increase in 
q(t) (6.22) is responsible for the fact that there are no upper 
bounds on t. The quantitative role of this factor in (6.24) is 
not of great significance, since cp(t)$t. 

7. DISCUSSION 

The results of the preceding sections were obtained un- 
der the assumption that T=O. Specific constraints that must 
be taken into account in a general treatment appear at finite 
temperatures. 

This applies above all to the size of the coherence re- 
gion, which is actually determined by the condition 

In fact, at larger distances the interaction between clusters is 
smaller than the temperature, and their excitation can be con- 
sidered independent. When R <Rm,, clusters with an energy 
determined by (3.12) are involved in the formation of new 
clusters. This energy is large compared with T, and it can, 
therefore, be assumed that they are in the ground state. All 
the features dictated by the stability condition are maintained 
here. 

We offer one comment. Condition (7.1) in its general 
form is, in fact, weaker: u ~ , ~ R ~ - T .  This condition can lead 
to the replacement u~ - , u~&& in (7.1). This would intro- 
duce weaker logarithmic corrections in the ensuing relations, 
which we ignore. 

When excitations with energies and tunneling ampli- 
tudes that are small compared with the temperature are con- 
sidered, the maximum size of the coherence region is given 
by 

This value of 5 should appear in the distributions (6.23) and 
(5.25), if the dimension of the entire system is greater than 
the corresponding value of R T .  For excitations at a higher 
energy E = d m : ,  the cut-off radius is given by 

Accordingly, ( = &  should be substituted into (6.23): 

Many-particle excitations will be significant when 

In many cases (see Sec. 6) the following relation is more 
than adequate: 

The most significant result of the present work is the 
proof that collective excitations of multicenter clusters 
specify a distribution function of the parameters P(A,Ao) 
having a uniform [see (5.25)] or quasiuniform [see (6.23)] 
distribution in In A. (apart from the uniform distribution in 
A) under these conditions. At the same time, it was shown 
that the inequality (7.5) [or the weaker inequality (7.6)] pre- 
determines the appearance of a broad scale of small A. [see 
(5.20) and (6.25)], where this uniform distribution is valid. 
This means that there is a logarithmic distribution of relax- 
ation times over a broad range of times. It is noteworthy that 
these universal properties of amorphous systems actually ap- 
pear for an arbitrary distribution of the parameters of the 
isolated defect centers. Moreover, under the natural assump- 
tion regarding the behavior of the coupling constant of an n 
cluster b ,  - adopted in Sec. 6, the derived distribution 
function (6.23) scarcely depends on the density of the origi- 
nal defect centers. This significant result makes it possible to 
understand the reason for the quantitative similarity of dif- 
ferent amorphous systems. 

In conjunction with the increase in tm, (7.2) as the tem- 
perature is lowered, the theory developed might make it pos- 
sible to understand the extremely nontrivial results obtained 
in Pobell's laboratory in ~ a ~ r e u t h . ~ . "  It was found that at 
ultralow temperatures, samples in which the presence of de- 
fects is due to their polycrystallinity exhibit properties char- 
acteristic of amorphous systems. The scales of the defects 
were comparable to those observed in ordinary amorphous 
systems. 

From the estimate of (2.15) 

it follows that the closer the spread W of the levels of the 
primary centers to the interaction between centers at a mean 
distance Uon, the greater the value of X .  Therefore, the 
greater the degree to which the spread of the levels is asso- 
ciated with the interaction of dynamically active centers 
(which have an internal degree of freedom) and the lower the 
value of T, the more easily the condition (7.5) together with 
the universality of the spectral properties is realized. 

The solution of the nonlinear equation (6.3) led to the 
appearance of a definite numerical factor in the solution 
(6.21) and, as a consequence, in the general distribution 
function (6.23). For this reason a quantitative comparison of 
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(6.23) with experimental results is of special interest. The 
internal friction in glasses can serve as a representative ex- 
ample here. 

Let us consider the so-called "plateau region,"" where 
the internal friction scarcely depends on T and the frequency 
w. In this region (see, for example, Ref. 1 I) 

where U is the deformation interaction constant of the cen- 
ters responsible for the absorption of sound. This region cor- 
responds to the condition 

where, considering that E - T, the relaxation time T equals 
(see Ref. 12) 

When w and T are fixed, from (7.8) we find Ao, as well as 
neff (6.24). Clusters with n--neff are responsible for the ab- 
sorption of sound. According to the results of the preceding 
section, 

As a result, substituting (6.23) into (7.7) and taking into ac- 
count (7.9), (6.24), and (7.2), we find 

1 
Q - l - 4 ~  lop2- 

1 
In( WIT) In( WIAo) 

[here we omitted a factor In(neff ta), which is close to unity]. 
At typical values "-lo3 Hz and W- 10' K, we obtain 

which is very close to the experimentally determined values 
of the internal friction (see, for example, Refs. 9 and 10). 
The purely logarithmic dependence on the parameters of the 
medium, which results in relatively weak variation of Q-' 
upon passage from one glass to another, is noteworthy. The 
latter is usually specially stressed when the absorption of 
sound in amorphous systems is analyzed. 

Thus, the results obtained enable us to account for the 
quasiuniversality of the observed properties of amorphous 
systems on both a qualitative and a quantitatively level. 

We offer one comment in conclusion. The smallness of 
the coupling constant ~4 I was utilized extensively through- 
out the preceding treatment. However, an increase in the co- 
efficients in Eq. (4.6) results in enhancement of the effective 
interaction. We can evaluate the emergent value of xeff from 
the first term on the right-hand side of Eq. (6.3): 

The sum in the definition of the effective coupling constant is 
determined by the lower limit n= 1, and P I  decreases as llt. 
Therefore the condition xeff4 1 is violated when 

This additional constraint on the largest size of a cluster for 
very large n imposes an essentially negligible lower bound 
on A. in the distribution (6.23). 
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