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Within the context of Ginzburg-Landau theory it is shown that in superconductors with a 
tricritical point near the second critical point the vortex lattice is energetically more favored, 
independent of the nature of the phase transition to the superconducting state in the 
absence of a magnetic field. O 1996 Anlerican Institute of Physics. [S 1063-776 1 (96)02001-91 

1. INTRODUCTION 2. TRANSFORMATION OF THE FREE ENERGY 

With the discovery of new superconducting materials, 
interest has grown in the theoretical investigation of atypical 
superconductors. Earlier studies '~~ have focused on the mag- 
netic properties of superconductors with a tricritical point, 
i.e., those for which, depending on the thermodynamic pa- 
rameters or composition of the material, the transition to the 
superconducting state can be either a first-order or second- 
order phase transition. Formally, this is expressed by a sign 
change in the coefficient of I @ I 4  in the Ginzburg-Landau 
expansion of the free energy density, F, in powers of the 
order parameter @, at some critical value of a controlling 
parameter, e.g., the pressure P: 

Here F, is the free energy density of the normal phase. The 
line b(P ,T)  = 0 divides the PT plane into two regions: those 
of positive and negative values of b .  In the region of positive 
b ,  the transition to the superconducting state takes place on 
the line a ( P , T )  =O and is second-order. In the region of 
negative b ,  the transition takes place on the line 
3b2= 16ad and is first-order. The two lines at the point 
where a ( P , T )  = 0 and b ( P , T )  = 0 simultaneously. This 
point is called the tricritical point. It is assumed that d>O 
everywhere. In the BCS theory b>O; however, the next- 
order corrections to this theory in the small parameter 
Tcl&,  frequently turn out to be larger than might have been 
expected from a simple e ~ t i m a t e . ~  

It was shown in Refs. 1 and 2 that changing the sign of 
b ,  shows up in a striking way in the temperature-magnetic 
field phase diagram of the superconductor. It was also noted 
in these two references that the question of the symmetry of 
the vortex lattice for negative b requires additional study, 
since the usual arguments leading to stability of a triangular 
lattice4*"o not apply in this case. The goal of the present 
paper is the elucidate what sort of vortex lattice structure is 
most favorable for negative values of b .  The existence of a 
stability region for a lattice other than triangular would mean 
that a phase transition at which the symmetry of the vortex 
lattice changes must take place in the vicinity of the tricriti- 
cal point. 

Near the tricritical point the fourth- and sixth-order 
terms in expansion ( 1 )  turn out to be equally important. This 
complicates the commonly used procedure4 for finding the 
solution of the Ginzburg-Landau equations near H,, . In this 
case it is more convenient to directly minimize the free en- 
ergy. We will assume that the sample is a long cylinder with 
its axis parallel to the magnetic field H. It is necessary to 
minimize the free energy for a prescribed field 

It is convenient to rewrite the expression for ps in dimen- 
sionless form, using as the characteristic parameters the fol- 
lowing quantities: the equilibrium value of the order param- 
eter 

and the two characteristic lengths-the penetration depth A 
and the correlation length 5. They are expressed in terms of 
the coefficients a, b ,  and d as follows: 

Hence, for the Ginzburg-Landau parameter we have 

where we have introduced the abbreviated notation 
bo= ~ ( e h l n i d ) ~ .  As a characteristic magnitude of the mag- 
netic field we may use 

hc 1 H --- 
O-2e (A'  

We now introduce the dimensionless quantities 
Bt=BIHo,  At=AIHoA,  and F ; = ( ~ T ~ H ~ ) F , ~ ,  

where B is the magnetic induction and A is the correspond- 
ing vector potential, and we express all lengths in terms of 
A .  In the indicated units, we obtain the following expression 
for the difference of the free energies of the superfluid and 
normal phases A.$? 
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where H, is the external magnetic field. One more dimen- 
sionless parameter besides the Ginzburg-Landau parameter 
enters into the above expressi 

e= bl J-. 
This parameter derives from the extra coefficient d in the 
initial expression for the free energy density (1). 

For a given external field H, the order parameter @ and 
the magnetic induction B can be found by minimizing 
A.?? We perform this minimization via successive approxi- 
mation in the small parameters HC2- He and 1 $ I 2 .  Varying 
A.@ with respect to B in the zeroth approximation in the 
indicated parameters gives 

In the next approximation, dropping terms in the functional 
(3) of order 1 $ I 4  and I and varying the remaining expres- 
sion with respect to +*, we obtain the linear equation 

In this equation curlA=B=He by virtue of (4). Proceeding 
in the usual way: we find the upper critical field 

as the field at which a bounded solution first appears: 

This solution is degenerate in the position of the center of the 
orbit k l ~ H , , .  The periodic solution describing the entire 
structure of the superconducting vortices near HC2 is sought 
in the form of a linear combination of functions of the form 
(6): 

Substituting the functions (7) into Eq. (3) gives 

Here, as in Eq. (7), the field B is assumed to be homoge- 
neous. Varying the above expression with respect to B gives 
the first-order correction in 1 @ I 2  to relation (4): 

where 

0 

FIG. I .  Unit cell. 

Substituting Eq. (9) into Eq. (8) allows us to express A F i n  
terms of the means of the powers of the order parameter: 

We now have in mind substituting the order parameter I++ in 
the form (7). The coefficients C ,  are related in a way that 
depends on the exact form of the periodic structure under 
consideration. The unit cell in general is a parallelogram with 
sides a and b and acute angle a (see Fig. 1). One quantum of 
magnetic flux should be assigned to the unit cell. This im- 
poses a constraint on the lattice parameters: 

After allowing for this constraint in the solution (7), the de- 
generacy with respect to the three continuous parameters re- 
mains. This can be the ratio of the main periods of the struc- 
ture R =  bla,  the angle a between the basis vectors, and the 
total amplitude of the solution, e.g., (I*I2). To remove this 
degeneracy, we must minimize expression (10) and find "the 
correct zeroth-approximation functions." In this way the co- 
efficients C ,  and the lattice parameters are determined. 

The minimization with respect to ([*I2) can be com- 
pleted by introducing the ratios 

These ratios depend only on the lattice parameters. The ex- 
pression for A.@ in terms of /? and y 
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is analogous to its initial form (I),  except that the role of the 
order parameter is now played by (1 $I2), and the controlling 
parameter instead of the temperature is He-Hc2. 

For subsequent minimization of the free energy it is con- 
venient to introduce the following abbreviated notation: 

After minimizing with respect to (/$I2), we obtain the fol- 
lowing expression for the difference of the free energies of 
the superconducting and normal phases: 

- 
A . F =  - 

I m( w- d 2 ( 2  - + P I .  
(14) 

The phase transition takes place when A&= 0. For ,u> 0 the 
first expression in parentheses may vanish, which would cor- 
respond to a second-order transition for E=O, i.e., 
H = HC2. For ,u<O the second expression in parentheses 
vanishes, which corresponds to a first-order transition on the 
line defined by the equation 

&=3,u2/16v, (15) 

i.e., for H>HC2. 

3. GEOMETRY OF THE VORTEX LATTICE 

Following Ref. 5 ,  we seek a periodic solution (vortex 
lattice) with unit cell in the form of a parallelogram (Fig. 1). 

In the coordinates X, Y , for which 

the solution takes the form 

2 i m  
(X + Y cosa) 

(16) 

After substituting this expression into definitions (12) 
and then, allowing for relation (1 I), into formula (14) for the 
free energy, the free energy becomes a function of the two 
variables R=bla and a ,  which can be combined into one 
complex variable 

and the problem of finding the most favored lattice structure 
reduces to minimizing a function of two variables 

The condition for an extremum of this function in u and v 
takes the form 

A . ? ~ ~ , , + A . ~ , , v , , = o ,  A . ~ ~ ~ , + A . ~ , , ~ , = o ,  (17) 

where rlA.?/rlp, etc. 

These conditions are satisfied in two cases: I) p,,v, 
- v,,p, + 0, whereupon we have A.pP= A.?~= 0, or 2) 

El.,, Vv - vi,,u, = 0. 
By direct differentiation of expression (14) we obtain 

Case 1) coincides with the condition for the vanishing of the 
function F itself and defines the line of second-order phase 
transitions E = 0, p>O. 

Case 2) reduces to a condition for p and y: 

This condition is obviously fulfilled if P,= P, = yu = y, 
=0, i.e., at the global extrema of P and y. In this case, no 
constraints are imposed on and A.@,, . 

If any of the derivatives of the functions p and y are 
equal to zero, then and are connected by one 
relation, for which we may take, for example, the second of 
conditions (17). This relation can be reduced to the form 

For further analysis, it is necessary to know the properties of 
the functions /3 and y. 

The function P(R,a) has been investigated in Ref. 5 ,  
where it was determined that 

It was also shown there that P(u,v) possesses the fol- 
lowing symmetry properties: 

I )  p is periodic in u with period I : P(u + 1 ) = P(u); 
2) p is symmetric with respect to the u =  112 axis: 

P(1 -u>=P(u> ;  
3) p is symmetric with respect to inversion about the 

unit circle centered at z=0:  p (  llz*) = P(z). 
These properties express the invariance of the function 

/3 with respect to the choice of the unit cell of the lattice. 
The properties of the function y(z) are considered in the 

Appendix, where it is shown that y(z) reduces to the form 

where 
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FIG. 3. Surface plot of the function y(z), z=u+ i u  . 

FIG. 2. The region D 

By virtue of the requirement of invariance with respect to the 
choice of basis, the function y(z )  possesses the same sym- 
metry properties as P(z) ,  i.e., 

These properties can be checked by reference to the rep- 
resentation of y(z)  given by Eq. (21). Thanks to the enumer- 
ated symmetry properties, it is sufficient to consider P(z)  
and y(z) only in the region D of the uv plane (the hatched 
region) in Fig. 2. As in the case of ordinary super- 
conductors~ it follows from symmetry properties 1 and 2 
that PI,= 0 and y,, = 0 on the lines u = 0 and u = 112, and 
thus Eq. (18) is satisfied on the indicated lines. By virtue of 
property 3 this equation is also satisfied on the arc 
z= exp(ia), n/3< a< 7~12, i.e., condition (1 8) is satisfied ev- 
erywhere on the boundary of the region D. 

Numerical analysis of Eq. (18) shows that inside the 
region D it has no solutions. Thus, the conditions of an ex- 
tremum (17) can be fulfilled only on the boundary of the 
region D. At the intersection points of the lines bounding the 
region D (the points A and B in Fig. 2), by virtue of prop- 
erties 1-3, the derivatives of P(z)  and y(z)  should vanish in 
both directions: P,, = P, = 0 and yII = yU = 0, i.e., at these 
points both P(z)  and y(z)  have extrema. 

An important, general property of the functions P and 
y is that for any given u E D they grow monotonically with 
v ,  and for any given v E D they grow monotonically with 
u. This property can be established for large v analytically, 
and for any finite u-numerically. It follows from this prop- 
erty that the point A is a minimum of p and y ,  and the point 
B-a saddle point. A surface plot of y(z)  is shown in Fig. 3. 

By virtue of (17), F(u ,v )  will also have an extremum at A 
and B for any values of the parameters K ,  0, and E .  Point 
A corresponds to a triangular lattice, and point B-to a 
square lattice. In the case of an ordinary superconductor, 
AP reaches its minimum where /3 has its minimum. There- 
fore, in the ordinary case the triangular lattice is the equilib- 
rium In the case considered here, and y enter 
into the expression for A@ with coefficients which can have 
different signs. For this reason, a global minimum of /3 or 
y does not have to be a minimum of A&. 

In addition, A@ can have extrema on the boundary of 
the region D. In order to find these extrema, we rewrite 
condition (19) in the form 

where we have introduced the notation 

Condition (19) should be considered only on the bound- 
ary of the region D. Numerical analysis shows that on this 
boundary the function G(u,u)  varies in the following way: 

1) on the lines u = 0 and u = 112 it decays monotonically 
with v and tends toward the limit G(u,w)=G,= 6 1 2 ;  

2) on the line R = 1, ~ / 3 <  a< 7~12 it decays monotoni- 
cally together with a ;  

3) G(A)=GA= 1.2557. 
Since G(u,v )  varies within finite limits, additional ex- 

trema exist only for G,< E I E ~ <  G A  . A study of the second 
derivatives shows that for G A  the nature of the extre- 
mum of F changes at the point A.  For E / E ~ > G ~  this extse- 
mum is a maximum, and for E I E ~ < G ~  it is a minimum. 
Thus, the line E =  eOGA is the boundary of stability of the 
triangular lattice. In the interval 1 < E I E ~ < G ~  the triangular 
lattice, and with it the superconducting phase, exist as a 
metastable state (A*? >O). The value E = co corresponds to a 
first-order transition to the mixed state (see formula (15)). 
For E = E ~ G ~ ,  simultaneous with the change in the nature of 
the extremum at the point A two additional extrema of F 
arise, one on the line u=  112, and the other on the arc 
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R = I ,  m/3< a<  ~ 1 2 .  With further decrease of these ex- 
trema move away from the point A along the segments of the 
boundary of the region D intersecting at A. Neither of the 
additional extrema is a minimum; however, as they move, 
the nature of the extremum at B can change. For 

= 1.2376, when one of the extrema falls on the point 
B, the saddle point at this point becomes a maximum, and 
for GB= 1.2142 it becomes once again a saddle point. 
As & / e 0 4 G m  both additional extrema move out to infinity 
along the lines u = 0 and u = 112. For Gm the function 
F has only two extrema-a minimum at A and a saddle point 
at B. 

Thus, over the entire existence region of the supercon- 
ducting phase the point A ,  corresponding to a triangular lat- 
tice, is the only minimum of A&. No other lattices, include 
a square lattice, can exist, even as metastable states. The 
point B, corresponding to a square lattice, is not a minimum 
for any E .  

4. CONCLUSION 

The above analysis shows that in superconductors with a 
tricritical point a triangular vortex lattice is stable over the 
entire existence region of the superconducting phase. For this 
reason, phase transitions associated with a change in the 
structure of the vortex lattice should not take place. The tri- 
angular lattice is stable also in the region where the super- 
conducting phase is metastable, i.e., for 

The existence of hysteresis at the transition to the mixed 
state and the existence of a region of metastability can be 
used experimentally to search for superconductors with a tri- 
critical point. 

ACKNOWLEDGMENTS 

One of us (V. L. G.) would like to thank A.I. Orlovskii, 
L. E. Pechenik, V. V. Kondrat'ev, and V. A. Avak'yan for 
helpful discussions and advice. 

This work was supported by the Russian Fund for Fun- 
damental Research (Project No. 95-02-05352-a). 

APPENDIX A CALCULATION OF y(z) 

In the dinlensionless variables 5= Ylb and g = X l b  for- 
mula (1 6) for I*\Irl takes the form 

FIG. 4. Contour plot (a) and surface plot (b) 
of F ( U , V )  for G , < E / E ~ < G ~ .  The posi- 
tions of the extrema are indicated on the 
contour plot: A (z=exp(i?r/3)) is a mini- 
mum, B ( z = i )  is a saddle point, and C and 
C' are additional extrema. 

m 

= C 0  ,I=-m P exp[i.rrn(n- I )R  cos a] 

~ e x p [ 2 i m R ( g + 5  cos a ) ]  

x )exp[- . r r ~ ( ~ . + n ) ~ l s i n  a ) ] \ ,  (Al)  

where R = b l a .  
This function is periodic in 5 with period 1 and in g 

with period a1 b = 11R. 
Then for I \Ir1 we obtain 

+n3(n3- l ) + k l ( k I -  1)+k2(k2-  1)  

+k3(k3- 1)]R cos a)exp[2i.rr(nl+n2+n3 

-kl--  k2-k3)R(q+E cos a)]exp{- .rrR[([ 

-n1 )2+(6 -n2 )2+(5 -n3 )2+(~ -k1 )2  

+ (E-- k212+(5-- k3)2])~inaI}. ('42) 

Averaging over 7, we have 

+n3(n3- l ) + k I ( k I -  I )+k2(k2-  1)  

+k3(k3- 1)]R cos a}exp(- . r r ~ [ ( t -  n 

+ ( 5 - n 2 ) 2 + ( 5 - n 3 ) 2 + ( 5 - k 1 ) 2 + ( E - k 2 ) 2  

+(5-k3>211sin a ) ) ,  (A31 

where the sum is taken over the points in the P plane: 

Denoting ki as n i+3  for i = 1,2,3 and taking Eq. (A4) into 
account, we transform the argument of the second exponen- 
tial: 
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We make a change of variables (the summation indices) 
that diagonalizes the quadratic form inside the brackets and 
transforms the form inside the parentheses into a new vari- 
able: 

For the new indices N, q,, r,,  q k ,  and rk,  the summation 
condition (A3) is fulfilled automatically. 

The back substitution for the ni has the form 

Thus 

and analogously for ki. The expression in brackets in the 
first exponential takes the form 

and Eq. (A3) becomes 
m 

in-R cos a 
( I * I ~ ) , = I ~ ~ I ~  exp[ 6  (r:+3q:-r,2 

[ r 7 q , N l  

- 3qf)  exp 6n-R sina 5 I [  i 
- n-R sin a 

- 'Iexp[ 6  

('48) 

where z = R e ' a = ~ + i v .  
The summation over the indices r ,  q ,  and N in expres- 

sion (A8) is subject to restrictions stemming from out of 
relations (A6), which are indicated symbolically by the 
bracketed expression under the summation sign. The num- 
bers N define planes cutting off equal segments along the 
n , , n2,  and n3 axes. The location of integer sites on neigh- 

boring planes is not identical. It repeats every three planes. 
Therefore we must introduce an additional index p distin- 
guishing planes of different type, i.e., we must set 

N =  3N' -p ,  where N '  is an integer, p =  1,2,3 

From the definition of r, and rk it is obvious that these 
numbers should have the form 

where r; and r; are integer, and p =  1,2,3 (or - 1,0,1; 
. . . ). 

We then obtain from Eq. (A8) 

After averaging over [ we have 

where 

Yet another restriction is associated with the fact that for 
even N the numbers n3 and n , + n 2 ,  and therefore n , - n 2 ,  
must have identical parity, and for odd N, different. In order 
to allow for this, we must introduce another parameter t 
which takes two values (0 and 1 )  according to the rule 

r r = 2 r " + t  and q = 2 q r + t + p ,  

where r" and q '  are integers, t = 0,1, and p = 0,1,2. 
With there definitions, the formulas linking the old indi- 

ces n , ,  n 2 ,  and n 3  with the new ones N',  r ' ,  and q '  are 

2 n l =  = 2 N 1 - r l + q - p ,  2n2=2N1- r ' -q -p ,  
(A 13) 
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The expression inside the absolute value sign in Eq. 
(A12) after this substitution takes the form 

We introduce the notation 

Then expression (A1 4) reduces to 

Noting that ( 1  T 1 2, = I col 2 /  6, we finally obtain 

Symmetry properties 1 and 2 are established by a direct 
check. To prove property 3, we express all of the functions 
on the right-hand side of Eq. (A18) in terms of f o :  

It is then necessary to apply the Poisson sum formula 
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