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We use the mean-field approximation to describe a phase transition in layered superconductors 
with Josephson coupling between the layers. The transition results in the emergence of a 
finite collective excitation concentration and proceeds as a first-order phase transition. We study 
the effect of transport current on the nature of the transition. At high currents, I>I,, , the 
transformation of the excitation spectrum proceeds as a second-order phase transition and affects 
the concentration of free vortices determining the resistance behavior of the superconductor. 
The exponentially weak interaction of the screened vortices in a dipole leads to a current- 
dependence of the free-vortex concentration above the phase transition temperature. This 
manifests itself in the broadening of the universal jump in the temperature dependence of the 
current-voltage characteristics exponent a(T).  We show that the Nelson--Kosterlitz 
jump in superconductors with Josephson coupling is present only in the temperature dependence 
of d In Eld ln[I-I,(T)]. O 1996 American Institute of Physics. [S 1063-776 1 (96)01901-41 

1. INTRODUCTION 

High-T, superconductors are known for their layered 
structure, which ensures a specific behavior of the current- 
voltage characteristics. In experiments they exhibit a resis- 
tance transition, which takes place at a temperature TR below 
the superconductivity transition, or critical, temperature 
T,, . A distinctive feature of this transition is the temperature 
dependence of the exponent a (T)  in the current-voltage 
characteristics of the form v - I ~ ( ~ ) .  This dependence dem- 
onstrates a linear decrease in a (T)  with temperature at T 
< TR up to a(TR)=3. A further increase in temperature 
causes a sudden drop in a(T)  to unity, which corresponds to 
a transition to the ohmic behavior of resistance, with the 
value remaining unchanged at higher temperatures.'92 The 
jump in voltage is associated with the Nelson-Kosterlitz 
jump?94 which makes it possible to interpret the resistance 
transition as a Berezinskii-Kosterlitz-Thouless (BKT) 
t r an~ i t ion .~ .~  

A BKT transition is possible in two-dimensional systems 
where topological defects with a finite topological charge, or 
vortices, can exist. An isolated vortex cannot emerge as a 
result of thermal fluctuations, since its self-energy is loga- 
rithmically divergent and in a real sample is cut off only by 
the sample's size. In layered superconductors defects of this 
type are the magnetic vortices in isolated planes.7-9 The two 
signs of topological charges, + 1, are related to the two di- 
rections of the vortex magnetic flux. 

In two-dimensional systems, the vapors of vortices of 
different signs are the thermal excitations. The topological 
charges of such dipoles are zero. Dipoles whose energy is 
proportional to the logarithm of the distance between the 
charges (the arm length of the dipole) are present in a two- 
dimensional system at any finite temperature. The BKT tran- 
sition is related to the transformation of the excitation spec- 
trum taking place at a certain temperature TKT as a result of 
the interaction between the dipoles. Here the elementary ex- 
citations become unstable against the emergence of new col- 

lective formations. Screening of the vortex interaction simi- 
lar to the Debye screening of electric charges occurs in the 
process. The energy of a screened vortex becomes finite, and 
the vortex coupling in a dipole whose length is greater than 
the screening length 6 becomes exponentially small. A gas of 
free vortices is formed with a net topological charge equal to 
zero. The free-vortex concentration vo- At the transi- 
tion point TKT the screening length 6 becomes infinitely 
large, no+O, and the energy of collective excitations be- 
comes equal to that of elementary excitations. The transition 
between the high-temperature (T>TKT) and low- 
temperature (T< TKT) states of the system occurs continu- 
ously, so that BKT transitions are second-order. 

Two-dimensional systems include layered superconduct- 
ors with no Josephson coupling between the layers. The tem- 
perature at which a BKT transition takes place in such a 
structure is7-9 

where 4, is the magnetic flux quantum, and A = ~ X ; ~ / S ,  
with X the London depth of penetration of the magnetic flux 
into the superconducting layers. When T< TKT, thermally 
excited dipoles consist of elementary vortices whose attrac- 
tion force is inversely proportional to the dipole's arm 
length. Only vortices whose mutual attraction is weaker than 
the Lorentz force exerted by the transport current will move 
under the action of that current and, therefore, will lead to a 
voltage drop. The concentration of such dipoles increases 
with the current, with the result that the current-voltage 
characteristics for T< TKT are nonlinear. When T> TKT , a 
free-vortex gas emerges, which ensures ohmic (linear) be- 
havior of the current-voltage characteristics. 

In real layered superconductors, between the layers there 
may flow a superconducting tunnel current caused by the 
Josephson effect. Such superconductors cannot be consid- 
ered two-dimensional. The simplest elementary excitation in 
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such superconductors is a dipole whose magnetic field is 
curved into a ring by means of two Josephson vortices situ- 
ated between superconducting planes.9 There can be no BKT 
transition in such a system. Even if the magnetic interaction 
is completely screened, there is still the energy of the Joseph- 
son attraction of the vortices proportional to the dipole's arm 
length. The Josephson interaction can also be renormalized 
as a result of dipole-dipole interaction, and this must mani- 
fest itself in the nature of the phase transition. 

For various high-T, superconductors, measurements of 
the current-voltage characteristics reveal the presence of an 
internal critical current I,(T) related to the Josephson cou- 
pling between layers.10-'2 The current-voltage characteris- 
tics of such layered materials reflect the decoupling of vortex 
dipoles and have a threshold nature, E- (1-I,)"(" (see Ref. 
13). The current I, is needed to overcome the linear tension 
of the Josephson vortices in a dipole. 

Theoretical investigations of layered superconductors 
have taken two paths. One seeks to establish the nature of the 
transformation of Josephson coupling between layers caused 
by critical fluctuations near the phase transition. The early 
works,14915 in which the renormalization group approach was 
used, discovered the three-dimensional behavior of layered 
systems. On the other hand, Weber and  ense en'^ employed 
the Monte Carlo method to study the critical behavior of the 
XY-model of two coupled layers and found that the coupling 
between the layers disappears at temperatures above the 
phase transition point. Later piersonI7 modified the 
renormalization-group equations and showed that the critical 
behavior of a system of Josephson-coupled layers can also be 
two-dimensional. Results of experiments do not provide a 
final solution of this problem either. Martin et a1.I8 and Wan 
et al.19 report the results of measurements of the temperature 
dependence of the resistance of Bi-based single crystals. 
They also point out that the temperature at which the resis- 
tance in the planes vanishes, T:~, is much lower than the 
temperature T: at which the resistance between the layers 
vanishes. Wan et al.19 found that T2- ~ : ~ - 2  K. This im- 
plies that after the superconducting layers have transformed 
into the resistive state at c b ,  Josephson coupling between 
the layers remains up to T:. It is still unknown whether T: 
coincides with the critical temperature Tco or T2<Tco. Yeh 
and ~suei?' on the other hand, found that in YBCO crystals 
T',-T:~ and Tc0- T:=30.2 K. 

The second path taken by theorists is related to building 
the current-voltage characteristics of layered superconduct- 
ors with Josephson coupling. In one of the first papers, 
Jensen and ~ i n h e g e n ~ l  built for coupled superconductors the 
nonlinear current-voltage characteristics reflecting the rup- 
ture of vortex dipoles by weak currents. These current- 
voltage characteristics have the power-law form 
E-I(II1,- I ) ' ' ( ~ ) ,  where the exponent a depends solely on 
temperature. pierson2' analyzed current-voltage characteris- 
tics of the same type. Finally, Gupta et obtained the 
current-voltage high-current asymptotics of the type 
E-I"(~)  for coupled layers at currents exceeding I,. 

In the present paper we discuss the phase transition of 
the BKT type and the related resistance to the transport cur- 
rent in layered superconductors with Josephson coupling. 

This transition leads to the onset of a finite concentration of 
collective excitations, vortex dipoles whose magnetic inter- 
action is screened as a result of their coupling. The difference 
between this transition and a BKT transition lies in the pres- 
ence of Josephson coupling between the layers. It is a first- 
order transition and begins at a temperature T,> TKT when a 
nonzero concentration of the collective excitations emerges. 
The upper limit of stability of the metastable state coincides 
with the temperature at which coupling between the layers 
disappears. 

We studied the effect of the transport current on the na- 
ture of the transition and the transformation of the excitation 
spectrum. The appearance of collective excitations at low 
currents in a system of Josephson-coupled layers occurs as a 
first-order phase transition, whose upper limit of stability of 
the metastable state is monotonically shifted downward as 
the current grows. There exists a critical value of current 
I,, at which the type of the phase transition changes from 
first-order to second-order. Under a further increase of cur- 
rent the temperature of the second-order phase transition de- 
creases monotonically to zero. 

The fact that there is a transport current leads to the 
formation of free vortices whose attraction to each other is 
overcome by the Lorentz force. The motion of these vortices 
determines the resistive behavior of the system. The free- 
vortex concentration nf strongly depends on the excitation 
spectrum. Transformation of the excitation spectrum as a re- 
sult of the phase transition leads to the universal Nelson- 
Kosterlitz jump. The current curves for nf obtained here can 
be divided into two groups. The low-temperature (T<T,) 
n vs I curves, where the concentration of collective excita- 
tions is extremely low, are determined by the elementary 
excitation spectrum, which agrees with the results of Jensen 
and ~ i n h e g e n . ~ '  The high-temperature nf vs I curves are 
determined by the collective excitation spectrum. The expo- 
nentially weak coupling of screened vortices in the dipoles 
leads to a weak dependence of the concentration nf on cur- 
rent. This results in a smearing of the universal jump by the 
current. In Josephson-coupled superconductors this jump is 
present in the temperature dependence of d lnEl 
8 In[l-I,(T)]. 

2. THE ELEMENTARY EXCITATION SPECTRUM 

We consider a superconductor to be a periodic system of 
parallel conducting planes separated by insulating layers of 
thickness s. We assume the conducting planes to be London 
superconductors, AabP&,b, with Josephson coupling be- 
tween the layers. Here A is the depth of penetration by the 
magnetic field and 6 is the coherence length. We select a 
Cartesian system of coordinates with the axes directed along 
the crystallographic axes, with the 2 axis, as well as the 
anisotropy axis c ,  being perpendicular to the planes. Then the 
superconductor can be described by the Lawrence-Doniach 

and its free energy 
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L 

+ 7 (1-cos R,) 6(z-ns) 
X J 1 

can be expressed in terms of the vector potential A(r) and 
the phase 13,(x) of the order parameter in the nth layer. Here 
r=(x,z),  A = ~ X ; ~ I S ,  X J =  ys, y=(ad(c=h,/X,b is the an- 
isotropy parameter of the system, and 

27i- ( n + l ) s  

a,,= e1,+1- en- - & A z .  40 ns 

Varying the potential (2) in the independent variables A 
and 6 leads to the following system of equations:25 

47r iaA) - A A ( ~ )  = x - In($ 6(z- ns),  
dx dx n C 

(3) 

where (. ;) stands for a scalar product. 
The step function f n  is equal to unity inside the interval 

ns<z<(n  + 1)s  and is zero outside. So  we select the gauge 
of the vector potential in the form25 

The system of equations (3)-(6) is completely defined if 
we fix in each layer the coordinates of two-dimensional vor- 
tices (x t )  and antivortices (G),  the magnetic-field sources: 

where [ .  ;] stands for a vector product. 
In this paper we solve only the linearized system of 

equations. Such an approach to layered high-T, materials 
was developed by Bulaevskii et al.25,26 The linear approxi- 
mation makes it possible to calculate the distribution of the 
phase of the order parameter of a single dipole and to use a 
linear combination of the solutions obtained for a gas of 
dipoles. In Sec. 2 we find the expression for the energy of 
interaction of two vortex dipoles and the self-energy of a 
single dipole. 

Combining Eqs. (2) and (3), we find that in the linear 
approximation the interaction energy for two dipoles with 
arms I and 1' situated in the layers m and k at a distance x 
from each other is 

By the lower index we designate the number of the layer 
for which we are calculating the given function induced by 
the vortex whose source is in the layer designated by the 
upper index. As the structure of the above expression shows, 
the interaction energy of two dipoles positioned in the layers 
n and m are expressed in terms of the current density and the 
gradients of the phase and phase differences between neigh- 
boring phases induced by these vortices in all the layers. 

The system of equations for the phase of the dipole with 
arm 1 in layer k has the form 

where @ is the Kronecker delta. 
Linearization of the equations leads to the appearance of 

nonphysical discontinuities in the expression for the current 
in the direction of the 2 axis. To remove the discontinuities 
we introduce a cut in the form of a straight line along vector 
I, a cut that connects the coordinates of the vortex and anti- 
vortex in the dipole. We identify this cut with a Josephson 
vortex. Performing the Fourier transformation 

and allowing for the fact that the derivative of the phase, 
which is different in the direction of I, along which there is 
no jump in phase, is 

( l ,VR)= i (q  . ! ) a ,  

we obtain the following system of equations: 

The solution of this system is 

and the phase gradient is given by the following expression: 
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The dipole current 1k,(q) in the Fourier representation 
can be separated into two components, the potential compo- 
nent and the vortex component: 

The vortex component of the current can be found by solving 
the equation 

and does not contain Josephson coupling, while the potential 
component of the current, 

- --- 4 4 0  (i[q.ll) (;I) sin - (4-v:) ,  
A4 (q.1) 

depends only on the phase difference ~ k ,  between the layers 
defined in (8). 

Now by performing simple transformations we can write 
the expression for the interaction energy of two dipoles [Eq. 
(7)] in the form 

and the dipole's self-energy is 

F(I)= 4dkk(&,b,~,1)=.FM+FJ, (12) 

with E and K the complete elliptic integrals, and 
t =  \/1 + ( ~ , / 2 h , ) ~ .  

3. THE COLLECTIVE EXCITATION SPECTRUM 

The energy of a vortex dipole in a layered superconduc- 
tor is always finite, with the result that for any nonzero tem- 
perature the layers contain a dipole gas caused by thermal 
fluctuations. This is not an ideal gas: the interaction of the 
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dipoles with each other leads to local polarization and spatial 
inhomogeneity of the gas and, as a result, to renormalization 
of the dipole energy. 

Let us calculate the energy of a dipole that has an arm 
1, is positioned at the origin of coordinates of the zeroth 
layer, and interacts with dipole gas. We employ the Debye- 
Hiickel method.27 In view of the linearity of the problem, the 
current I,(x) in the nth layer is the sum of the currents 

111 I,, (x- xa,,lant) induced in this layer by all the other dipoles 
at points xam of all the layers nl: 

where 

Here we have separated the current of the test dipole and 
replaced the current of the other dipoles by a mean current 
determined by the concentration nm(xt , l r )  of the dipoles in 
layer m. The spatial inhomogeneity of the distribution of 
dipoles is caused only by their interaction. We assume that 
the concentration is given by the Boltzmann relationship 

nm(xt  ,It ) = A  exp [.!!(It) + 46 "'(xt ,It)] 

where A is the normalization constant, and Yd "(xr, l t)  is the 
energy of the interaction of the dipole with arm i t  at point 
xt of layer m with all the other dipoles: 

Here the integrand contains the total current flowing in level 
ni. Assuming the interaction energy is small, we expand the 
function (14) in a power series and keep only the term linear 
in 
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Carrying out a two-dimensional transformation of (13) and 
eliminating the vector potential, we arrive at the following 
equation for the components of the total current flowing in a 
layer: 

The expressions for I,, and Ill, are separated as a result of 

integration over the angles qF. 
Let us start with the equation for the vortex component 

of the current (Eq. (16)). Substituting the explicit expressions 
for 9%' and V By,, we obtain 

To evaluate the expression in the square brackets, we 
note that the integrand has two asymptotes. For small 
lengths, 1 ' 4  l lq,  the sine can be replaced with its argument, 
and for large lengths, 1's llq, the square of the sine can be 
replaced with its average value 4. After this Eq. (18) assumes 
the form 

where .%(q)= 62q21( 1 + s ~ ~ ~ ) ,  with 

the screening length, 

the collective excitation concentration, and 

the dielectric constant in the direction of [q-21. In evaluating 
the above integrals we allowed for the fact that the principal 
contribution to the dipole energy is provided by the wave 
vectors q S  116 and is restricted to asymptotic branches ac- 
cording to the parameter. Note that short dipoles have no 
effect on the screening length S and contribute only to the 
dielectric constant. On the other hand, long dipoles ( I >  5) 
determine only the screening length. 

The solution to Eq. (20) is found by a Fourier transfor- 
mation along the ,i axis: 

Now let us study the screening of the potential compo- 
nent of the current lIlt1(q). Solving Eq. (17) for Ill,, as we did 
Eq. (16), we find that 

Here we have employed the notation ~ ; ( ~ , a )  introduced by 
(8), 

and 

is the dielectric constant in the direction of q. 
In what follows we ignore spatial dispersion and assume 

6, el , and 611 to be q-independent. 
The self-energy of a dipole interacting with a gas of 

thermally excited dipoles can be found from Eqs. (12) and 
(15). Substituting (22) and (23) into (15) and integrating with 
respect to q ,  we get 

with 
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where KO is the modified Bessel function of the second kind. 
Comparing Eqs. (24) and (12) makes it possible to un- 

derstand the nature of the transformation of the excitation 
spectrum, a transformation caused by the dipole interaction. 
If the collective excitation concentration (21) no is zero, then 
the screening length 6 is infinite, and the energy (24) of the 
dipoles differs from the energy of free dipoles only by a 
dielectric constant 6, > 1 that allows for the polarization of 
the gas of excitations. A finite concentration no of collective 
excitations corresponds to a finite screening length 6. The 
screened vortices in dipoles with arm lengths 1 exceeding 6 
are characterized by an exponentially weak interaction. In a 
system of uncoupled planes we have .F=O, with the collec- 
tive excitations consisting almost entirely of free vortices. In 
the case of coupled planes such excitations are the screened 
vortices united in dipoles by means of Josephson vortices. 
The energy of short dipoles with I<  6 depends on their 
length logarithmically, and the dipoles continue being the 
elementary excitations. 

Thus, transformation of the energy spectrum is related to 
the emergence of a nonzero concentration no of collective 
excitations. The equation for no(T) is derived and analyzed 
in Sec. 4. 

4. THE PHASE TRANSITION SCENARIO 

The definition of no given in the process of calculating 
the dipole energy is not constructive, since it is expressed in 
terms of the known dipole concentration n(l). 

Here we define no differently. The equilibrium concen- 
tration no of collective excitations emerges as a result of 
dynamic equilibrium between creation and annihilation of 
screened dipoles. The variation of no in this case is described 
by the kinetic equation28 

The first term on the right-hand side of the equation de- 
scribes the rate at which collective excitations appear as a 
result of thermal fluctuations. We assume that 
T.=B expi-.F(G)lT), where B is a constant. The second 
term describes the rate of disappearance of screened excita- 
tions as a result of annihilation of vortices and antivortices 
belonging to different dipoles. 

The time-independent equilibrium concentration no is 
determined by requiring that the right-hand side of Eq. (25) 
vanish: 

Using the expression (24) for the dipole energy and introduc- 
2 ing a dimensionless concentration z = .rrtohno, we can write 

Eq. (26) as 

where a= JI/EII([,b/~J) and p = ~ ~ / 1 6 . r r 2 ~ ( ~ ) ~ , ~ .  The 
specific temperature dependence of p is determined by the 

FIG. 1 .  Graphical solution o f  Eq. (27) for the collective excitation concen- 
tration n o ,  with .r= ln(.nn,P). 

temperature dependence of and Xab  ; the quantity tends 
to infinity as T-+ 0, p(TKT) = 1, and p(TCo) = 0. 

Obviously, for all T<TCo Eq. (27) has the trivial solu- 
tion z=0 ,  which corresponds to the absence of collective 
excitations. To facilitate subsequent analysis of Eq. (27), take 
the logarithms of both sides of this equation and introduce a 
new variable x =  In z. The result is 

First we examine the system of uncoupled superconduct- 
ing layers ( a = O ) .  We analyze Eq. (28) with a = O  graphi- 
cally (Fig. 1). The left-hand side of the new equation is rep- 
resented by a straight line through the origin, with the slope 
of the line determined by p. The right-hand side, In q, is 
represented by curve 4 in Fig. 1. If q < 1, then for p 2 1 the 
equation has no physically meaningful solutions correspond- 
ing to low values of the collective excitation concentration 
no< llmS2 (x<O). But for p<  1 there is a nontrivial solu- 
tion, 

z=qll[l-fiT)l (29) 

which is zero at p = l and increases monotonically with tem- 
perature. 

This means that at a temperature TKT given by Eq. (1) 
and fixed by the condition that p(T)  = 1 ,  the excitation spec- 
trum undergoes a transformation. Excitations in the form of 
unscreened vortices coupled into dipoles, corresponding to 
the trivial solution of Eq. (27), become unstable. Instead, a 
branch of collective excitations appears, whose concentration 
depends on temperature according to (29). The coupling of 
these vortices is exponentially weak and can easily be dis- 
rupted by an arbitrarily weak current. 

Now let us examine a system of Josephson-coupled 
planes ( a>O) .  The straight lines 1 ,2 ,  and 3 in Fig. 1 repre- 
sent the left-hand side of Eq. (28) for different temperatures 
T I <  T2< T3.  Curve 4 represents the right-hand side, and for 
negative values of x it moves down and away from the 
dashed line at  an exponentially growing rate. Hence now the 
condition p c  1 does not guarantee the appearance of non- 
trivial solutions. as was the case for a = O .  The first nonzero 
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FIG. 2. Numerical solution of Eq. (27) for various values of the constant 
((O)/X,(O) of layer coupling. Metastable states exist in the temperature 
interval from T ,  to T,,=2TK,. The envelope corresponds to the solution 
with zero coupling constant. Unstable solutions are depicted by dashed 
curves. 

solution appears at a certain critical temperature, p(T)=p, 
(the straight line 2), which corresponds to a finite critical 
concentration no=nc of collective concentrations. With an 
increase in temperature (the straight line 3)  two nonzero so- 
lutions emerge, x, and x,. This fundamentally distinguishes 
the case of coupled planes from that of uncoupled planes. 
Since p,< 1, the transition always takes place at a tempera- 
ture T> TKT. Of the two new branches of collective excita- 
tions, one (x,) is stable and the other (x,) unstable. The 
third branch of trivial solutions no=O also remains stable. 
Equation (28) has three solutions in the temperature interval 
from T, to Tco, where the sample goes into the normal state. 
The discontinuity in the temperature dependence of no and 
the existence of two stable solutions within a finite tempera- 
ture range means that the transformation of the excitation 
spectrum is a first-order transition. 

The results of numerical solution of Eq. (27) are de- 
picted in Fig. 2. A dashed curve depicts the unstable solution 

x2. 
Let us estimate the temperature T, at which a nontrivial 

solution appears. At the transition point not only both sides 
of Eq. (27) but their derivatives are the same. Assuming that 
l n h l l n  a<l, we get 

The dimensionless collective excitation concentration z 
at the transition point is 

and the screening length 6 rn (X /2)(ln&lln a)<Xj. 
In a system of Josephson-coupled planes, the collective 

excitation concentration is certain to jump from zero to a 
relatively large value n, corresponding to 6<XJ. The fact 
that 6 cannot be greater than XJ in a system of coupled layers 
has a simple explanation. Only dipoles whose length is 
greater than 6 can ensure that the magnetic field of a vortex 
is screened over distances of order 6. The concentration of 
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long dipoles with l>X is exponentially low, n(1) 
rn exd-NX,). Equation (21) implies that no rx exp{-ahJ), 
while from the definition of 6 we find that 6/XJ n, ' I 2 .  

These two relationships can be reconciled only if 6/hJ is 
fairly small. Physically this means strong suppression of the 
probability of creation of long dipoles because of the high 
energy of Josephson vortices. 

5.THEEFFECTOFTRANSPORTCURRENTONTHE PHASE 
TRANSITION 

In the preceding section we described the phase transi- 
tion associated with the appearance of collective excitations. 
For a system of isolated superconducting planes this is a 
BKT transition. In a system of Josephson-coupled layers, the 
screened two-dimensional vortices remain united into di- 
poles by means of Josephson vortices and cannot move apart 
to an infinitely large distance. 

Experimentally such transitions are studied by analyzing 
the current-voltage characteristics of layered superconduct- 
ors measured at different temperatures. In the process a 
transport current flows through the sample, and this current 
can change the collective excitation spectrum and the nature 
of the phase transition. 

In contrast to the zero-current situation, the dipole en- 
ergy contains an additional term that takes into account the 
work of the external current source: 

40 
F,(1) = - I1 sin 6, 

C 

where 0 is the angle between the dipole's arm and the direc- 
tion of the current I in the layer. If this term is taken into 
account, the minimal work (24) spent on creating a dipole 
ceases to monotonically increase with the dipole length. It 
reaches its maximum at a length l,, which has the smallest 

value for dipoles perpendicular to the current (6= +T), and 
can be found from the equation 

where IGL(T) = cTp (T)l 40&,b(T) is the Ginzburg-Landau 
current, which disrupts dipoles of length EUb, and 

A further increase in the dipole arm length leads to a de- 
crease in the dipole's energy. This means that the system 
becomes thermally unstable against avalanche creation of di- 
poles with arm lengths 1>1,, whose vortices can freely 
move under the action of the current. The steady-state con- 
centration nf of free vortices emerges as a result of dynamic 
equilibrium between free-vortex creation and annihilation: 

dnf 
-- 2 

clr 
- TI- pnf . 

According to Refs. 29 and 30, the rate rf at which free 
vortices are created is determined by the energy of a vortex 
dipole of critical length 1, as follows: 
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where I. is the modified Bessel function. 
The equations for 1, and n f  contain the screening length 

6,  which is related to the collective excitation concentration 
no. Hence Eqs. (3 1) and (33) must be solved simultaneously 
with Eq. (25) for no .  In the presence of a transport current, 
however, the rate I' at which collective excitations are cre- 
ated changes. Here the magnitude of r is determined by 
various processes that depend on the ratio between I ,  
and 6. 

If the screening length 6 is shorter than I,, then r is 
determined by the least work that must be done to form a 
dipole with an arm length 6 ,  as was established in Sec. 4. 
The difference compared with the zero-current case is that 
here I' acquires an additional factor related to the dipole- 
current interaction energy, 

The equation for the concentration z= mo&, of collective 
excitations assumes the form 

In this case not all collective excitations are free: a fraction 
of these remain coupled to dipoles because of the tension of 
Josephson vortices. 

In the opposite case, 6> 1 ,  , the rate r at which collec- 
tive excitations are created is directly linked to the rate T f  of 
free-vortex creation. In a current, dipoles whose length 1 is 
no less than 1, begin to increase in length at a rate 
u-I-  I , .  If there were no collisions between dipoles, the 
length of each dipole would reach S and r would become 
equal to rf. But by the time 1 reaches 6, some of the dipoles 
are able to collide with others, as a result of which their 
concentration decreases due to the annihilation of vortices 
and antivortices belonging to different dipoles. And r de- 
creases accordingly. 

Let us estimate r in a simple model. In the steady state, 
the variation of the dipole concentration at lengths 1>1, is 
described by the transport equation 

The left-hand side of the equation describes the variation in 
n(1) due to transport in the size space. The first term on the 
right-hand side allows for the decrease in concentration due 
to vortex annihilation. Here it is assumed that all long di- 
poles with 1>1, are oriented in an energetically favorable 
direction, perpendicular to the current, and a collision of two 
vortices is followed by the creation of one dipole with a 
length equal to the sum of the dipole lengths prior to the 
collision. We drop the arrival term in (35) since we assume 
that a single collision of two long dipoles forms one dipole 
with a total length I >  6, and we are interested in processes in 
the length interval from I,. to 6. Neither do we take into 
account the interaction between dipoles with small lengths, 

1<1,, since such dipoles have an essentially equiprobable 
orientation in the layer and, after averaging over the angle 
0, prove to contribute little to the variation of n(1). 

Equation (35) makes it possible to estimate the rate I' of 
creation of collective excitations: 

where L=ulpn f  is the mean free path of the vortices. 
The two situations just described correspond to different 

phase transition types. We start by analyzing the case 
6< 1, , corresponding to a relatively weak current flowing in 
the sample. In this case the phase transition to a collective 
state is fully described by Eq. (34). 

At high enough temperatures and concentrations z ,  the 
argument of the Bessel function is small, the value of the 
function is close to unity, and the solution z ( T )  of Eq. (34) is 
independent of current I. 

At low concentrations of collective excitations the 
Bessel function can be replaced with its asymptotic value at 
large values of the argument. Equation (34) in this case as- 
sumes the form 

where 

This equation can be analyzed graphically, as we did with 
Eq. (28) in Fig. 1. Here we must allow for the temperature 
dependence of the function a l ( T ) ,  where I  G,,- t - 3 ( T ) .  AS 
the temperature is increased, the second term in a l ( T )  grows 
much faster than the first. For a given temperature there ex- 
ists a critical current I,(T) [Eq. (32)] above which a'  is 
positive. For such values of I  the curve 4 in Fig. 1 bends 
upward and nontrivial solutions emerge. 

The dependence of the concentration of free excitations 
obtained as a result of solving the system of equations for 
no and nf  numerically is depicted in Fig. 3 for the following 
values of the coupling constants between the layers: 
~,,(0)/AJ=O.Ol (Fig. 3a), and ( / X J = O . O  (Fig. 3b). Let us 
examine the temperature behavior of no for a system of 
coupled layers. The solutions of interest correspond to low 
currents and belong to the same type as the zero-current so- 
lutions, the only difference being that the right-hand stability 
limit of a metastable state is current-dependent and can be 
found from the equation 

Curve 1 in Fig. 3a is a typical solution. Solutions of this 
group lie between curves 0 and 2, with the first correspond- 
ing to a zero current and the second to the first critical cur- 
rent I,, at which the region of metastable states disappears. 
The left and right limits of metastability merge at the tem- 
perature 
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and the magnitude of the critical current I c I  is determined by 
the relationship 

For low-current solutions the right-hand stability limit 
for a metastable state corresponds to the resistance transition 
temperature, since the Josephson coupling of excitations is 
disrupted by the transport current. 

When a current I higher than I,, flows through the 
sample, the case 6> 1 ,  is realized. The solutions correspond- 
ing to such currents describe a second-order phase transition 
in which the collective excitation concentration grows from 
zero continuously. The temperature at which nontrivial solu- 
tions emerge is given by Eq. (38) and monotonically de- 
creases as the current grows. There is a critical value IC2  of 
current at which the transition temperature is zero: 

(curve 3 in Fig. 3a). When 1>IC2 ,  we have a second-order 
phase transition at zero temperature but with a different tem- 
perature dependence of 2. At low temperatures, T<T,  , the 
collective excitation concentration is always cusrent- 
dependent and monotonically increases with I. At tempera- 
tures T>T,  the solutions are essentially identical with the 
zero-current one if the current is lower than a certain value 

and monotonically grow with current when [>Ic3  (curves 4 
and 5, respectively, in Fig. 3a). 

Numerical calculation of z (T , I )  for a zero coupling con- 
stant is illustrated by Fig. 3b. In this case there is critical 
current and 

I , ,  = I c 2 = 0 .  

The temperature dependence z  is similar to that depicted by 
curves 4 and 5 in Fig. 3a with a zero temperature of the 
phase transition. As Fig. 3b shows, at low temperatures the 
functions z (T , I )  corresponding to different currents are rep- 
resented, on a log-log scale, by straight lines and can be 
written as 

FIG. 3 .  The temperature dependence o f  
collective excitation concentrations for 
different currents: (a) &/AJ=O.O1, with 
the corresponding values o f  the current 
described in the text, and (b) &/AJ=O.  
The higher the curve, the greater the cur- 
rent. 

We note once more that in a system of free supercon- 
ducting planes there is a nontrivial solution z ( T )  for any 
arbitrarily low current and at any temperature. 

6. CURRENT-VOLTAGE CHARACTERISTICS 

The resistance behavior of type I1 superconductors is 
governed by the motion of magnetic vortices. In layered su- 
perconductors in the absence of a magnetic field, the only 
vortices of thermally excited dipoles that can move under a 
current are those whose Josephson and magnetic attraction 
can be overcome by the Lorentz force. 

Dipoles whose length 1 is greater than 1 ,  meet this con- 
dition. In contrast to Refs. 21 and 31, the critical length 1 ,  is 
given by Eq. (31), which was obtained with allowance for 
the transformation that the excitation spectrum undergoes as 
a result of the phase transition. This made it possible to de- 
scribe the superconductor resistance caused by the motion of 
vortices of concentration nf  (see Ref. 32), 

over a broad range of currents and temperatures below 
T,, .  Here p, is the resistance of the material in the normal 
state. 

The results of calculations of n, ( l )  are depicted as solid 
curves in Figs. 4a and b. For the sake of comparison, the 
dashed lines show the behavior of the collective excitation 
concentration no .  At low temperatures, T< T ,  , the concen- 
trations no and nf coincide. At high temperatures the curves 
representing the no vs I dependence start at finite values at 
I = I,(T) , while the nf  vs I curves start at zero. 

The difference between the n,( l ,T)  functions for sys- 
tems of coupled and free superconducting layers is due only 
to the existence of a critical current I , (T) .  A curve represent- 
ing n f ( I , T )  for coupled layered superconductors and built as 
a function of I - I ,  is similar to a curve in Fig. 4b. Hence all 
the properties of the resistance and the current-voltage char- 
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FIG. 4. The current dependence of the free- 
vortex concentration . r r r ~ / . [ ~  for different 
temperatures. The calculation was done for 
parameter values T,,= I, T,, = 2, and 
q=0.1 and temperatures ranging from 0.5 
(the lower curve) to 1.7 (the upper curve) in 
steps of 0.15. For the sake of comparison, 
the dashed curves represent the current de- 
pendence of the collective excitation con- 
centration ~ n , . $ ~  calculated for the same 
temperatures: (a) [/AJ= 0.0 1 ,  and (b) 
[/A,=O. 

acteristics of a system of free superconducting planes can be 
carried over to a system of coupled planes simply by substi- 
tuting 1-1,  for I. 

As Fig. 4b shows, the curves clearly contain sections 
where the function n f ( I )  and hence the resistance pJI )  can 
be approximated to high accuracy by the power-like function 

with an exponent a ( T )  that is current-independent. At low 
temperatures, T< Tg  , and in the high-current range at high 
temperatures, a ( T )  - 1 = 2 p  ( T ) .  This result is consistent 
with those of other  researcher^,'^.^^ who found the free vor- 
tex concentration n f  without allowing for the transformation 
of the excitation spectrum. This coincidence is not acciden- 
tal, since in such ranges the screening length S is greater than 
1 ,  and the transformation of the spectrum has essentially no 
effect on the unpairing of the dipoles by the current. 

The situation differs in the high-temperature branches of 
nf ( I ,T ) .  When the currents diminish, the curves representing 
the function nj{I ,T)  deviate from the high-current asymp- 
totic behavior (42) and become flatter. The reason is that here 
the length 1 ,  proves to be greater than the screening length 

S, and the magnetic attraction between vortices becomes ex- 
ponentially small. In this range of currents and temperatures 
the function n J I , T )  can also be represented by Eq. (42); but 
the exponent a  is a slowly varying function of the current. 
The current dependence of a  shows up as a smearing of the 
Nelson-Kosterlitz jump in the temperature dependence of 
a  as the current grows (Fig. 5b). 

The above dependence of the resistance pf on the current 
and temperature make it possible to estimate the current- 
voltage characteristics of layered superconductors: 

The properties of these current-voltage characteristics are 
completely determined by the behavior of nf ( I ,T )  and re- 
quire no additional explanation. Let us discuss them from the 
experimental viewpoint. 

The threshold nature of the current-voltage characteris- 
tics resulting from the presence of a critical current I,(T) 
manifests itself in the tendency of the electric field strength 
E to vanish as I  approaches I , (T) .  This is reflected in the 
E vs I dependence: the branch of the current-voltage char- 
acteristics with a fixed temperature T makes a sharp dip near 

FIG. 5. The temperature dependence of 
d In Eld In I for different currents and with 
TrO=2TKT : (a) 5/k j=0.01, and (b) 
[/AJ=O. The arrow shows the direction in 
which the curves shift as the current in- 
creases. 
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I ,(T).  In the experiments reported in Refs. 10, 11, 33, and 
34 such behavior is observed for the low-temperature 
branches of current-voltage characteristics. In the high- 
temperature branches the exponent a(T, I )  decreases as the 
temperature drops. 

We see two reasons for such a discrepancy between 
theory and experiment. First, at current values I that exceed 
the critical value I,(T) considerably, the main process deter- 
mining the resistance behavior of the superconductor is free- 
vortex motion. When the current approaches the critical 
value, the field strength E associated with vortex motion de- 
creases, and other mechanisms, such as Aslamazov-Larkin 
fluctuations and creep, come to the fore and lead to an almost 
linear slope of the respective sections of the current-voltage 
characteristics. In a number of real current-voltage 
 characteristic^'^^" such a change in the mechanism of the 
resistance behavior reveals itself in the form of breaks in the 
branches of the current-voltage characteristics for low field 
strengths E .  As T,, is approached, the contribution of the 
alternative mechanisms to the resistance behavior becomes 
greater and may mask the feature in the current-voltage 
characteristics related to the disruption of vortex dipoles. 

Another reason for this discrepancy may be that in real 
samples at temperatures higher than Tg the superconductive 
coupling between the layers can break down. In this case E 
vanishes only at I=0 .  Accordingly, the high-temperature 
branches of the current-voltage characteristics must have a 
slope close to a linear one. 

As noted in the Introduction, the temperature depen- 
dence of the exponent a ( T )  is one of the most characteristic 
manifestations of phase transitions of the BKT type. Indeed, 
experiments involving various high-T, clearly 
demonstrate the existence of the universal Nelson-Kosterlitz 
jump. In other the jump has proved to be 
greatly distorted. Such a large spread in the results can prob- 
ably be linked to the lack of a rigorous method for extracting 
a(T)  from current-voltage characteristics. This statement is 
illustrated by Figure 5a, which shows the temperature depen- 
dence of d In(E)ld ln(l) at different values of current for the 
calculated current-voltage characteristics [Eq. (42)l. The 
curves resemble the experimental dependences a (T)  (see 
Refs. 23, 34, and 36). Clearly, this quantity is not the expo- 
nent in the current-voltage characteristics. On the other 
hand, the temperature dependence a(T)=dIn(E) l  
d In[l-I,(T)] for a constant value of I-I,(T) demonstrates a 
universal behavior, as in Fig. 5b. 

Thus, in interpreting measurements of the current- 
voltage characteristics of layered superconductors one must 
allow for the presence of an internal critical current I,(T) 
and the dependence of the exponent a on the current. 

7. CONCLUSION 

We have described a phase transition in layered super- 
conductors with Josephson coupling between the layers. The 
transition is related to a transformation of the excitation 
spectrum, a process that manifests itself in the screening of 
the magnetic interaction of vortices, as in a BKT transition, 
but proceeds as a first-order transition. We have shown that a 
transport current changes the nature of the phase transition, 

narrowing the stability region for a metastable state, and 
transforms it into a second-order phase transition when 
I>I, . Transformation of the excitation spectrum affects the 
concentration nf of free vortices, which determine the resis- 
tance behavior of the superconductor. The result is the ap- 
pearance of the universal jump in the temperature depen- 
dence of the exponent a (T)  in the current-voltage 
characteristics. The jump broadens as the current grows. We 
have suggested a method for building the dependence of 
a (T)  on the current-voltage characteristics that reflects the 
features of the E vs I dependence [Eq. (43)] for layered 
superconductors with Josephson coupling. 

Remaining within the framework of this approximation, 
we were unable to examine the renormalization of the inter- 
action between layers induced fluctuations in the vicinity of 
the phase transition. We assumed that the coupling between 
the layers disappears at TCo. However, the results of our 
analysis can easily be extended to the case where the cou- 
pling disappears at a temperature T2 ,,< TcO. The important 
and challenging problem of the transformation of Josephson 
coupling in layered superconductors should become the topic 
of further investigations, both theoretical and experimental. 
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