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We show that when the number of uncoupled electrons is small or when the attraction constants 
are large, a Hubbard chain with N attractive electrons at the lattice sites placed in gauge 
nonforce magnetic and electric fields exhibits microscopic oscillations of persistent currents with 
fractional periods Qo IN and FoI(N- 2M), where M is the number of pairs, a. is the 
"metallic" magnetic flux quantum, and Fo is the electric flux quantum. These oscillations are 
related to the partitioning of the degrees of freedom of pairs and uncoupled electrons, 
and they occur in fields somewhat above the critical value for pair disruption. We study the role 
played by the crossover of energy levels in the change in period of mesoscopic oscillations 
of persistent currents, a change that is governed by the parameters of the system. O 1996 
American Institute of Physics. [S 1063-776 1 (96)O 180 1-81 

1. INTRODUCTION 

In recent years there has been an upsurge of interest in 
studies of persistent currents in mesoscopic quantum rings, 
an interest related to the appearance of experiments that 
study oscillations of such currents in an external magnetic 
field.'-3 The nonforce topological action of the electric and 
magnetic fields on charged particles with a magnetic moment 
manifests itself, for instance, in the Aharonov-Bohm (AB) 
and Aharonov-Casher (AC) quantum related to the 
fact that the wave functions acquire phases proportional, re- 
spectively, to the magnetic and electric fluxes. Systems of the 
greatest interest in this connection are those in which the 
nonforce topological effect of the electromagnetic field 
manifests itself along with the interactions of the particles 
comprising the systems, for instance, highly correlated elec- 
tronic systems. The effect of the field fluxes may manifest 
itself in a special way in the low-temperature phases of such 
systems. For instance, in superconductors the magnetic flux 
becomes quantized.6 

Quantum fluctuation effects are known to show them- 
selves most vividly in low-dimensional systems, where they 
are enhanced by singularities in the density of states. Unfor- 
tunately, the approximate methods used in the theoretical de- 
scription of low-dimensional systems, such as various mean- 
field approximation methods or variational methods, may 
even yield qualitatively incorrect results. Hence the particu- 
lar interest in studying topological effects in exactly solvable 
quantum models of highly correlated electronic systems. In 
previous effects of the AB and AC types were stud- 
ied in one-dimensional quantum models of the Hubbard type 
with repulsion and attraction of the electrons at the lattice 
sites. Here we will continue examining persistent-current os- 
cillations in a Hubbard chain with electron attraction? which 
models the behavior of a "low-dimensional superconductor" 
(however, no real long-range order is present in such a su- 
perconductor). Earlier it was shown9 that a Hubbard system 

with attraction may exhibit mesoscopic oscillations of charge 
and spin persistent currents, with the amplitude of such os- 
cillations in the gapless phases being proportional to N,' 
(N, is the number of sites in the chain) and the period of, 
say, AB oscillations, depending on the system's magnetiza- 
tion, being either fundamentally metallic ( a 0 )  or supercon- 
ductive (Q0/2). According to recent concerning 
studies of persistent currents in a Hubbard chain with elec- 
tron repulsion, in certain conditions the period of AB oscil- 
lations can be fractional, say, equal to Q0/2, with N the 
number of electrons (these have become known as micro- 
scopic oscillations), or to a o / 2  for a certain parity of the 
number of electrons (now known as the parity effect). 

Here we show that if the magnetic field strength is some- 
what higher than the first critical value (see below) and the 
occupation numbers are moderate (N is not very large) or if 
the attraction constants are large, the persistent currents in a 
Hubbard chain with electron attraction undergo microscopic 
oscillations with a fractional period of @,IN. We therefore 
show that microscopic oscillations are unrelated to electron 
repulsion and that other systems with variable separation are 
possible (in the given case the local pair-uncoupled elec- 
trons system rather than the spin-charge system). We show 
how the periods of quantum topological effects vary for me- 
soscopic Hubbard chains with attraction due to crossover of 
the energy levels corresponding to different excitations in 
nonzero electromagnetic fluxes. In particular, in weak mag- 
netic fields the persistent currents oscillate, owing to level 
crossover, with a period of Qo/2, which agrees with the re- 
sults reported in Ref. 9. 

2. THE BASIC EQUATIONS 

The Hamiltonian of a ring-shaped Hubbard chain with 
mutual attraction of the site electrons in external electric and 
magnetic fields has the following form:9213 
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where U >O is the Hubbard attraction constant (the hopping 
constant is set to unity), h, is the external magnetic field, A is 
a Lagrange multiplier equivalent to the chemical potential, 

+ a;,(, (aj,,) is the operator of creation (annihilation) of an 
electron with spin a ( a =  5 1) at site j, Nu is the number of 

4- sites, nj,,= aj,, aj,, , and a, is the phase acquired by the 
wave function of the system because of the nonforce effect 
of the magnetic flux Q, through the plane bounded by the 
ring (the Aharonov-Bohm effect) and/or the flux F of the 
radially directed electric field generated by a charged string 
in the middle of the ring (the Aharonov-Casher effect), with 
F =  4 ~ 7 ,  where T is the linear density of the charge on the 
string, and 

where Qo= chle is the "metallic" magnetic flux quantum, 
and Fo= c h l p  is the electric flux quantum, with p the Bohr 
magne ton. 

The persistent current in a ring in the ground state is 

where here and in what follows we use the system of units in 
which h = c = e =  1, i.e., Q 0 = 2  and Fo=2.rrlp. The eigen- 
functions and the low-lying eigenvalues of the Hamiltonian 
of a chain with N electrons (M is the number of electrons 
with spin "down") are parametrized by the quasimomenta 
kj and rates h a ,  which can be found from the equations of 
Bethe's an sat^:^ 

M 
sin kJ- ha  

~ , k ~ = 2 . r r ( l ~ + a ~ ) + 2 Z  a= I tan-'( 1, 
N-2M M 

ha-sin kj 
+ 2 C  tan-' 

-1Xa-Xp 
+ 2 C  tan - 

i=  I a= I 2 U  ' 

where the I, and Ja are integers or half-integers, depending 
on the parities of N and N- M ,  and M the number of elec- 
trons bound in local pairs. Note that in contrast to the wrong 
"minus" in Ref. 9, in the AB effect the phase in the second 
equation has a "plus7' (the results obtained in Ref. 9 are 
independent of this sign, but it could play an important part 
in parity effects and microscopic oscillations). Depending on 
the occupation number v=NIN, and the magnitude of the 

external magnetic field h,, the ground state of the chain 
form "Dirac seas" of free electrons, characterized by the 
quasimomenta kj. and bound states of two electrons at the 
sites (local pairs), characterized by the rates h a .  Equations 
(4) clearly show that only the fractional parts { a , )  and 
{ a I  + a- of the phases of the AB and AC effects are im- 
portant, since the integer parts only renormalize the sets of 
numbers Ij and J,. In the ground state, the quantum num- 
bers are symmetric with respect to zero:I4 

The energy and momentum of the system in a state with 
N- 2 M  free electrons and M  local pairs are 

3. MICROSCOPIC OSCILLATIONS 

The ground state of a Hubbard chain with attraction be- 
tween electrons at the lattice sites is formed by Dirac seas of 
electrons and localized pairs. The ground state of the system 
depends on the magnitude of the external field. If h,<h, 
(here we employ, for example, the notation used in Ref. 9, 
with h, the field strength at which pairs are ruptured; see also 
Refs. 14- 19), only local pairs form the ground state, while 
excitations of the free-electron type have a gap in the spec- 
trum. Here we are interested in the field-strength interval 
h,<h,<h, (h, is the field strength at which the system be- 
comes ferromagnetic) in which excitation spectra of the free- 
electron type and the coupled-pair type are gapless. 

When U 9  1 and ha  (note that although h ,  is naturally 
related to U but is smaller than U-see, e.g., Ref. 19-the 
conditions that C T + l  and h,>h, can be met simulta- 
neously), in Eqs. (4) we can ignore the term sin kj in com- 
parison to A,.  The system of equations (4) leads to the fol- 
lowing: 

Equation (7) describes the behavior of a system of noninter- 
acting spinless fermions in a ring with the following effec- 
tive "topological" flux: 

If Ij  is a sequence of integers or half-integers, 
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where 2Df= I ,,,,, + Inlin , and 

The energy Eo(@,F) can be minimized with respect to @ 
and F by selecting a set of values of J ,  that partially bal- 
ances the external electromagnetic fluxes by creating local 
pairs with oppositely directed quasimomenta (or by changing 
the local-pair rates): 

M 

for 
p -  : < ( ~ - 2 ~ ) ( a ~ + D ~ ) - ~ ( a l + a -  I ) < P + ~ .  

Clearly, the energy of the ground state of a Hubbard chain 
with electron attraction for h,<h,<h, is a function of the 
magnetic flux with a period (277-N)-' or of the electric flux 
with a period p[2rr(N-2M)I-I .  Thus, in a microscopic 
Hubbard chain with a fairly strong attraction between the 
electrons at the lattice sites ( U P  1 )  or with low occupation 
numbers, when both M and N are not very large, there are 
microscopic oscillations (with a fractional period related to 
the number of electrons) of the ground-state energy and 
hence the persistent currents. These microscopic oscillations, 
in contrast to the case of a Hubbard chain with electron 
repulsion,1'912 occur only in a mixed state with a fairly high 
magnetic moment of the system. There are no such micro- 
scopic oscillations in fields weaker than h, or stronger than 
h, , since in such fields even virtual creation of excitations of 
the free-states type caused by the nonforce action of an elec- 
tromagnetic field is unprofitable. In contrast to ordinary me- 
soscopic oscillations~ related to the virtual motion of a 
single excitation (quasiparticle), microscopic oscillations are 
related to the motion of the electronic system as a whole, 
which, naturally, has an effect on the charge that enters the 
expression for the period of oscillations of these persistent 
currents. 

4. MESOSCOPIC OSCILLATIONS 

To calculate the finite-size corrections we use the 
method developed in Ref. 15. The correction, due to mag- 
netic and electric fluxes to the energy of the ground state of 
a Hubbard chain with attractive electrons at the sites is 

where a,s = a ,  + a- , , uf and uh are the Fermi velocities of 
the free electrons and local pairs, and Lik ( i ,k= f,b) are the 
excitation charges "dressed" because of the interaction 
(electrons and pairs), which are found by solving a system of 
integral equations.9 (Note that, in contrast to Ref. 9, here we 
explicitly allow for the initial phases related to excitation 
creation, DLb), which in the case of a Hubbard ring with 
electron repulsion lead to a parity effect and to a decrease by 
a factor of two of the period of oscillations of persistent 
current owing to level cros~over. '~ Clearly, such a meso- 
scopic correction is present only in excitations without a gap 
in the spectrum. The quantum numbers of the free electrons 
and local pairs are distributed in such a manner as to mini- 
mize the energy of the system:I4 

The corrections to the ground-state energy due to the 
nonforce topological effect of electromagnetic fields on the 
considered Hubbard chain and resulting from the gaps hf,, 
in the excitations spectrum are proportional to 

exd-NaAf,b/uf,bt;b)- 
We also note that superconductivity correlators decrease 

in a power-like manner as the distance grows,'6917 though 
more slowly than the spin correlators and free-electron corr- 
elators do. Hence because of a nonforce topological electro- 
magnetic field, even at absolute zero the system manifests 
mesoscopic oscillations of the charge and spin current, rather 
than quantization of the external field fluxes, as in supercon- 
ductors, although the Hubbard model with attraction can be 
taken as a model of type I1 superconductors. 

The electromagnetic fluxes a ,  and a l  + a- determine, 
as Eqs. (4) demonstrate, the fraction of quantum numbers 
that transfer, owing to the gauge fields, from one edge of the 
Fermi bands of electrons and local pairs to the other edge, 
i.e., they are related to the number of virtual excitations of 
the free-electron and local-pair types existing above the 
ground state because of the nonforce effect of magnetic 
fluxes (the AB effect) and electric fluxes (the AC effect). 

In fairly strong magnetic fields h C 6 h , 6 h , ,  the dressed- 
charge matrix isi4 

where 

In 2 h-h, 
K =  - 

2U ' 

137 JETP 82 ( I ) ,  January 1996 A. A. Zvyagin and T. V. Bandos 137 



Here J,,( .r)  and I,(x) are the Bessel functions of a real and 
imaginary argument, and e is the base of natural logarithms. 
Note that for a fixed number of particles the chemical poten- 
tial is related to the occupation-number density by 

i.e., it depends on the coupling constant U .  Note that the 
coefficients of the dressed-charge matrix, defined at the 
Fermi points, have singularities at the points corresponding 
to infinite limits in the integrals of the integral equations for 
the dressed charges? Solutions of the system of integral 
equations differ considerably if, say, we immediately set in- 
finite limits and solve these equations by the Fourier method, 
or we solve it by the Wiener-Hopf method and then send the 
number of free electrons to zero (see, e.g., Refs. 14, 16, and 
17). One of the reasons is that the system considered has a 
fixed number of particles rather than a fixed chemical poten- 
tial, and dressed charges are strongly related to the way in 
which chemical potential is defined.14 The same situation 
occurs in other exactly solvable models when finite-size cor- 
rections are being determined. 

Equation (8) shows, as reported in Ref. 9, that for 
he< h ,  a Hubbard chain with attractive electrons at the sites 
exhibits, in the ground state, mesoscopic oscillations of the 
charge persistent current and the related diamagnetic mo- 
ment with a "superconducting flux quantum" @,. At 
he= h ,  the spin current in the chain oscillates with the elec- 
tric flux F ,  the period of oscillations being "metallic," Fo 
(see Ref. 8). This assumption is supported by experiments in 
the AC effect involving a superconducting ring in the quasi- 
one-dimensional geometry of the experiment conducted by 
Elien et  ~ 1 . ~ '  In the intermediate state with h,< h e c  h, , 
there may occur both oscillations of the spin current with the 
"metallic" period and oscillations of the charge current with 
the period @, (these are due to the combination of "super- 
conducting" and "metallic" oscillations with periods @, and 
ao, respectively). The amplitudes of the other oscillations in 
the ground state ("metallic" oscillations of the charge and 
spin currents for h,<h,  and all oscillations for h,>h,)  are 
much smaller and are proportional to exp{-Nu). 

However, because of crossover of the energy levels cor- 
responding to different excitations in finite electromagnetic 
fluxes,11712 there may be a change in the effective period of 
mesoscopic oscillations in a Hubbard chain with electron 
attraction. This is reflected in the variation of the numbers 
Ij and J, , i.e., in the variation of the D f , b ,  defined by (mod 
l ) ,  which corresponds to effective creation of excitations in 
the system, similar to the tower structure of excitations in 
conformal field theory.14316 If level crossover is taken into 
account (levels corresponding to different types of excitation 
depend differently on the magnetic and electric fluxes), one 
can see that the period dependence on, say, the magnetic flux 
is determined by the electric flux, the magnetization of the 
system, and band population. This conjecture also refers to 
mesoscopic oscillations of the AC type in an electric flux. 

As the electromagnetic fluxes increase starting at zero, at 
certain values of @ and F the set of quantum numbers, 
{J,} and {Ij}, minimizing the energy changes. The Fermi 

velocities of both subsystems, the electronic and the local- 
pair, and the dressed-charge matrix can be calculated if one 
knows the occupation-number density, the coupling con- 
stants U ,  and the system's magnetization. Obviously, the 
system's energy at zero fluxes is minimized if D f = O  and 
Db= 0 .  We denote the minimum value by Eoo(O,O). Then for 
finite fluxes the energy Eoo(@,F) will change by 

if one allows for the fact that Jbf(Ao)  = 0 .  In what follows the 
quantities lik ( i , k =  f,b) denote the values of the dressed- 
charge matrix elements at the edge of the Fermi band. But if 
@ (or F) is close to (or Fo) ,  the state ( 0 , l )  could 
prove to be a low-energy one: 

Crossover is realized in magnetic fluxes Q, or electric fluxes 
F satisfying the following relationship: 

where F = v f  t u b .  Without an electric flux F ,  the period of 
AB oscillations is 

In weak magnetic fields ( h e <  h , ) ,  

i.e., oscillations with a period of @,/2= hc /2e  are observed. 
Without a magnetic flux @, the period of AC oscillations 

is 

If the set of the quantum numbers J, becomes such that 
D f  changes by + 1, the energy of the system in fluxes of 
electromagnetic "topological" fields changes by 

E ( .  1,0)(@9F) - E(o,o)(O,o) 

at F =  0 ,  while level crossover occurs at 
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In the absence of a magnetic flux a, the period of AC oscil- 
lations is i F o / 2 .  Hence allowing for the possible excitations 
(the parity effect) in a Hubbard ring with attraction between 
the electrons at the sites does not lead, in contrast to the case 
of repu~sion,""~ to a further decrease by a factor of two of 
the oscillations as a function of the electron number density, 
while the period @,I2 of AB oscillations is related to the 
charge of the local pairs forming the system's ground state. 
This corresponds to the results of the computer simulation 
for a Hubbard chain with attraction conducted by Ferreti 
et aL2' 

5. CONCLUSION 

We have shown that in a Hubbard chain with attraction 
between the electrons at the lattice sites, a model of a type I1 
superconductor, there can be microscopic oscillations of the 
charge and spin persistent currents with fractional oscillation 
periods @,,I2 and F , I ( N - 2 M ) .  These oscillations are re- 
lated to variable separation in the system and occur in a 
magnetic field somewhat higher than the field strength of 
pair rupture, h,, i.e., in a mixed state. We have analyzed the 
role of level crossover in the mesoscopic currents of pairs 
and free electrons. It leads to a change in the period of the 
persistent currents of pairs and free electrons. 
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