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We develop a method that makes it possible to reduce the problem of finding the ensemble 
average of the resistance of a one-dimensional chain of periodically spaced random scatterers to 
solving a finite-difference (recurrence) relation. This equation is solved, in particular, for a 
potential of the Kronig-Penney type. We solve the problem for an incident-electron energy 
corresponding to the center of the band and study the solution for two limiting cases. 
Finally, we show that the dependence of the Landauer resistance p  on the chain's length is a 
general exponential function, which in the weak scattering limit becomes purely exponential. 
O 1996 American Institute of Physics. [S 1063-776 1 (96)O 170 1 - I ]  

1. INTRODUCTION 

The problem of an electron traveling through a one- 
dimensional disordered system has been studied both 
analytically1 and numer ica~ l~ .~~%e interest in it rests on the 
fact that studying the behavior of resistance as a function of 
the characteristic parameters of the system and external fac- 
tors makes it possible to monitor the changes in the nature of 
one-electron states. To calculate the resistance of a one- 
dimensional system, a section with a random static potential 
is placed between two semi-infinite "perfectly conducting" 
electrodes, in which an electron moves freely. It is the frac- 
tion of electrons that have passed through the "nonideal re- 
gion" from one electrode to the other that determines the 
"traffic" capacity of the system. If the nonideal region is a 
one-dimensional metal with stationary scatterers, where all 
electronic states are localized, the dimensionless Landauer 
resistance averaged over various realizations of the random 
scattering impurities is expressed in terms of the chain length 
L at absolute zero by the following f o r m u ~ a : ~ - ~  

where we have put h = e 2 =  1, and [ is the electronic-state 
localization radius, which depends on the shape of the poten- 
tials inside the chain and not on the chain length or the way 
that averaging over the ensemble was achieved. 

Finding the energy dependence of the localization ra- 
dius, t ( E ) ,  constitutes a complex problem, so that solutions 
for only simple models have been found. For instance, in 
weak scattering, i.e., scattering on a potential of the white- 
noise type, the localization radius has been calculated both 
without an external electric field and with a uniform electric 

For strong scattering the localization radius has been 
calculated in Ref. 11, with a new method employed, which 
made it possible to trace the changes in electronic states 
when the interaction between electrons and scattering centers 
increases. This method of finding analytic solutions works 
only in some specific cases: for potentials of the Kronig- 
Penney type, for strong scattering, and for resonant passage 
of an electron. In the general case, i.e., for an arbitrary num- 

ber of irregular amplitudes, one is forced to resort to com- 
puter calculations when dealing with a one-dimensional 
chain. 

In Ref. 12 it was found that the desired determinant can 
be represented by finite series. These series simplify the pro- 
cedure of averaging the Landauer resistance over the random 
values of the amplitude, i.e., finding ( p N ) .  

In this paper we develop a new method for calculating 
the ensemble average of the resistance of a one-dimensional 
chain, ( p , ) .  The method reduces finding the desired quantity 
( p N )  to solving a recurrence relation of finite degree N, 
where N is the number of sites in the one-dimensional chain. 
This makes it possible to find the dependence of the local- 
ization radius on the electron's energy. 

We also solve the recurrence relation for a potential of 
the Kronig-Penney type and find the Landauer resistance of 
a one-dimensional chain for an electron energy correspond- 
ing to the band center. 

In Sec. 2 we formulate the problem and obtain an impor- 
tant determinant D N  in the form of a series in the interaction 
potentials. Averaging it over the random values of the 
scattering-potential amplitudes, we arrive at an expression 
for the average chain resistance ( p N ) .  We derive the recur- 
rence (difference) relation for ( p N )  in Sec. 3 and suggest a 
method for its solution. To illustrate the new method of cal- 
culating D N  and ( p N ) ,  in Sec. 4 we find the solution to the 
equation for any finite N when the interaction-potential am- 
plitudes over the entire length of the chain are the same, i.e., 
for the Kronig-Penney potential. Finally, in Sec. 5 we solve 
the recurrence (difference) relation for a one-dimensional 
chain of length L = N a ,  where a is the site separation (the 
distance between two neighboring sites), for an electron en- 
ergy corresponding to the center of the band. As the solution 
for strong scattering shows, the average resistance ( p N )  in- 
creases with L not according to a purely exponential law but 
by a general exponential law. 

2. STATEMENT OF THE PROBLEM 

We select a model in which delta-like potentials with 
arbitrary amplitudes V ,  are located at the sites of a one- 
dimensional chain with coordinates x = n a ,  where a is the 
period of the one-dimensional structure: 
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The solution of the Schrodinger equation for an electron 
that is outside this structure, i.e., for x G x l  and x > x N ,  and 
has the energy E = k2 ( h  = 2mo = 1, and mo is the mass of a 
free electron) can be written in the usual form 

where t(k) and r(k) are, respectively, the transmission and 
reflection amplitudes. As shown in Refs. 1-3 and 13- 15, the 
transmission coefficient can be written as 

so that the expression for the Landauer resistance acquires 
the form 

p N = ~ - I  - 1 = 1 ~ ~ 1 ~ -  I ,  (4) 

where D N  is the determinant of the matrix 

The determinant of (5) satisfies the following recurrence 
relation:" 

where 

and the determinant DN- (or DN-2) is obtained by deleting 
N  (or N -  1) rows and columns from D N .  

After painstaking but straightforward transformations 
that use the recurrence relation (6),  we arrive at the following 
expression for the determinant of (5): 

Here the phase factor f p  is the determinant of a matrix of 
order p whose elements are 

and hence 

Substituting this into Eq. (7) for the determinant D N ,  we 
arrive at the following expression: 

Now we attempt to calculate the chain resistance (pN), av- 
eraging it over the random values of the interaction ampli- 
tude. Specifically, we assume that the amplitudes V ,  of the 
delta-like potentials are independent random quantities, each 
of which can take on any value with the interval from -+w 
to +W with a probability density P(V,), where P(V,,) is an 
arbitrary even function. 

Thus, for the ensemble-average (pN) we can write 

Substituting (9) into Eq. (10) and integrating, we obtain 

where 

In particular, at P(Vj) = 1 we have a= w2/48k2. 
Summation in (1 1) is possible only when the interaction 

of the electron with the lattice sites is weak (a< 1) or strong 
( a %  1) (see Refs. 4-11). In the general case, direct summa- 
tion runs into insurmountable difficulties. These difficulties, 
however, can be overcome, as we show below, by reducing 
the calculation of (pN) to solving a recurrence (difference) 
relation for the desired function. 

3. THE RECURRENCE RELATION FOR p~ 

As noted earlier, although the expression obtained is ex- 
act, it does not make it possible to calculate directly, i.e., 
without a computer, the dependence of (p,) on the chain 
length and the incident-electron energy for arbitrary a's, ex- 
cept for several special cases, say at ka = .rrm 
( m  = 1,2, . . . ), which corresponds to resonant passage of the 
electron. Therefore, the need arises to find for (p,) a new 
representation or an equation whose solution would enable 
finding the functional dependence of (pN) on a ,  M, and 
ka. 

Separating the first term in the sum in (11) and writing 
the sum over the inner indices explicitly, we can write the 
following expression for (p,) 
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To lift the restrictions in summing over the indices j ,  in (12), 
we introduce the functions 

where O(x)  is the Heaviside step function: 

We also note that at x=O, i.e., at j ,+ ,=  j , ,  the introduced 
function vanishes, V .  . =O. Now, if we write the sum over 

J P  .JP 
p explicitly, we can write Eq. (12) as 

It is convenient to do the summation over the indices j p  by 
introducing a triangular matrix p whose elements are the 

V j p +  I , j p :  

Using the properties of triangular matrices and summing 
over the inner indices j ,  , we can write the expression (14) in 
the following form: 

where j  is the identity matrix. Here we have allowed for the 
fact that 

This property follows directly from the definition of matrix 
(15). Now (16) can be interpreted as a geometric series for 
the matrix q. Allowing for (17), we obtain 

N 

( P N ) = ~ z  i , j = l  (L) I - V  . .  

'1 

This implies that the calculation of ( p N )  reduces to finding 
the matrix elements of ( j -  Q ) -  I .  If we introduce the nota- 
tion 

then 

where 

( P N ) = ~ R N - I .  (20) 

Now we wish to calculate R N - I  . The direct matrix can eas- 
ily be shown to have the following form: 

The triangular matrix (21) with unit diagonal elements can 
be represented in the form of a product of elementary trian- 
gular matrices L, , 

N -  l 

A A 

I - v =  

in which the lower part of each matrix contains zeros except 
in the pth row, where up to the diagonal element equal to 
unity the c j  form the following pattern: 

1 0 0 ... 0 0 

. . .  -c1 1 0 0 0 

-c2 - C I  1 . . .  0 0 ,  

- C - C N - ~  . . .  - C 1  1 

The inverse matrix ( j -  q) - '  can be expressed in terms of a 
product of the inverse matrices i; : 

(21) 

where the inverse matrices i, differ from the i, only in the 
sign of the subdiagonal elements. Using the rule of multiply- 
ing triangular matrices with ones in the diagonal and carry- 
ing out the multiplication of the matrices i , ~ '  in (23), we 
arrive at the final result: 
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where 

We note once more that the sum of the matrix elements 
in (24) yields the solution of the problem. Indeed, according 
to (19) we have 

where SN- I stands for the sum of elements of the first col- 
umn in matrix (24), SN-2 of the second column, etc. Apply- 
ing (25) to SN- I , SN-2, etc., we arrive at the following 
recurrence relation: 

Substituting (27) into (26), we finally get 

where Ro= 1. The recurrence relation (28) is an inhomoge- 
neous finite difference equation for the desired function 

RN- I - 
Knowing RN- we can use (20) to find (pN). The re- 

currence relation (28) can be interpreted as a system of N 
linear equations in the unknown quantities Ro, . . . ,RN- 
We write (28) in a form convenient for further calculations: 

The determinant made up of the coefficients of the unknown 
quantities Ro, . . . ,RN-, is equal to unity. Hence the quan- 
tity RN-, that we are interested in is given by the following 
expression: 

Note that for the special case ka= rr,  Eq. (30) immedi- 
ately yields the well-known result for the resonant case, 

since all the c ,  vanish when ka= r r .  

For arbitrary values of the electron energy but small val- 
ues of N, the determinant (30) can also be easily calculated. 
But for N% 1, when calculating (30) is difficult, Eq. (30) 
must be solved directly by interpreting it as a finite differ- 
ence equation for the desired function RN- I . 

As a rule, the solution of Eq. (28), which yields the 
resistance averaged over the different realizations of the ran- 
dom scattering impurities, has the form of a sum of general 
exponential functions of N. This important property of the 
solution is illustrated below by specific examples, which 
show that only in the weak-scattering limit does the depen- 
dence of (pN) on the chain length become purely exponen- 
tial. 

4. SOLUTION OF THE RECURRENCE RELATION FOR THE 
KRONIG-PENNEY POTENTIAL 

As Eqs. (3) and (4) show, the transmission coefficient 
T and the Landauer resistance (p,) of a one-dimensional 
chain can be expressed in terms of the determinant D N .  The 
problem of finding DN for the Kronig-Penney potential, i.e., 
solving the problem with the amplitude of the interaction of 
the electrons with the chain sites being the same, can easily 
be reduced to solving an equation of type (28). Indeed, com- 
paring (9) with (1 I), we see that at V l  = V 2  = . . . = V the 
expression for D,,,- 1 coincides with that for (pN) if in the 
latter we put a= iV14k and replace the cosine with an expo- 
nential. Since at J p =  j,- both functions are equal to unity, 
the summation for (pN) carried out in Sec. 3 can be repeated 
here for DN - I, which yields 

where RN- satisfies Eq. (28) in which a=iV/4k and 

Now let us solve Eq. (28) with a function c, specified by 
(32). We introduce a new summation index n = N - l - 1 and 
write Eq. (28) in the following form: 

We look for a solution of Eq. (33) in the form 

Here xi are the roots of the characteristic equation, p is the 
number of roots of this equation, and A. and A j  are as-yet 
unknown coefficients that are independent of N. 

Substituting (34) into Eq. (33) and requiring that the new 
equation be satisfied for any value of N, we arrive at the 
following equations for p, x i ,  A. , and A , : 
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5. THE RESISTANCE p~ FOR AN ELECTRON ENERGY 
CORRESPONDING TO THE CENTER OF THE BAND 

Equation (35) for the xi is quadratic and in general has two 
complex-valued roots. This implies, in particular, that p = 2. 
By eliminating the denominators we can write Eq. (35) in the 
form 

We look for a solution of this equation in the form 
x =  zeiku. Then Eq. (35) becomes 

The roots of this equation are 

where 

v 
cosp= cos (ka) + - sin (ka). 

2k 

Hence according to (39) we finally get ~ , = e ' ( ~ ~ ' ~ )  . Th e 
constant A. can be found immediately from Eq. (36): 
A,= - 112a. Since the characteristic equation has two roots, 
only the complex-valued constants Al  and A2 need to be 
found. To do this we have one equation (37), which means 
we need another equation. For this we take the condition 
R,= 1. Substituting N= 1 into (34), we obtain 

Below we show that instead of Aj it is convenient to intro- 
duce a new constant Bj= 2aAjlxj.  Then to determine Bj ,  
instead of (37) and (40) we have 

The solution of these equations shows that B l  and B2 are 
real and are given by the following expression: 

1 (VI2k)cos (ka) - sin (ka) 
B1,2=- + 

2 - 2sin /3 (42) 

(the upper sign corresponds to B l  and the lower to B2). 
Substituting these constants into (34) and employing (31), 
we finally get 

1 (V12k)cos (ka) - sin (ka)  . 
= eikuN[[-  2 + 

2sinp 
] e1Pn 

1 (VI2k)cos (ka) - sin (ka) +[-- 2 2sinp 

where /3 is specified by Eq. (39). 

Now we wish to solve Eq. (28) for a fixed energy cor- 
responding to the center of the band, i.e., we examine the 
case ka = 7r/2+ rrnl ( m =  1,2, . . . ). In this case, 

0, for n odd, 
c,, = 4 a ,  for n even, 

and Eq. (28) assumes the following simple form: 

N - 2  

We again seek a solution in the form (34). By requiring that 
this solution satisfy Eq. (44) we get 

The solution of the first equation can be written immediately: 

Since the characteristic equation for xi has two roots, we 
need only determine the two constants A ,  and A 2 .  Employ- 
ing (45) and (48) and introducing new constants 
B j= 2 cuA lxj  instead of A j ,  we can write Eq. (47) as 

We obtain the missing equation for the constants B I  and 
B2 from the requirement that Ro= 1. Substituting N =  l into 
(34) and replacing A with B j ,  we get 

The solution of Eqs. (49) and (50) has the form 

where b = Jm. If we introduce the notation a = 2 a  
and substitute the derived constants into the solution (34), we 
finally obtain 

( ~ + b ) ~ -  ( a -  blN + 
2 6 

We can write the above formula in a more convenient form 
by introducing the notation a = sinh x and b = cosh x. Then 
we have 

1 sinh (Nx) 
(pN) = ICOSh (Nx) + 

cosh x - 11 
for N even, and 

133 JETP 82 (I), January 1996 Sedrakyan et a/. 133 



I cosh (Nx) 
(pN) = ?[sinh (Nx) + cosh x - 1 1  

for N odd. 
We also note that thi; solution can be obtained from the 

solution (43) if in the latter we put ka = 7r12 and a= iVl4k. 
The two results coincide at ka = ~ 1 2  because the c ,  do. 

The solution (52)-(54) is remarkable because it was ob- 
tained without resorting to perturbation theory, and is there- 
fore valid for any amplitudes of the interaction of electrons 
with sites for an arbitrary number N of scattering centers. It 
shows that when the electron energy corresponds to the cen- 
ter of the band, the average electrical resistance for a one- 
dimensional chain of random scatterers is a general exponen- 
tial function of the chain length. 

In the asymptotic case of a 4  1 ,  the solution (52) yields 

with the same result obtained in Refs. 4-8. In the other 
limiting case, a> 1,  the solution (52) yields 

The condition a% 1 means that each scattering event can be 
interpreted as occurring independently of the others; hence 
the result (56) is obvious? 

Using the solutions (52)-(54), we can show that when 
N ~ w ,  the electron localization radius is 

cosh(Nx) 

cosh x 

In particular, in the case of weak coupling (a<  1) this yields 

The first term on the right-hand side of (58), which is twice 
the localization radius, was obtained in Ref. 1. The reason is 
that in the weak-disorder limit the following relationship is 
valid:16 

In( p )  = 2(lnp). 

In the case of strong coupling (a% 1) from (57) we obtain 
the following asymptotic expression for 5: 

Note that the first term on the right-hand side of (59) was 
obtained in Ref. 13. Strictly speaking, the result (59) is for- 
mal. Indeed, we have found that @ a  when an electron 
moves freely between the impurity centers. Hence the result 
must be interpreted as the penetrability of a single impurity 
barrier being low rather than 6 being small. This agrees with 
the result (56). 

In conclusion we note that the method developed here 
for determining (p),  which we applied for energies corre- 
sponding to the edges and center of the energy band, can also 
be used to solve the problem with an arbitrary energy. 
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