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The kinetics of intrachain collisions in polymer molecules of arbitrary configuration described in 
the Gaussian chain approximation are investigated. An accurate exact value of the mean 
collision time of two reactive segments is found in the limit of a small reaction volume. It is 
shown that the problem can be reduced to calculating the resistance between two 
corresponding points in an electrical circuit having the same topology as the molecule under 
consideration. O 1996 American Institute of Physics. [S 1063-776 1 (96)O 1 101 -31 

1. INTRODUCTION 

The description of intramolecular relaxation processes in 
polymer molecules in a dilute solution, particularly the kinet- 
ics of intrachain collisions, is important in the study of nu- 
merous physical and chemical processes involving active 
segments within a polymer chain. The essential point of such 
processes is that active groups in a macromolecule undergo 
chemical reactions upon collision, as in the case of intramo- 
lecular catalytic or intrachain cross-linking reactions, or 
energy-transfer processes, as, for example, in the case of 
luminescence quenching.' Hence there is great interest in the 
problem of the mean collision time of two particular seg- 
ments in a polymer chain undergoing Brownian motion in a 
dilute solution. 

From the mathematical standpoint the solution of this 
problem requires an analysis of the Fokker-Planck equation 
for a system of many particles interacting with one another 
and with the solvent. In most cases such an analysis is very 
difficult due to the complexity of these interactions. Never- 
theless, it is well known that the statistical properties of a 
polymer chain in a solution at a certain temperature allow us 
to identify it with a system of coupled osci~lators. l~~ This 
so-called Gaussian model, which faithfully describes the 
equilibrium properties of a macromolecule, can also serve as 
an approximation for studying its relaxation properties. Here 
it must be borne in mind that although this model does not 
provide a satisfactory description of the kinetics of real mol- 
ecules, since the neglect of such important factors as the 
hydrodynamic corrections in the kinetic equation results in 
incorrect scaling for the characteristic relaxation time,3 it can 
still serve as a starting point for subsequent systematic con- 
sideration of these coi~ections and as a test for various ap- 
proximations and numerical methods. 

The first attempt to systematically analyze the kinetics of 
intramolecular collisions and reactions with consideration of 
all the important factors influencing the kinetic scaling was 
made by Wilemski and ~ i x m a n . ~  After several approxima- 
tions, they succeeded in obtaining a closed expression for the 
kinetic constants of intramolecular reactions and the rate of 
luminescence quenching in the case of a linear polymer 
chain with active groups located at its ends. The results of 
Wilemski and Fixman prompted the studies of Sunagawa and 
~ o i , ~ - ~  in which a linear chain with terminal active groups 

was considered in the Gaussian approximation and accurate 
values were found for the kinetic constants of reactions. A 
comparison of their results with the results in Ref. 4 showed 
that in the case of a purely Gaussian chain, the approxima- 
tions used in the latter work give inaccurate values for the 
kinetic constants when the reaction volume is small com- 
pared with the volume occupied by the molecule and predict 
incorrect behavior for these constants when the reaction vol- 
ume is increased above a certain level. 

The present paper shows how the results in Refs. 5-7 
can be generalized to the case of a Gaussian chain of arbi- 
trary configuration. The mean collision time between any 
two segments is found, and it is shown that the Gaussian 
approximation makes it possible to compare each macromol- 
ecule with an electrical circuit and to reduce the problem of 
the relative motion of any two segments to the problem of 
calculating the resistance of that circuit. 

2. FORMULATION OF THE PROBLEM 

According to the Gaussian model, we must consider the 
Brownian motion of a system of N particles interacting ac- 
cording to a quadratic law. It is convenient to specify the 
spatial configuration of such a system with a vector 
R =  (X ,,.. .,xN ;y , ,..., yN ; z ,  ,.. . , z ~ ) ~ ,  which is constructed 
from the Cartesian coordinates of the individual particles 
xi ,y i ,  and zi. The Fokker-Planck equation for such a sys- 
tem has the form 

Here P(R,t) is the distribution function in the coordinate 
space of the entire system, and D is the diffusion coefficient, 
which is related to the mobility p by the Einstein relation 
D= pT. It is assumed that D and p are identical for all the 

particles appearing in the system; A is a square positive defi- 
nite matrix that specifies the interaction energy of the par- 
ticles, 

where K is a coefficient with dimensions of stiffness. 
Let us clarify the origin of the potential (2). We consider 

a long linear macromolecule in the model of a freely 
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articulated chain, i.e, a sequence of identical rigid segments 
joined by ball-and-socket joints. We consider the vector join- 
ing the ends of the molecule. According to the central limit 
theorem, in a state of statistical equilibrium the probability 
density that this vector equals R is 

where 1 is the segment length and N is the number of seg- 
ments. 

The distribution function PN(R) coincides with the 
Boltzmann distribution function for a harmonic oscillator 
with stiffness 3 ~ 1 ~ 1 ~ .  Hence it is seen that a long polymer 
chain in a state of thermodynamic equilibrium can be repre- 
sented as a harmonic oscillator. It is clear that a macromol- 
ecule of arbitrary topology can be represented as a system of 
oscillators (of course, the macromolecule must consist of 
long subunits so that the Gaussian distribution is satisfied to 
sufficient accuracy). This model was first proposed and used 
to analyze the kinetics of macromolecules in a dilute solution 
by Kargin and Slonimskii in 1948.' We note that the model 
under consideration actually describes a far broader class of 
polymer chains.'~~ 

We choose any pair of particles with the indices k and 
m. If these particles approach each other within a distance 
smaller than a certain value q, we assume that a collision has 
occurred between them. Our goal is to investigate the rela- 
tive motion of these particles and to find their mean collision 
time in the case in which the system as a whole is in a state 
of thermodynamic equilibrium. 

3. PAIRWISE CORRELATION FUNCTION 

In (1) we perform the orthogonal coordinate transforma- 
tion R= AY, that diagonalizes the matrix A. In the new 
variables the solution of Eq. (1) for the initial conditions 

has the form 

3 N  

where 

Here a,, denotes the eigenvalues of A, and Y, denotes the 
components of the vector Y. If the system has translational 
symmetry, three of the eigenvalues a, appearing in Eq. (4) 
are equal to zero. However, Eq. (4) then remains valid, if it is 
taken in the sense of the limiting transition when the respec- 
tive eigenvalues tend to zero. 

We now calculate the pairwise correlation function 
Pk,( rk,, ,t) for the particles numbered k and m (in the case 

of a spatially homogeneous system it depends only on the 
difference between the coordinates of the particles rknr). By 
definition, we have 

The difference between the coordinates of the individual par- 
ticles appearing in (5) rk-r, can be expressed in terms of 
the vector R: 

r= p k r r l ~ ,  

where the matrix kknl has the form 

Using such a representation for the vector rk-rm , we rewrite 
(5) in normal coordinates: 

For convenience in the ensuing calculations, we introduce 
the matrix functions i and i: 

In (7) we perform the replacement of variables 

Then in the new variables with consideration of (4) and (5) 
we have 

- 

where 

Such an integral can be calculated using the formulag 

- - 
(c2 det t ) l t 2 J  

F(u)exp - + du, I . I  
where 

Due to the equivalence of the x , y ,  and z directions, the 
matrices and A have a block structure, owing to which the 
integral (10) can be factored and reduced to (1 1). Ultimately 
we obtain 
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(12) 

where 

hij denotes the elements of A, and the summation is carried 
out over the n which corresponds to the zero eigenvalues of 
one block of A. 

Let us investigate the asymptotic behavior of Pkm in the 
limits t 4 O  and t+m. We first show that despite the fact that 
2 has three zero eigenvalues, Fkn' ex@-pldr)R(0)40 
when t + ~ .  In fact, all the eigenvalues of A are nonnegative. 
The three zero eigenvalues correspond to the translational 
symmetry of the system as a whole. We expand R(0) in the 
eigenvectors B, of : 

3N 

When t-+a, only the vectors that correspond to the zero 
eigenvalues a n  of the matrix are retained in this sum, but 
such vectors have the structure 

and vanish under the action of the matrix Fkm. Utilizing this 
fact, we proceed to the limit t+m in (12): 

This distribution function coincides, as it should, with the 
equilibrium distribution function of a harmonic oscillator 
with stiffness 

On the other hand, letting t go to zero in (13), we find 

where pk,, and Dknr must be construed as the effective mo- 
bility and diffusion coefficient for the pair consisting of par- 
ticles k and m. Opening the parentheses in (16) and utilizing 
the orthogonality of A, we easily see that 

Taking into account the Einstein relation for Dktl1 and 
pknl ,  we ultimately obtain 

Thus, at times which significantly exceed the relaxation 
time of the molecule as a whole, the relative motion of any 
two particles appearing in the system can be represented as 
the motion of a harmonic oscillator with the parameters 
specified by (15) and (17). 

4. MEAN COLLISION TIME OF PARTICLES 

Since the relative motion of two particles can be reduced 
to the motion of a single harmonic oscillator with a radius 
vector coinciding with the vector rkn1, the problem of the 
mean collision time of the particles can be reduced to the 
problem of the determining when the oscillator reaches the 
surface of a sphere of radius q located at the origin of coor- 
dinates. (We recall that if two particles approach each other 
at a distance q, it is assumed that a collision occurs between 
them.) The mean time to reach this surface T can be obtained 
directly as a solution of the Pontryagin equation9 

under the boundary  condition^'^ 

Passing to spherical coordinates in (18) and taking into 
account relation (17), we obtain 

The solution of (19) under the present boundary condi- 
tions has the form 

where L = J ~ D / K ~ , , ~ ~ .  [We recall that T (r) is the mean time 
for a particle located at a distance r from the center of the 
sphere at t=O to reach its surface.] 

To find the mean collision time of a pair of particles with 
the indices k and m,  the expression (20) must be averaged 
over the equilibrium distribution (14). If the parameter L, 
which equals the thermal rms amplitude of the oscillator up 
to a multiplicative factor, is much greater than q ,  the integral 
in (20) is easily calculated with consideration of its diver- 
gence in the lower limit. Expanding (20) in Llq and taking 
into account the relation (15), we obtain the time sought, 

5. RESULTS AND DISCUSSION 

Although (15) and (17) represent the desired character- 
istics of the relative motion of particular particles, the use of 
(15) is not convenient for analyzing specific cases, since it 
requires diagonalization of A and summation of the series 
appearing in (15), which does not have a clear physical 
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meaning. Therefore, to investigate concrete problems we re- 
formulate the answer obtained. First of all, utilizing the iden- 
tity 

we rewrite (15) in the form 

Let the system consist of N particles joined in pairs by 
springs with stiffness Kknl for particles k and ni. Then the 
potential energy of the system equals 

which gives the following expressions for A: 

Now it is not difficult to show that K~~ equals the ohmic 
resistance between points k and m of an electrical circuit 
(this circuit, like the original molecule, does not necessarily 
have a linear topology) composed of resistors with the resis- 
tance 

which connect the ith and jth points of the circuit. In fact, 
Kirchhoff's equations for such a circuit would have the form 

where 4Ji is the potential of the ith point and lk is the current 
flowing in the kth point. Using (24) and (25), we rewrite (26) 
in the form 

To calculate the resistance pknl between points k and m ,  
in (27) we set Ik = - Inl = I ,  and we find the potentials of 
these points from (27): 

whence we directly obtain 

The result (29) has a clear physical meaning. In fact, 
when two or more oscillators of different stiffness are joined, 
their inverse stiffnesses are summed according to the same 
law as are the resistances in an electrical circuit. 

Let us consider several concrete examples that illustrate 
the results presented above. We being with the thoroughly 
studied case of a linear chain consisting of segments with an 
effective thermodynamic stiffness K. Using the electrical 
analogy and the fact that the resistance of a linear electrical 
circuit increases linearly with the distance between two of its 
points, on the basis of (21) we obtain the familiar scaling 
result5 

The case of a two-dimensional lattice is somewhat more 
complicated. En~ployment of the electrical analogy requires 
a calculation of the Green's function of the finite-difference 
Laplace equation describing current transfer to calculate the 
resistance between two arbitrary points of a square lattice. It 
is not difficult to show that this problem reduces to the prob- 
lem of the Brownian motion of a particle on a square lattice. 
The resistance between the points with coordinates (0,O) and 
(p,q) is given by the following expression1' (it is assumed 
that the resistance between two neighboring sites equals 
unity): 

(30) 

The quantity RPqJ, coincides with the sum appearing in Eq. 
(15). When p and q are large, the asymptote of the integral 
(30) has the form 

The numerical value of C ,  equals 0.5146. 
We use L and 1 to denote the distance between two 

nearest-neighbor sites of a square lattice and the length of an 
elementary segment (see Sec. 2), respectively. Then the ef- 
fective thermodynamic stiffness K of a polymer joining two 
neighboring sties is 3TIL1. Using Eq. (21), we find that the 
mean collision time of sites with coordinates (0,0) and (p,q) 
is 

For large p and q we have 

In the three-dimensional case we similarly obtain 

where 

dd,dd2dd3 

~ - ( ~ / ~ ) ( c o s ~ ~ + c o s ~ ~ + c o s ~ ~ ) '  

The numerical value of C is 1.5164 (Ref. 11). 
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Of course, the same result is obtained for the resistance 
between two distant contacts of unit radius on a uniform 
conducting plane with surface conductivity a = l ,  i.e., the 
continuum approximation can be used at large distances. 
Thus, in the two-dimensional case, for the mean collision 
time we obtain the logarithmic asymptote 

312 2 
Tpq,oo-ln (P +q2) .  (32) 

In the case of a three-dimensional cubic lattice com- 
posed of subchains of identical length, in analogy to the pre- 
ceding example, for large p, q ,  and r we obtain 

However, it must be taken into account that topological con- 
straints are crucial in the three-dimensional case and that, 
therefore, the model employed provides a faithful description 
only for closely positioned sites. 

In conclusion, using the continuum approximation, we 
find the mean collision time of two segments of a hypotheti- 
cal macromolecule that is topologically equivalent to a 
sphere. For this purpose we calculate the Green's function 
for current transfer on a sphere. Assuming that the radius of 
the sphere is equal to unity and using an expansion in spheri- 
cal harmonics, we obtain 

m 
Pl(c0s 8) Pl(cos 8) + 

1 
+ const, (34) 

where n and n, are unit vectors directed from the center of 
the sphere to the point where the current is supplied and the 
point where the potential is measured, respectively, and 8 is 
the angle between n and n,  . The sum appearing in (34) is 
calculated using the generating function for Legendre poly- 
nomials 

In fact, on the basis of (35) it is not difficult to see that 

cos 0) + const. (36) 

For the resistance this gives 

1 
R = - In( 1 - cos 8) + const, 

27T (37) 

and for the mean collision time we obtain 

~ - [ l n (  1 - cos 8) + constI3l2. (38) 

If the local structure of the lattice forming a spherical 
molecule is square, the value of the constant appearing in 
(38) can be found from a comparison with Eq. (31), which 

fact, introducing the angular dimension of the unit cell of the 
square lattice 0, and expanding (38)  in small 0, we obtain 

T-[In( 1 - cos 8) + 2 In Oo+ c ~ ] ~ ~ ~ ,  
where C2=ln 2+2mC1=3.9264. 

It must be understood that the continuum approximation 
is valid, in principle, only when 0 significantly exceeds the 
unit-cell parameter of the lattice forming the sphere. How- 
ever, the result presented above probably remains valid for 
values of 8 comparable to 00, since the numerical calculation 
shows that Eq. (31) holds to within several percent up to p ,  
q = l .  

6. CONCLUSIONS 

Thus, we have shown that the calculation of the mean 
collision time of two reactive groups requires: 

(1) dividing the molecule into segments consisting of a 
large number of groups and assigning a stiffness Kkm that is 
inversely proportional to its length3 to each segment; 

(2) calculating the resistance rkm between sites k and m 
after replacing the oscillators joining sites i and j with stiff- 
ness K j j  by resistors with resistance Ri j=  l /Kij;  

(3) calculating the collision time from Eq. (21) under the 
assumption K~,,,  = l /rkm . 

Let us discuss the conditions for applicability of the re- 
sults. It is easily seen that the only restriction in the calcula- 
tion of the mean collision time is that the reaction volume be 
small. However, the problem can be formulated differently: 
to calculate the time of the first collision between two spe- 
cific segments for a certain specified initial distribution. In 
this case there are additional restrictions: the relaxation time 
of the system to a Boltzmann distribution T,, must be much 
smaller than Tq ; TE1 can be evaluated from Eq. (12) in the 
case of a pairwise correlation function. At times t greater 
than I l , u 5 a m i , ,  where a mi, ,  is the smallest nonzero eigen- 
value of A ,  it can be assumed that the system is in thermo- 
dynamic equilibrium. The results of the present work can be 
used to calculate the kinetic constants of reactions by apply- 
ing them directly to the results of Refs. 5-7. However, the 
restrictions indicated above must be borne in mind when the 
reaction is barrierless and a collision between active groups 
invariably results in a reaction. 

'Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of 
Macromolecules [in Russian], Khimiya, Leningrad (1986). 

'v. N. Pokrovskii, Usp. Fiz. Nauk 164, 397 (1994) [Phys. Usp. 37, 375 
( 1994)l. 

'A. YU. Grosberg and A. R. Khokhlov, Stutisrical Physics oj'Mucromo1- 
ecules, American Institute of Physics, New York (1994). 

4G. Wilemski and M. Fixman, J. Chem. Phys. 58, 4009 (1973). 
5 ~ .  Sunagawa and M. Doi, Polym. J. (Tokyo) 7, 604 (1975). 
6 ~ .  Sunagawa and M. Doi, Polym. J .  (Tokyo) 8, 239 (1975). 
7 ~ .  Sunagawa and M. Doi, Polym. J. (Tokyo) 8, 286 (1975). 
'1. M. Gel'fand and A. M. Yaglom, Usp. Mat. Nauk 11, 77 (1956). 
9 ~ .  Pontryagin, A. Andronov, and A. Vitt, Zh. Eksp. Teor. Fiz. 3, 165 

(1933). 
'OC. W. Gardiner, Springer Series in Synergetics, Vol. 13: Hunclbook of 

Stockustic Methocls jbr Physics, Chemistry, and the N(ituru1 Sciences, 
Springer-Verlag, Berlin (1983). 

"A. Ishihara, Srcrti.sticu1 Pliysics, Academic Press, New York (1971). . 

was obtained for a flat square lattice in the case of small 8. In Translated by P. Shelnitz 

101 JETP 82 (I),  January 1996 Gorokhov et a/. 101 


