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I. INTRODUCTION 

The spin-polarized Fermi liquid 3 ~ e  has attracted the H =  X ~ k , u a k + , c r a k , ~ + u Z  niqni-u 9 

k , ~  i,u 
attention of both theoreticians and experimentalists for a 
long time.' The polarization of equilibrium liquid 3 ~ e  in 
magnetic fields accessible to experiment is quite low. For 
example, its specific magnetic moment in a -6 T field at 
T =  0.1 K amounts to only 3% of the peak value.2 Therefore, 
a method for obtaining strongly polarized liquid 3 ~ e  by rap- 
idly melting the polarized solid phase in a magnetic field was 
proposed in Ref. 3. This method was used widely in subse- 
quent experimental s t ~ d i e s , 2 , ~ ~ ~  and it is presently the only 
method for obtaining quasiequilibrium, strongly polarized 
liquid 3 ~ e  in macroscopic  volume^.^ Simple models of the 
melting process were constructed in Refs. 7 and 8; however, 
they employed rather arbitrary assumptions instead of the 
equation of state of liquid 3 ~ e .  In Ref. 5 liquid 3 ~ e  with a 
very high magnetic moment was obtained after rapid melt- 
ing. A procedure for calculating the effective magnetic field 
from the heat evolved when the magnetic moment relaxes 
was used in that work. We show below that such an approach 
is not correct. 

Along with the paramagnon," mean-field,'O induced 
interaction,'' and nearly metamagnetic 3 ~ e  theories,I2 the 
almost localized Fermi liquid model,13 which is also some- 
times called the Brinkman-Rice gas model, has been em- 
ployed to describe the state of equilibrium polarized liquid 
3 ~ e .  This model was successfully used to describe the prop- 
erties of liquid 3 ~ e  at nonzero temperatures in the absence of 
a magnetic field." 

In Sec. 2 of this paper the almost-localized Fermi liquid 
model is generalized to low temperatures (much lower than 
the effective Fermi energy) and arbitrary magnetic fields. In 
Sec. 3 the melting process of 3 ~ e  is modeled in a magnetic 
field with consideration of the equation of state of polarized 
liquid 3 ~ e .  The pressure depression for rapid melting is cal- 
culated in Sec. 4, and then the values obtained are compared 
with the experimental results in Refs. 2 and 4. The results in 
Ref. 5 are also discussed in that section. The main conclu- 
sions are summarized in Sec. 5. 

where a$,,(ak,,) is the creation (annihilation) operator of a 
fermion with spin a and wave vector k,  n i ,  is the operator of 
the number of particles with spin u in the coordinate repre- 
sentation, i.e., ni ,  corresponds to the set of the vectors Ri in 
the coordinate space, which are related to the vectors k by 
Fourier transformation, and U is the interaction constant. 
This Hamiltonian is usually used for a system of interacting 
fermions in a lattice with an initial s band. However, in the 
Gutzwiller approximation to the solution of the Hamiltonian 
(I), on which the almost-localized Fermi liquid model is 
based, the structure of the lattice is inconsequential. It is only 
important that the number of nearest neighbors is constant 
and that the coordinate wave functions (the Wannier func- 
tions) are of the s  type. This accounts for the applicability of 
this model to liquid 3 ~ e . ' 3  

The ground-state energy of an almost-localized Fermi 
liquid, normalized to a single lattice site or, in our case, to a 
single vector Ri , has a simple form:13 

where E, is the mean kinetic energy of the electrons with 
spin a, d is the fraction of the vectors Ri occupied by two 
electrons with different spins. Liquid 3 ~ e  is assumed to have 
a half-filled band, i.e., the number of particles is assumed to 
equal the number of vectors Ri . I 2  Then the function q ,  has 
the form'3915 

where m =(n i , -n ip , , )  is the magnetic moment, which is 
also normalized to a single vector R i .  

In Ref. 15 a thermodynamic method was used to pass to 
nonzero temperatures and arbitrary magnetic fields; however, 
it unfortunately does not permit accurate determination of 

2. ALMOST-LOCALIZED FERMl LIQUID AT NONZERO the entropy of an almost-localized Fermi liquid. Therefore, to 
TEMPERATURES IN AN ARBITRARY MAGNETIC FIELD 

calculate the thermodynamic parameters, we use the one- 
Liquid 3 ~ e  is a system of spin-112 fermions, that exhibit electron spectrum of an almost-localized Fermi liquid:'6317 

a strong short-range interaction. Such systems are often de- 
scribed by the Hubbard ~ a m i l t o n i a n ' ~  E ~ , ( J =  ~ , T E ~ , ( T -  (4) 
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The spectrum (4) makes it possible to accurately calculate 
the thermodynamic potential and the free energy of an 
almost-localized Fermi liquid in an arbitrary magnetic field. 
We pass to the dimensionless variablesI5 

2 E 2kBT t=- t = -  2poH h z -  
2 F 

f=  - 
A '  A ' A '  A ' 

where A is the width of the original electron band, k B  is the 
Boltzmann constant, po is the Bohr magneton, T is the tem- 
perature, H is the magnetic field, p=~,=-p-,  is the 
chemical potential of uncorrelated fermions (in the original 
band), and F and R are, respectively, the free energy and the 
thermodynamic potential of an almost-localized Fermi liq- 
uid. As is usually done,13715 we use the Hubbard model band 

The effective band (4) for 3 ~ e  has a width of about 1 K, 
which is much greater than the typical temperatures in melt- 
ing experiments (<0.2 K); therefore, we shall henceforth in- 
vestigate only low temperatures t e q .  As shown in Ref. 15, 
there are two types of solutions, depending on the value of 
the magnetic moment. 

1. We perform operations similar to those in Ref. 15. 
Then from the spectrum (4), retaining only the term qua- 
dratic in t lq,  for the moderate magnetic moments 1 - m> tlq 
we obtain 

where 

is the magnetic moment at zero temperature. The total en- 
ergy, the entropy, and, thus, the free energy of an almost- 
localized Fermi liquid can be calculated directly from the 
one-electron spectrum (4): 

2. A "semiconductor" solution,15 which corresponds to a 
ferromagnetic insulator, at T=O K, is possible when v>l.  
Retaining the first nonvanishing term in tlq, we obtain the 
thermodynamic potential and free energy in the form 

FIG. 1 .  General form of the solutions obtained from Eqs. (12) and (13). 1) 
small values of u; 2) large values o f  u. 

There is still a narrow range 1 - t lq < m < 1, in which 
there is no simple analytic solution. This is due to a purely 
technical difficulty: the derivative dp ld f  in the Hubbard 
band diverges at t= 1, and it is consequently impossible to 
use an expansion in powers of tlq when v is near that point. 

It is convenient to express the free energy and the ther- 
modynamic potential of an almost-localized Fermi liquid in 
terms of the corresponding potentials w, and f o  of uncorre- 
lated fermions in the form 

w=qwo+ud ,  fo=qfo+ ud. 

We note that the magnetic moment of an almost-localized 
Fermi liquid equals the magnetic moment of the uncorrelated 
fermions; therefore, it can be found from the following ex- 
pression: 

Then the state of an almost-localized Fermi liquid is de- 
termined by minimizing the free energy with respect to the 
parameter d (Ref. 15): 

This equation relates the independent variables d and q. Fi- 
nally, the chemical potential of an almost-localized Fermi 
liquid is the derivative of the free energy with respect to the 
magnetic moment along the line in the md plane defined by 
Eq. (12.1, 

The form of the functions m(h) obtained by solving Eqs. 
(12) and (13) depends on u (see Fig. I). When u is small 
(curve I ) ,  this function increases monotonically, and the 
"semiconductor" solution appears in the limit h - + m , m ~  I. 
When 11 is large (curve Z), as in the case of 3 ~ e ,  the function 
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FIG. 2. Plots of  m ( h )  for various values of the reduced temperature t: 1) 
1=0; 2) t=0 .01;  3 )  t=0 .02;  4) r=0 .03 .  

becomes two-valued, and a first-order transition to the state 
of a ferromagnetic insulator takes place.'3 A known thermo- 
dynamic inequality1* gives the condition for the transition 

We take the parameters of the Hamiltonian ( I )  for 3 ~ e  
according to the data in Ref. 19. As usual, we neglect the 
magnetostriction. Typical pressures in the 3 ~ e  melting ex- 
periments were 30 bar. In that case the Fermi energy of the 
uncorrelated fermions is 6.23 K, and the interaction constant 

where m* is the effective mass of a fermion in units of the 
mass of a free fermion. Plots of m ( h )  for various tempera- 
tures are shown in Fig. 2. 

3. MODEL OF 3He MELTING IN A MAGNETIC FIELD 

The liquid and solid phases of 3 ~ e  have rather long mag- 
netic moment relaxation times at low temperatures. At tem- 
peratures below 0.1 K they can reach 1000 s (Refs. 14 and 
15). Therefore, the melting rate in the experiments was cho- 
sen such that, on the one hand, equilibrium values of the 
temperature and pressure could be established and, on the 
other hand, the relaxation of the magnetic moment was 

The spin diffusion depth in the solid phase is 
only about 1 Fm (Ref. 7), and it is usually assumed that there 
are three phases: a liquid phase, the surface layer of the solid 
phase, and the bulk of the solid phase. The liquid phase is in 
equilibrium with the surface layer of the solid phase, i.e., 
their chemical potentials are equal. At temperatures of the 
order of 0.1 K the solid phase is a paramagnet, and for a 
magnetic moment of the surface layer m ,  the effective mag- 
netic field equals the chemical potential of the liquid: 
h= t arctan m,y,y (Ref. 4). The chemical potential of the bulk 
solid is assumed to be independent. Therefore, it may be 
assumed that its magnetic moment is maintained at low tem- 
peratures. 

T,' q< T3 

FIG. 3. States of the almost-localized Fermi liquid (solid line) and the 
paramagnetic solid phase at various temperatures (dashed lines). 

It was shown in Ref. 8 that the radius of curvature of the 
phase boundary is greater than the spin diffusion depth and 
that in this case the magnetic moment of the liquid equals the 
magnetic moment rn, of the bulk solid. However, this condi- 
tion holds only when the initial magnetic moment is small, 
and thus the magnetic moment of an almost-localized Fermi 
liquid is bounded by the critical value m,,. Therefore, when 
m,>m,,, the magnetic moment of the liquid rnl equals m,,. 
Plots of m ( h )  for a paramagnetic solid at various tempera- 
tures (dashed lines) and the line of state of the liquid (solid 
line) are schematically depicted in Fig. 3. When the tempera- 
ture is low and the initial magnetic moment of the solid 
phase rn,>rn,,, equilibrium is established at the critical 
value of the chemical potential of the almost-localized Fermi 
liquid h,, . 

If melting occurs at constant temperature, as in Ref. 2, 
the curves for both phases are fixed and only h varies. At 
high temperatures the magnetic moment relaxation rate in- 
creases sharply: and the magnetic moment can relax even 
more rapidly in the solid phase than in the Under 
these conditions the magnetic moment of the solid phase will 
be considerably lower than the initial magnetic moment, and 
there will be some uncertainty in the value of the magnetic 
moment of the liquid phase. Unfortunately, the magnetic mo- 
ment was not measured in Ref. 4; therefore, as we analyze its 
results, we assume that the condition m,ys=ml holds at high 
temperatures. The displacement of the line of state of the 
liquid as a function of the temperature is not shown in Fig. 3. 

The equality between the chemical potentials of the liq- 
uid and the surface layer leads to a relationship between the 
pressure P and the magnetic field H (Ref. 3) in the form 

d P  SM - 
d H  S V '  

where SM is the difference between the specific magnetic 
moments of the solid and liquid phases and sV is the differ- 
ence between the molar volumes of these two phases. Inte- 
gration of this equation leads to an expression for the pres- 
sure shift4 
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FIG. 4. Pressure depression for rapid melting: I--experimental value from 
Ref. 4 for melting over the course of 2 min; dashed l i n e m o s t  rapid melt- 
ing from Ref. 4; 2--calculated cuwe without consideration of the relaxation 
of the magnetic moment of the bulk solid. 

where NA is Avogadro's number. Thus, the pressure shift is 
proportional to the area of the figure bounded by the dashed 
and solid lines in Fig. 3. 

4. RESULTS AND DISCUSSION 

When rn and t are small parameters, the melting pressure 
shift can easily be evaluated. In (13) we leave only linear 
terns in the small parameter. Then we have 

where I=u/8fo(0,0), and fo(O,O) and q(0,O) are the values 
f o  and q when rn = 0 and q = 0. We represent the first term in 
the square brackets in (15) in the form h2/32t. Then it turns 
outthat Spxrn2, andwhenu=3.1 andt=0.016(T=0.1 K), 
we obtain Splrn2=4 bar. This estimate is close to the value 
obtained in Ref. 2, where 3 ~ e  melted at essentially constant 
temperature (T=0).1 K for rn,<0.3). The pressure shift and 
the magnetic moment were monitored simultaneously. At the 
end of the melting process, i.e., at small rnl, it may be as- 
sumed that the fraction of the solid phase is small and that 
the measured magnetic moment equals m l .  The value 
6plrn2 =5.5? 1.0 bar was obtained experimentally. We also 
note that the value obtained in the thermodynamic model 
used in Ref. 2 is greatly underestimated (1.9 bar). 

The pressure shift for a large initial magnetic moment at 
various temperatures was investigated in Ref. 4. The results 
for melting over the course of 2 min are depicted by solid 
curve I in Fig. 4. The dashed curve shows the pressure de- 
pression for the most rapid melting. The difference between 
these lines gives an estimate of the measurement en-or. Solid 
curve 2 in this figure shows the pressure obtained by numeri- 
cally solving (7), (13), and (14). Good correspondence be- 
tween the theoretical and experimental curves is observed at 

low temperatures. Strong divergence appears at higher tem- 
peratures due to the uncertainty in the melting regime men- 
tioned above. This divergence shows that our artificial con- 
dition rns,=ntl does not hold. It may also be noted that this 
condition places an upper limit on the pressure shift. If the 
real value of h is lower, the area bounded by the lines of the 
surface and liquid phases decreases. Otherwise, an additional 
area appears in the expression (15) with a minus sign. Thus, 
a correct analysis of the experimental data at high tempera- 
tures requires simultaneous measurements of the pressure 
shift and the magnetic moment of the liquid phase. 

In Ref. 5 rapid melting of the solid phase with a very 
high value of the initial magnetic moment (80%) produced 
strongly polarized liquid 3 ~ e ,  which subsequently relaxed at 
an almost constant temperature (-0.08 K). The magnetic 
moment of the liquid M and the heat Q evolved during re- 
laxation were measured. The effective magnetic field Beff 
was then calculated from the expression 

where p,, is the nuclear magnetic moment of 3 ~ e  and B, is 
the applied magnetic field. This gave the dependence of the 
magnetic moment on Beff-B,, which was nearly linear. This 
dependence was taken in Ref. 5 as evidence that the no first- 
order transition occurs at magnetic moments up to rn =0.6, 
since if such a transition had occurred, the liquid would have 
separated into two phases and the plot of B(m) would have 
contained a plateau. These arguments, however, totally ig- 
nore the latent heat of the transition, and under the calcula- 
tion method used this heat results in overestimation of the 
values of B(m). The overestimation of B(m) in Ref. 5 is 
also supported by the following fact. If the melting pressure 
shift is calculated from a plot of the dependence of Beff-B, 
on n~ (Ref. 5) (since m is not bounded here by a critical 
value, the magnetic moment of the liquid is equal to the 
initial magnetic moment of the solid phase8), we obtain 
SP-3 bar. However, 6P-1 bar was obtained experimen- 
tally for the same  condition^.^ 

Comparing the almost-localized Fermi liquid theory with 
the other theories, we should note the following. Under the 
present theory the localized state for 3 ~ e  is clearly not physi- 
cally definable in the limit rn+ 1, and the induced interaction 
and nearly metamagnetic liquid theories are preferable here. 
On the other hand, they are mean-field theories; therefore, 
one would scarcely expect that they will correctly describe 
the strong short-range interaction at moderate values of m. 
Thus, the question of the occurrence of a first-order transi- 
tion in the strongly magnetized state remains open. An an- 
swer to it can be obtained from rapid 3 ~ e  melting experi- 
ments. We note that the initial magnetic moment in Ref. 4 
was appreciably greater than the critical value at low tem- 
peratures. Under such circumstances a further increase in the 
initial magnetic moment does not cause variation of the pres- 
sure shift in the almost-localized Fermi liquid theory. 

5. CONCLUSIONS 

In the present work we generalized the almost-localized 
Fermi liquid model to arbitrary magnetic fields and low tem- 
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peratures. It is shown that the critical value of the magnetic 
moment, at which a tirst-order transition occurs in an almost- 
localized Fermi liquid, is strongly dependent on the tempera- 
ture. 

The almost-localized Fermi liquid model is applicable to 
the analysis of the experimental results obtained in Refs. 2 
and 4. When the magnetic moment and the temperature are 
low, the pressure shift for rapid 3 ~ e  melting is quadratically 
dependent on m. The theoretical value of the ratio 8 ~ l n z *  
corresponds satisfactorily with the experimental value. There 
is good agreement between the almost-localized Fermi liquid 
model and experiment at large initial magnetic moments and 
low temperatures. Strong divergence appears at high tem- 
peratures, and it is attributed to uncertainties in the experi- 
mental data4 (the magnetic moment of the liquid phase is 
unknown). 

The possibility of experimentally determining the occur- 
rence (or nonoccurrence) of a first-order transition in 3 ~ e  in 
a strong magnetic field has been demonstrated. If a transition 
occurs, saturation appears in the dependence of the pressure 
shift on the initial magnetic moment at large initial magnetic 
moments and low temperatures. 
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