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The low-temperature corrections to the one-loop effective QED Lagrangian in an external 
magnetic field, with finite fermion density, are calculated as the sum over a finite number of 
Landau excited levels, and are valid over a wide range of parameters. The simple form 
of the expansion allows one to find the components of the one-loop polarization operator in the 
static limit and obtain expressions for the Hall conductivity and the screening in an 
electron gas. Anisotropic Debye screening in a strong magnetic field is demonstrated. O 1996 
American Institute of Physics. [S 1063-776 1 (96)00801-61 

1. INTRODUCTION 

In the vicinity of a number of cosmic objects the fennion 
density and the magnetic field strength take very large 
values122 and it becomes necessary to take quantum correc- 
tions into Information about many properties of a 
relativistic electron-positron plasma in an external magnetic 
field can be obtained within the framework of 
(3  + 1)-dimensional quantum electrodynamics (QED) with a 
chemical potential p and temperature T in a constant and 
homogeneous external magnetic field B.~-" At the same 
time, in many cases the result has an extremely complicated 
form9-l2 and even a comparison of the same calculations 
carried out in different ways is extremely difficult (see the 
Introduction to Ref. 4). In this regard, it would be most de- 
sirable to work out an easily reproducible procedure that 
would allow one to obtain in a form suitable for analysis at 
least a few quantities in the physically interesting parameter 
region. 

The expression for the one-loop effective action (we will 
consider the Lagrangian 27 e f f ( ~ , p , ~ ) )  of QED with a finite 
fermion density and temperature in an external magnetic 
field is well Nevertheless, for specific values of 
the parameters p ,  T, and B the Lagrangian ..'Z e f f ( ~ , p , ~ )  
can be calculated only by numerical methods. An analytic 
expression for the plasma (i.e., p -  and T-dependent) part of 
the effective Lagrangian ? '"(B , p ,  T) has been obtained 
only in the limits p or B-CC (Ref. 14) and TAW (Ref. 15), 
while the calculation of 2 e f f ( ~ , p , ~ )  at intermediate values 
of the parameters is fraught with difficulty.'4 In a recent 
preprint'6 we showed that at low temperatures it is possible 
to expand the one-loop effective action for finite values of 
p and B. The low-temperature corrections (as well as the 
p-dependent part at T=O) in this case are expressed in 
terms of elementary functions as finite sums over the Landau 
excitation levels. Such a representation, in turn, allows one 
to make some progress in the calculation of the polarization 
operator and an examination of its static limit.I6 

The situation with the one-loop polarization operator 
lI,,(p) is more complicated than the situation with the ef- 
fective action. The full covariant expression for the one-loop 

polarization operator for B , p , T  # 0 was obtained in Refs. 10 
and 11, where it was represented in the form of an expansion 
over six transverse covariant tensor structures and the corre- 
sponding extremely complicated scalar coefficients were cal- 
culated. Although for some applications it is sufficient to 
know some of the components of the polarization operator in 
the static limit po=O, p+O, even just separating this limit 
from the total expression is not a simple task (Refs. 10 and 
11 present an exhaustive analysis of the analytic properties of 
lI,,(p) and the polarization, but specific limits were not 
calculated). At the same time, some components of the po- 
larization operator can be obtained from the expression for 
the effective action as derivatives with respect to p and B. 
Consequently, in those cases where the expression for the 
effective action can be obtained in simple form, we can also 
easily calculate certain elements of the polarization operator. 
This holds in the low-temperature limit, when the compo- 
nents no, ,  no,= lIro and no,= lI& in the static limit can be 
represented in terms of elementary functions as finite sums 
over the Landau excited levels16 (these calculations were 
confirmed in Ref. 17, where the aforementioned components 
in the static limit at T =  0 were calculated as the correspond- 
ing one-loop integrals with zero external momentum). 

In the present paper we show that in QED with finite 
fermion density in an external magnetic field, a low- 
temperature expansion can be performed that is valid over a 
wider range of the parameters. In this case, the plasma part 
of the effective Lagrangian can be represented in terms of 
elementary functions in the form of a finite sum over partly 
filled Landau levels. The fermion density, magnetization, 
Hall conductivity, and some components of the polarization 
operator can be written in the same form. Here we will show 
that at finite temperatures, the singularities present at T=O 
(Ref. 16) vanish. We will also show that using the general 
properties of the polarization operator and knowing the ef- 
fective Lagrangian, one can obtain the information needed to 
investigate static screening in an electron (positron) gas in an 
external magnetic field. As an example, we calculate the po- 
tential created by some simple charge configurations and 
demonstrate the anisotropy of Debye screening in an external 
magnetic field. 
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The present paper is organized as follows: Sec. 2. calcu- 
lates the low-temperature expansion of the one-loop effective 
Lagrangian for the case in which the edge of the upper Lan- 
dau excited level does not coincide with the Fermi surface. 
In Sec. 3. expressions are obtained for the magnetization, 
fermion density, and components of the polarization opera- 
tor. In Sec. 4. the approach used in Sec. 2. is developed for 
the case where the edge of one of the Landau levels coin- 
cides with the Fermi surface. Section 5. is dedicated to a 
study of Debye screening in an electron gas in an external 
magnetic field. 

2. LOW-TEMPERATURE QED EXPANSION IN AN EXTERNAL 
MAGNETIC FIELD 

We consider QED with a finite fermion density in an 
external magnetic field, described by the Lagrangian:') 

At T, p ,  B # 0 ,  the one-loop effective Lagrangian 
3 e f f ( ~ ,  p, T) , which obtains after integrating over the ferm- 
ion fields, has the 

s ~ ~ ( B , ~ , T ) = s ~ ~ ~ ( B ) + & ~ ~ ~ ( B , ~ , T ) ,  (2) 

where 

( - P ( " ~ ( P I I ) - P ) ) ] + ~ ~ [ ~  + exp 

( - P ( & ~ ( P ~ I ) + P ) ) ] }  (3) 

is the contribution of the medium ( p =  1/T, pll denotes the 
projection of the momentum on the direction of'the magnetic 
field, Ek(pll)= \ j m 2 + 2 e ~ k + p ; ,  bk-2- and 

is the effective Heisenberg-Euler Lagrangian.I8 
Integrating expression (3) by parts, we have 

+f-(TI) ,  (5) 

where f, (T) denotes the Fermi distribution: 

Using representation (as T-0 the Fermi distribution 
goes over to the Heaviside step function, 
limT -of, = O(2 p- E),  and expression (5) takes the form15 

' > f f ( ~ = ~ ,  B , p )  

where [ . . . ] denotes the integer part. In order to obtain the 
low-temperature expansion, we make a substitution of vari- 
ables and again integrate by parts: 

At low temperatures the contributions from the terms 
with df- Id& and f- and from the lower limit in the first 
term are exponentially small (p>O).  Carrying out the sub- 
stitution of variables and rewriting the derivative of the 
Fermi distribution in the form 

we obtain 

In the zero-temperature limit, the derivative of the Fermi 
distribution goes over to a &function and in the limit 
TAO we return to expression (7). In order to obtain the 
low-temperature correction, we extend the lower integration 
limit in Eq. (9) to - w  (at low T the function 
( 1 / 4 ~ ) c o s h - ~ ( ~ / 2 ~ )  decays exponentially as one moves 
away from the point q = 0). Next, expanding the expression 
in brackets about the point q=O, we obtain the low- 
temperature correction to the Lagrangian (7):16 
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Thus, in the low-temperature limit only the excited levels 
(i.e., those whose edges lie below the Fermi level) contribute 
to the effective Lagrangian. 

The above expansion is valid for 

i.e., until the distance from the edge of any Landau level 
.sk(pll=O) = Jw to the Fermi surface p is much 
greater than the temperature. 

3. FERMION DENSITY AND THE POLARIZATION OPERATOR 

Having a simple representation for the low-temperature 
corrections to the effective Lagrangian at our disposal, we 
can also calculate the fermion density, magnetization, Hall 
effect, and certain components of the polarization operator in 
the static limit po=O, p 4 O .  

Using expressions (7) and (10) and the definitions of the 
fermion density and the magnetization p = 39Fffl dB, we ob- 
tain for the density 

~ ~ , r r  m2+2eBn 
-- 

6 ( p 2 - m 2 - 2 e ~ n ) 2  

(12) 

and for the plasma part of the magnetization M 

(13) 

The temperature corrections diminish the fermion den- 
sity (at fixed chemical potential, increasing the temperature 
leads to "evaporation" of the electron (positron) gas, and 
raises the minima of the oscillating magnetization (compare 
the de Haas-van Alphen effect at zero and finite 
temperature.) ' 4 9 1 s  

Below we calculate the five components of the one-loop 
polarization operator in the static limit po= 0, p+O. The 
component rIoo in the static limit can be expressed as the 
derivative of the density with respect to the chemical 
potential: l9 

eBp/*l 
n o o ( p o = ~ ,  p+0)=e2- C b,, 

2%- ,,=O 

For B = 0 the component oo(po = 0, p 4  0 completely 
determines the screening of static charge at large distances 
(the Debye radius) r ~ 2 = I I o o ( P o = 0 ,  p-+O) (Ref. 19), but 
for p , B  # 0 this is no longer the case. The tensor structure of 
the polarization operator in this case is much more compli- 
cated (in this connection, consider the example from QED 
,+, (Ref. 20)), and the scalar coefficients are functions of 
two variables: p: (the projection of the momentum in the 
direction of the field) and pi (the projection of the momen- 
tum perpendicular to the field). The question of screening 
will be considered in detail in Sec. 5. 

The components IIo,=IITo and IIO2=IIfo in the static 
limit can be expressed in terms of the derivative of the ferm- 
ion density with respect to the magnetic field strength: 

This follows from the definition of the polarization operator 

Having calculated the components no, = II To and 
no,= IIzo, we can solve the more general problen~ of deter- 
mining one of the scalar coefficients in the expansion of the 
polarization operator in tensor  structure^.'^,^' As we have 
already noted, for T , p  # 0 the polarization operator in 
QED3+, with an external magnetic field can be expanded in 
terms of six transverse tensor s t r ~ c t u r e s ' ~  (we use a some- 
what modified representation): 

The scalars . 4, . f l ,  C, If, K, and .F are functions of 
2- 2 p i ,  P:=Rfi, P:+P2-PI, and B (u* is the 4-velocity of the 

medium, up= ( 1,0,0,0)), and, consequently, the last term 
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in expansion (17) makes the leading contribution to no. and 
we can determine the coefficient .9 in the static limit: d 

e dp .J7(po= 0, p 4 0 )  = - - 
B dB' 

It is easy to verify that the components no, describe the 
conductivity in the plane perpendicular to the magnetic field, 
which in our case (a nondissipative medium) has a purely 
Hall-like character: l6 

Substituting the function describing the fermion density 
into expression (19), we have 

T2v2 ( ~ ~ - m ~ -  2eBn)(m2+2eBn)+3eBnP2 -- 
3 ( , ~ ~ - m ~ - 2 e B n ) ~ / ~  

(20) 

From the foregoing expression it is clear that the Hall 
conductivity in QED,, , is an oscillating function of the 
chemical potential and magnetic field strength, and in the 
limit T-+m has an inverse-square-root singularity (recall, in 
this regard, that the polarization operator in QED3+ with an 
external magnetic field has exactly the same kind of singu- 
larities at the thresholds of pair-formation;ll also compare 
with QED2+ I ,  Ref. 21). The above-mentioned oscillations 
are of the same nature as the "giant oscillations" of solid- 
state and resonance effects in Q E D ~ , ~ , ~  and 
semiconductors.23924 In the following section we will calcu- 
late the temperature corrections at the points 

p--, and show that the singularities disappear. 

4. LOW-TEMPERATURE EXPANSION IN THE LIMIT 
p+(M 2+2eBk)'12 

In this section we show how the approach developed in 
Sec. 2. can be extended to the case , u - - + ( r r ~ ~ + 2 e ~ k ) ' / ~ .  At 
T=O, not all the functions represented in the foregoing sec- 
tion are smooth at this point, and not even the components of 
the polarization operator have a continuous limit. By way of 
an example, let us consider the Hall conductivity edpldB. 

Differentiating the effective Lagrangian (3) with respect 
to the chemical potential in order to obtain an expression for 
the fermion density at arbitrary temperature, and then calcu- 
lating the derivative with respect to the magnetic field 
strength B (below we assume that the temperature is low, so 
that the part that depends on f- can be dropped), we write 
the conductivity cr in the form 

First consider the term a(,, . Transforming variables, we 
obtain 

Let ,u-+(m2+ 2eBk) lI2. We isolate the term in the sum 
(22) corresponding to ko (the contribution of the other terms 
in cr(,, can be calculated by the method described in Sec. 2.): 

lim u;,O)= - - d z  - 
PA J- ~ T ~ T ~ ~ ~ ~ o  ,,I= 

Expanding the square root in (23) at z=O, we finally 
obtain 

Calculating a( ,) in an analogous way, we can verify that 
fi. Thus, at finite temperature, the inverse-square- 

root singularity in the expression for the Hall conductivity 
(as well as for the components of the polarization operator 
calculated above) disappears. In the low-temperature limit 
the conductivity is everywhere finite, and in the limit 
p-+ (m + 2eB k) 'I2 the leading contribution is proportional 
to T- 

This same procedure can be applied to the magnetization 
and the fermion density. Here one can easily verify that the 
temperature, as expected, smooths the corresponding func- 
tions (cf. Refs. 14 and 15). 

5. DEBYE SCREENING AND THE EFFECTIVE LAGRANGIAN 

An important aspect of temperature-dependent field 
theory (in particular, non-Abelian field t h e ~ r ~ ) ~ ' , ~ ~  is the 
question of static screening. To treat this question, it is nec- 
essary to know the Green's function of the gauge field VPv 
with corresponding quantum corrections: 

(here D,, is the bare photon propagator). 
Formally, nothing stands in the way of calculating 9," 

by inverting the corresponding matrix, but in our case, in 
which the polarization operator n,, has an extremely com- 
plex form (17), this is in general impossible in a practical 
sense. 
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The propagator OF, can be easily obtained if we make 
use of the diagonal representation of the polarization 
operator27 (that is, by solving the eigenvalue problem 
n,,(p)bv= ~ b , ,  as was done in Ref. 1 I): 

In this case, we at once have 

but this does not simplify the calculation of specific compo- 
nents of P,, . 

In order to consider the question of Debye screening, it 
is sufficient to know only Poo(po= 0, p). In this special case 
we performed the corresponding calculations in the Feynman 
gauge, keeping all the telms in the polarization operator (17). 
We cannot give the complete expression here and we restrict 
ourselves to the static limit. It turns out that the coefficients 
.A, F, 9, and &Y, which are sub-leading in p2 (see also Ref. 
17), can be reduced only to a finite renormalization (of order 
e2), which doesn't change the qualitative picture, so that the 
corresponding terms can be dropped. Finally, the component 
9m(po ,p )  can be represented in the following form (we 
have included the magnetic field strength in the definition of 
P, @=B.F): 

To leading ordel; Bm(po  ,p) is defined by just those compo- 
nents of the polarization operator that we can obtain from the 
effective Lagrangian (it is precisely these components that 
give the leading contribution in p to n,, in the static limit). 

The expression for the Coulomb potential 

in the case of a point charge is complicated, and we were not 
able to calculate it analytically. To demonstrate qualitative 
effects, it is sufficient to consider "simpler" charge configu- 
rations (i.e., those in which a 8-function removes one of the 
integrals over the 3-momentum in Eq. (29)). We will calcu- 
late, for example, the field produced by an infinitely long 
thin rod parallel to the z axis: 

where KO is the modified Bessel function of the second kind, 
lin~,,,K~(r)- m e - ' '  [see the discussion of screening in 
QED2+ , (Ref. 28)]. 

Thus, in a strong magnetic field, Debye screening is de- 
scribed to leading order by two scalar functions, and the 
assumption made in Ref. 17 that only the IIoO component is 
responsible for screening at B , p  # 0, is invalid. 

Let us now consider the potential of two charged planes, 
parallel and perpendicular to the magnetic field: 

It follows from these expressions that Debye screening 
I1 in the presence of a magnetic field is anisotropic: rD # r h  (it 

was shown in Ref. 29 for high temperature and p = 0 that at 
small distances screening is anisotropic). In dealing with an- 
isotropy, it is necessary to allow for the fact that for realistic 
parameter values the quantitative effect is small (formally, 
near the edge of a Landau level IIm and .F2 can be compa- 
rable in order of magnitude, but in this case the screening 
radius is much smaller than the mean distance between the 
particles and the Debye approximation is therefore invalid). 
In the examples above, anisotropy results from the appear- 
ance of an additional term in the polarization operator, and 
not from the fact that the squared momenta p: and pi enter 
into the scalar functions in a different way (as compared with 
the resonant deflection of electromagnetic waves by a mag- 
netic 

Assuming that the coefficients A, F, 5, and 87, which 
are sub-leading in p, have no qualitative effect on other com- 
ponents of F,,, we can rewrite the latter as 

It is easy to verify that the antisymmetric and linear (in 
the momentum) structure in the polarization operator in 
QED,+ , , in contrast to the Chern-Simons term in QED 
,+ ,  (Ref. 30), does not lead to magnetic screening (we em- 
phasize that when the polarization operator has the form 
(17), the condition IIi i=O (Ref. 25) no longer guarantees 
that the magnetic mass will be equal to zero). 

In the present paper we have demonstrated that it is pos- 
sible in (3  + 1)-dimensional QED with an external magnetic 
field to construct a low-temperature expansion of the effec- 
tive action, where both the effective Lagrangian and the de- 
rivative quantities have the same structure as in the limit 
TAO, that is, they are finite sums over the Landau excited 
levels. Using the expressions, we calculated the components 
of the polarization operator corresponding to the hall con- 
ductivity and Debye screening in QED,, , with a finite ferm- 
ion density in an external magnetic field. We calculated the 
potential created by some charge configurations and demon- 
strated the anisotropy of Debye screening in an electron gas 
in the presence of an external magnetic field. 
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