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A theory is developed of nonlinear optical processes involving isolated atomic systems in a 
strong external field and in a squeezed vacuum. The theory is based on transitions between 
quasienergy states of the system considered. For three systems-a two-level atom in a 
monochromatic field and in a bichromatic field, and a three-level atom under conditions of two- 
photon excitation--quantum phase-dependent effects are found in the transition probabilities 
between quasienergy states under the influence of the squeezed-vacuum field. It is shown that for 
certain parameters of the fields, these probabilities can be strongly suppressed. This 
circumstance is also manifested in the stationary interaction regime in our calculations of the 
resonance fluorescence spectra and in the populations of the atomic levels. It is shown 
that squeezed-vacuum effects lead to anomalous behavior of the atomic populations and to the 
possibility of their complete inversion for a three-level atom. O 1996 American Institute 
of Physics. [ S  1063-776 1 (96)0060 1-31 

1. INTRODUCTION 

The interaction of squeezed light with atomic systems 
has a number of unusual properties. It is well known that the 
spontaneous emission spectrum is changed significantly 
when an atom is placed in a squeezed vacuum, i.e., a wide- 
band electromagnetic field in a vacuum squeezed state. For 
such a field, the quantum-mechanical expectation value of 
the amplitude is zero, the quantum noise of one of the 
quadrature components of the amplitude is less than the 
vacuum level, and the width of the spectrum greatly exceeds 
the natural width of the atomic transition considered. As was 
first shown in Ref. 1, for a two-level atom interacting with a 
squeezed vacuum, the decay of the atomic polarizability is 
described by two transverse damping constants, and these 
may be much greater and much less, respectively, than the 
transverse damping constant of the atomic polarizability in 
the ordinary vacuum. This effect has the consequence, in 
particular, that the width of the central peak of the resonance 
fluorescence spectrum becomes less than the natural width of 
the atomic tran~it ion.~ At the present time, there are a fair 
number of results relating to the changes in the properties of 
radiative decays of atomic systems due to their interaction 
with a squeezed-vacuum field, and also for nonlinear optical 
processes in a squeezed vacuum. We merely mention some 
of these studies for isolated two-level1-' and three-~evel'-'~ 
atomic systems. We also emphasize that the interest in this 
problem has certainly grown in connection with recent ex- 
periments on atomic spectroscopy with squeezed light.14 

The present paper is devoted to an investigation of some 
novel aspects of the interaction of isolated atomic systems 
with a strong laser field and with a squeezed vacuum. To 
describe such problems, we propose to use an approach that 
was developed earlier to describe nonlinear processes in an 
ordinary vacuum. We are referring here to the density-matrix 
formalism in the representation of quasienergy states of the 
compound system consisting of an atom and the laser field.'' 
In such an approach, we assume that quasienergy states of 

the composite system are formed in a strong laser field,16-l8 
and the radiation processes are described by transitions be- 
tween them due to the interaction of the composite system 
with the squeezed vacuum. 

We recall that the dynamics of a quantum system in a 
squeezed vacuum is usually described as the interaction of a 
system with a reservoir of 6-correlated squeezed white 
n ~ i s e . ' . ~ . ~  Elimination of such a reservoir leads to an equa- 
tion for the reduced density matrix of the system. Proceeding 
similarly in this paper, we arrive at an equation for the re- 
duced density matrix of the system consisting of an atom and 
the laser field. The advantage of such an approach compared 
with the density-matrix method in the space of atomic states 
is manifested in the region of strong laser fields with energy 
of interaction with the atom greatly exceeding the energy of 
the interaction of the atom with the squeezed vacuum and the 
characteristic relaxation widths. In this case, the spectral 
emission lines of the atom are separated in frequency, it be- 
comes possible to identify the parts rapidly oscillating in 
time, and the equations simplify considerably (secular ap- 
proximation). Such an approach permits a comparatively 
simple investigation of complicated nonlinear systems that 
are difficult to study by means of the density-matrix formal- 
ism in the space of atomic states. 

In the framework of such an approach, we investigate in 
this paper squeezed-vacuum effects for a two-level atom ex- 
cited by a resonant monochromatic field, and separately by a 
bichromatic field. As another application, we also consider a 
three-level atom in a monochromatic field under conditions 
of two-photon excitation when it is coupled to a squeezed 
vacuum. 

For all these systems and for the case of small time 
intervals of excitation of the atoms, we find quantum phase- 
dependent effects in the radiative transition probabilities be- 
tween quasienergy states. For strong squeezing, these effects 
significantly change the probabilities. As follows from the 
results given below, the squeezed-vacuum effects in the 
quasienergy structure of the atoms are also manifested in the 
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stationary regime of interaction in the fluorescence spectra. 
They also lead to anomalous behavior of the atomic level 
populations and to their complete inversion for a three-level 
atom. We note that these effects are absent both for the or- 
dinary vacuuln and for the interaction of atoms with a ther- 
mal reservoir. 

2. EQUATIONS FOR THE DENSITY MATRIX 

This section is devoted to the derivation of equations for 
the density matrix of an isolated atom interacting with a laser 
field that is described classically, and with the field of a 
squeezed vacuum. These equations are represented in a basis 
of quasienergy states and describe transitions between these 
states due to the interaction of the system consisting of the 
atom and the laser field with the squeezed vacuum. 

We use an expression for the density matrix operator 

expressed in terms of the S matrix S ( t ) = S ( t , - w )  in the 
representation of quasienergy states15 with interaction opera- 
tor in the dipole approximation: 

Here It,bo)=l+o)lO)s, where I+o) is the initial quasienergy 
state and is the state of the squeezed vacuum; d ( t )  is the 
dipole moment operator in the representation of quasienergy 
states; g(w) is the spectral function; e(w) is the polarization 
vector. 

The correlation functions of the creation and annihilation 
operators with respect to the squeezed-vacuum state have the 

where N(w) is the number of photons with frequency w in 
the mode in the noise reservoir, and M(w),  which satisfies 
the symmetry relation M ( w l )  = M(2w,- w l ) ,  characterizes 
the correlation between the amplitudes of the two modes of 
the radiation field with frequencies w ,  and 2ws-w,, where 
ws is the characteristic center frequency of the spectrum. The 
following inequality holds between these parameters: 

l ~ ( w I ) 1 ~ ~ ~ ( ~ 1 ) ~ ( 2 w s - w l )  

The equation for the density matrix operator follows 
from the equation for the S matrix. It can then be trans- 
formed into an equation for the reduced density matrix aver- 
aged over the squeezed-vacuum state: $ ( [ )  =Tr[&t)]. Writ- 
ing the coefficients of this equation in the lowest e2 
approximation in the radiation field and in the Markov ap- 
proximation, which does not take into account memory ef- 
fects, for the elements uap=(alc?(t)IP) of the density matrix 
between the quasienergy states we obtain the system of equa- 
tions 

Note that in these equations we have, for simplicity, omitted 
the vector polarization structure, which will be restored in 
the final results. The coefficients of the equations have the 
form 

At the same time, they can be expressed in terms of the 
matrix elements of dipole transitions between quasienergy 
wave functions: 

In the expression (2.8), are the quasienergies, and 
+ , ( x , t )=  +a,p(x,t+ T )  are functions that are periodic 

P P  
wlth respect to the time.16 We recall that the quasienergies 
contain field shifts and splitting of the atomic levels, and the 
wave functions contain the effects of mixing of the atomic 
wave functions. 

We obtain Eqs. (2.5) for the important case of an arbi- 
trary atomic system perturbed by a monochromatic field with 
frequency w. For this, we write the coefficients (2.6) and 
(2.7) in terms of the positive-frequency [ d ( + ) ( t ) ]  and 

't p 
negative-frequency [dL;)(t)] parts of the matrix elements 
(2.8). We also use the expansion 

d $ ' ( t ) = e x P ( i E a p t ) ~  d$d exp( - i q w t )  
Y 

(2.9) 

with respect to the harmonics for values Eap-  qw<O. This 
is a consequence of the periodicity of the wave functions 
+a(x,t)  with period T=2rr/w. In the resonance approxima- 
tion with respect to the radiation field, we obtain 

d ( - ~ ~ ) * d ( ~ - ~ l )  
+ k a  t ip N ( w l )  

E a k - q I ~ - ~ I - i &  1 ' 
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(2.13) 

An expansion analogous to the expression (10) with respect 
to harmonics holds for the coefficients m a p  

where the expansion coefficients are readily obtained from 
(2.1 1)-(2.13) by means of the relations (2.6). 

The coefficients of Eqs. (2.6) and (2.7) describe the ra- 
diative processes of lowest order in the squeezed vacuum 
(see Sec. 3)  with allowance for the effects of the laser field. 
It is readily seen that these effects can be of two types. The 
quantities in (2.6) and (2.7) contain the effects of the mixing 
of the atomic states through the matrix elements d$", and 
also the effects of the field displacement of the atomic levels 
through the spectrum of quasienergies. In the general case, 
the dependence of the coefficients (2.6) and (2.7) on the time 
is determined by a sum of exponentials in which, in actual 
calculations, we shall omit the contributions of rapid oscilla- 
tions in the region of large time intervals. The expressions 
(2.10)-(2.14) also describe special cases: the ordinary 
vacuum for N= 1 M I  = 0 ,  a thermal field for N#O, M =0, and 
the squeezed-vacuum state for which the minimum of the 
uncertainty relation and, therefore, Eq. (2.4) holds. 

3. TRANSITIONS BETWEEN QUASIENERGY STATES IN THE 
SQUEEZED VACUUM. BALANCE EQUATIONS 

For the case of strong laser fields, it is possible to ignore 
in Eqs. (2.5) the coupling between the diagonal and off- 
diagonal elements of the density matrix. In order of magni- 
tude, this coupling is equal to the ratio of the matrix elements 
of the atomic transitions in the squeezed vacuum to the ma- 
trix elements of the transitions in the laser field. If at the 
same time it is assumed that the time dependence in the 
coefficients can be omitted, the equations take the form 

a 
- at u a p ( t ) = [ i ( 8 E a -  a E p ) - r a p l u a p ( t ) ,  a+P. 

(3.2) 

In (3.1) and (3.2), we have adopted the notation 

Wak= -i(mka,ak-m;a,ak). (3.3) 

where the bar over the coefficients denotes averaging over 
the fast time oscillations, and we have used the relation (2.6). 

We give some explanations regarding the derivation of 
these equations for the case of a monochromatic excitation 
field with frequency w. Ignoring the fast time oscillations in 
(3.3) and (3.4), as follows from the expressions (2.10) and 
(2.14), for +qw = 2ws  it is necessary to retain the terms with 
the exponential dependence exp[i(qw T 2 w s ) t ] .  If the fre- 
quency of the excitation field is close to the frequency of the 
squeezed field (w=wS), then the harmonics with q=+2 
make a nonvanishing contribution to (3.3) and (3.4) that con- 
tains slowly varying (in time) exponentials of the form 
exp[+ 2 i ( w -  w s ) t ] .  Therefore, Eqs. (3.1) and (3.2) for this 
case are valid in the case of exact resonance, w=ws, when 
their coefficients are constant in time after averaging over the 
fast oscillations. 

3.1. Transition probabilities in the squeezed vacuum 

Equations (3.1) describe the population kinetics of the 
quasienergy states. It is readily surmised that the coefficients 
W a p  of the equations are the probabilities for transitions 
Ia)-+lp) in unit time between the quasienergy states in the 
squeezed vacuum, summed over all final states I R )  of the 
radiation field. Indeed, the transition amplitude from the ini- 
tial state ICY)~O)~ of the system to the final state IP)IR) is 
equal in lowest-order perturbation theory to 

whence, bearing in mind the definition (2.7), we obtain for 
the corresponding probability per unit time 

We give this expression for the case of a multilevel atom 
in a monochromatic excitation field for w= ws . Calculations 
in accordance with (2.10)-(2.13) give 

where wi=Eap+qw,  w,=Epa+qw, and the summation 
contains the harmonics for which w,>O, w2>0. Note that in 
writing this expression in compact form, we have used the 
relation M(2ws-  w I ) = M ( w , ) .  

It is readily seen that the transition probabilities contain, 
in addition to the vacuum and stimulated contributions pro- 
portional to N, phase-dependent contributions with param- 
eter M = I M 1 exp(i *,), where fiS is the phase of the anoma- 
lous correlation function (2.3) of the squeezed field. It is 
readily seen that the phase-dependent contribution to the 
transition probability is due to the interference between the 
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amplitude for the two-photon transition I a ) + I ~ ) 4 l a )  be- 
tween the quasienergy states and the amplitude M, which 
characterizes two correlated photons of the squeezed field. 

3.2. Quasienergy widths and shifts. Spectral widths of the 
transitions 

Equations (3.2) describe the transition currents between 
the quasienergy states and contain radiative shifts of the 
quasilevels and the widths of the spectral lines in the transi- 
tion 1 a ) ~ l P ) .  It is convenient to represent the spectral 
widths in the form 

Here I', is determined together with the quasienergy shift 
SE, in terms of mas, which is the diagonal element of the 
mass operator of an electron bound in the atom in the pres- 
ence of the excitation field and the squeezed-vacuum field as 
follows:') ma,= SEa- i re .  As calculations show, and as is 
also clear from general considerations, the quasilevel width 
ra is equal to the sum of the probabilities (3.7) of transitions 
from the quasienergy states: 

The other contributions to the spectral width (3.8) are ob- 
tained from the coefficients (2.7) of crossed type, which, in 
accordance with (2.10), are equal to 

-m(o) +Q(-2)  
maa,pp- aa,pp aa,pp+~b,~c!,pp. (3.10) 

At the end of the calculations, we obtain 

Thus, we can obtain for the quasilevel shifts an expression in 
the form 

where 

The quasienergy shifts are due to the interaction of the 
atom in the monochromatic excitation field with the 
squeezed vacuum. For N= ] M I  =O, they reduce to the Lamb 

shift of the quasienergy in the nonrelativistic approxima- 
tion.15 In the general case they contain not only Lamb shifts 
but also Stark level shifts proportional to the numbers of 
photons in the mode and phase-dependent parts due to the 
correlation of the squeezed-vacuum modes. 

4. INTERFERENCE EFFECTS OF THE SQUEEZED VACUUM 
FOR A TWO-LEVEL ATOM 

Squeezed-vacuum effects in resonance fluorescence for a 
two-level atom in the stationary regime are well known (see 
Refs. 1-7 and the references there to other studies). There- 
fore, in this section we mainly give results for time intervals 
of the perturbation that are short from the point of view of 
transitions between the quasienergy states. We note that the 
concept of a "dressed atom" for resonance fluorescence in a 
squeezed vacuum has been constructed in a number of stud- 
ies (see, for example, Refs. 7 and 13) on the basis of station- 
ary states consisting of an atom and a given number of 
photons.19 In its physical meaning, such a description differs 
fundamentally from the one used by us based on nonstation- 
ary quasienergy states, and is more appropriate in problems 
with cavities. In addition, a description by means of nonsta- 
tionary quasienergy states can also be used for the case of 
pulsed excitation fields with allowance for the time depen- 
dence of the field amplitude. 

We consider a two-level atom in an electromagnetic ex- 
citation field with carrier frequency o close to the atomic 
transition frequency wo and with amplitude E(t). For the 
case of adiabatic excitation under the condition that the off- 
set from resonance E = W ~ - W  is much greater than the recip- 
rocal 7' of the characteristic time of growth and decay of its 
intensity, the quasienergy states cP1 and Q2 of the system are 
well known, and the negative-frequency parts of the dipole 
moments of the transitions between them are 

d'- '=- ( ) 
v 

d2, ( t )=  - abd* exp(-iot). I VI 
(4.1) 

Here 

~ = ( ~ ~ + 4 1 ~ 1 ~ ) " ~  is the Rabi frequency, V =  E(t)d, d is the 
dipole moment of the transition between the atomic states, 
and E>O. 

In the nonstationary case, the treatment is difficult on 
account of the calculation of the coefficients of Eqs. (2.5) 
with the dipole moments (4.1) with complicated time depen- 
dence. Nevertheless, results can be obtained if the method of 
stationary phase is used in the integration over time. How- 
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ever, these questions go beyond the scope of the present 
paper, and here we restrict ourselves to presenting the results 
for the limiting case of short pulses r y < l ,  when the time 
dependence of the amplitudes a and b and of the Rabi fre- 
quency can be omitted. 

4.1. Interference effects in transition probabilities 

We assume that the excitation field is turned on adiabati- 
cally, as a result of which there is formed a definite quasien- 
ergy state: @, or Q2. As is well known,I8 the transition 
@,--+@, in the ordinary vacuum is accompanied by sponta- 
neous emission at the frequency w-fl; the transition 
@,A@, , by emission at the frequency w+n; and diagonal 
transitions, by emission at the frequency w. The probabilities 
of these transitions per unit time are, respectively, 

and they determine the intensities of the corresponding emis- 
sion lines in the case of short time intervals of the excitation 
( r y e  1). 

In the squeezed vacuum, the transition probabilities be- 
tween the quasienergy states can be calculated in accordance 
with (3.7), in which we ignore the field shifts of the atomic 
levels. This means that when we take into account the effect 
of the laser field on the transition probabilities we take into 
account the effects of the mixing of the atomic states as a 
function of the parameter Ewo/Ea, c k l  (Eat is the character- 
istic atomic field strength), while the nonresonant corrections 
=E/E, are ignored. The calculations lead to the results 

where N=N(wo), M(u,)=IMlexp(i@,), and @=@s-2$L 
is the phase difference of the squeezed-vacuum field and the 
excitation field $ L .  These expressions are written in a form 
convenient for analyzing the contributions of the various el- 
ementary processes. Thus, in (4.3) the first term describes the 
probability of the spontaneous-stimulated transition 
and the second the probability of the stimulated transition 
@,+@, in the ordinary vacuum. The third term contains the 
interference between the amplitude of the two-photon transi- 
tion @I--+@2-+@l and the correlation function of the ampli- 
tude of the squeezed-vacuum field. We note that the above 
two-photon transition amplitudes are given in Ref. 20. 

The interference is greatest for squeezing with minimum 
uncertainty relation: for I M 1 2 =  N(N + I ). It is readily seen 
that in this case even when @ =O the 11)+12) transition prob- 
ability vanishes, WI2=0, if 

N = (  dm- 1 ) ~ / 4  dm, (4.6) 

where 77=21 VI/e. For large offsets from resonance, this rela- 
tion is realized for small photon numbers, and in the region 
of resonance (but not for c=O) for N 9 I .  For the reverse 
transition 12)+1 l), this effect is absent. 

Analysis of the expressions (4.3)-(4.5) shows that for 
I MI2= N(N+ 1 ), $ =0, and N 9  1 there is suppression of the 

FIG. 1 .  Dependence of normalized probabilities of the transitions 12)~11) 
between the quasienergy states as a function of the parameter 7 for the 
ordinary vacuum (continuous curves) and the squeezed vacuum for @ =0, 
N =0.5 (dashed curves). 

probabilities WI2,Wz1 of the off-diagonal transitions com- 
pared with the probability of spontaneous decay in the ordi- 
nary vacuum when c2/f12< 1/N< 1 and a growth of the prob- 
abilities of the diagonal transitions with increasing N. In this 
case even when @ =T there is suppression of the probabili- 
ties of the diagonal transitions and an increase of the prob- 
abilities of the off-diagonal transitions. A plot of the prob- 
abilities (4.3), (4.4) as a function of the parameter 7 is shown 
in Fig. 1. 

4.2. Populations and radiative widths 

We give some results from which it is possible to see the 
role of the probabilities obtained here in the stationary re- 
gime, i.e., for t%yP1. To describe this regime, we must use 
Eqs. (3.1) and (3.2) for the populations all and a,, and the 
current of the transition v12; in this case, these relations are 
valid when fl*(N+l)y. For population inversion of the 
quasienergy states, we obtain 

x e x ~ [ - r l l ( t ) l ,  (4.7) 

where As= (W2,- W ,2)I(W,, + W,,) is the steady-state 
value of the inversion, A(0) is its initial value, and 
TI ,=  W ,,+ W2, is the damping constant. The steady-state 
populations of the atomic levels turn out to be equal, 

both when (4.6) holds and when @ =O, and they are identical 
to the corresponding populations of the atomic states in the 
quasienergy state a,, i.e., Sll,(22)=(1 +e/fl)/2. (Here and in 
what follows, we write two expressions simultaneously, 
separated by a comma.) 

The radiative widths I?,=-Im m,, of the quasienergies 
are calculated in accordance with (2.14). It should be noted 
that the result obtained, 
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does not contain phase-dependent terms, which cancel each 
other when the contributions of the two transition channels 
are added. It is readily seen that the spectral width of the 
central fluorescence line is equal to the damping constant of 
the population inversion (see also Sec. 5). As is well known? 
this width for fluorescence in a squeezed vacuum can be less 
than the spontaneous width of the atomic transition. The in- 
terpretation of this effect in the language of quasienergy 
states is very transparent and, as follows from the results 
given above and the relation r l l= (WI2+ W21), is due to 
phase-dependent interference in the transition probabilities 
(4.3) and (4.4). The spectral widths of the two side peaks of 
the fluorescence spectrum are equal to the width TI,, which 
can be calculated in accordance with the expressions (3.8), 
(3.1 I) ,  (3.12), and (4.9) and by means of the matrix elements 
(4.1). The result has the form 

5. SQUEEZED-VACUUM EFFECTS FOR A TWO-LEVEL ATOM 
IN A BlCHROMATlC FIELD 

In this section, we consider a two-level atom in a bichro- 
matic field 

which possesses components with equal amplitudes and with 
frequencies wo+ 6 and wo- 6 symmetrically disposed about 
the frequency wo of the atomic transition, which also inter- 
acts with the squeezed vacuum. 

As has been shown experimentally,21 in a bichromatic 
excitation field the fluorescence spectrum contains new reso- 
nances that are absent in the case of monochromatic excita- 
tion. The spontaneous emission of a two-level atom in a field 
of the form (5.1) was investigated in Refs. 22-24, and the 
fluorescence spectrum was calculated in Ref. 25 with allow- 
ance for the effect of the excitation field on the spectral 
widths. The spectrum has a multipeak structure with maxima 
at the frequencies w,= wo+ q 6 (q =0,+ 1,+2, ...) that are 
separated from each other by the offset from resonance. The 
fluorescence spectrum for the more general case of asymmet- 
ric offsets from resonance is given in Ref. 26, and it was 
measured in Ref. 27, the results of which agree well with 
those of Refs. 25, 26, and 28. In Ref. 29, the effects of the 
cavity on the fluorescence spectrum were investigated, and it 
was shown that this process is very effective for the genera- 
tion of single-mode squeezed light. New effects in the dy- 
namics of the transitions of two-level Rydberg atoms in a 
microwave cavity under the influence of a bichromatic field 
were found in Ref. 30. The present section is devoted to an 
investigation of the radiative transitions, fluorescence spec- 
tra, and absorption of a two-level atom in a field of the form 
(5.1) in the presence of a squeezed vacuum. 

5.1. Transition probabilities and spectral widths 

In the special case of the excitation field (5.1), the 
quasienergies are equal to zero, and the quasienergy wave 

functions are given-in Refs. 22-25. The negative-frequency 
parts of the dipole transitions between the quasienergy states 
11) and 12) have the form 

d',,)(t) = ~ ~ ( t ) d e - ' ~ o ' ,  

Here 

and we have adopted the following notation: <=2V/S, 
V=d.Eo is the matrix element of the interaction of the atom 
with the field (5.1), and d =  (pllil q2) ,  where Iq,) and Iq2) 
are atomic states. [These expressions generalize the results of 
Refs. 22-25 to the case of an arbitrary phase @ between the 
constituent amplitudes of the fields in (5.1).] In this case, the 
expansions with respect to the harmonics (2.9) have the form 

and, in particular, determine the spectral emission lines at the 
frequencies w, = wo + q 6. 

We now obtain equations for the density matrix (2.5) 
that apply to the case considered. The coefficients of the 
equations are calculated in accordance with the expressions 
(2.6) and (2.7) by means of the matrix elements (5.2), with 
only the effects of the mixing of the atomic states by the 
bichromatic field being taken into account (the frequency 
shifts q 6  relative the frequency of the atomic transition are 
ignored). We illustrate the calculations with the example of 
the spontaneous contribution to m,,,,,(t), which in the reso- 
nance approximation is 

Using the expressions (5.2) and the harmonic expansion for 
the coefficient A (t)  (5.3), 

we obtain for the principal part of the integral over w, 

In what follows, we ignore the frequency shifts q 6 compared 
with the transition frequency wo in the spectral density 
lg(w1)l2 and the fast time oscillations. We then obtain 
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where the bar denotes averaging over time. 
As such an analysis bhows, the equations for the density 

matrix in this case in the approximation of nonoverlapping 
spectral lines when 6%(N+ 1)y can be reduced to the stan- 
dard form 

with coefficients having the same form as the expressions 
(4.3)-(4.5) and (4.10) but with different amplitudes of the 
mixing of the atomic states. Namely, the results for WI2, 
W2,, rI2 can be obtained from (4.3), (4.4), (4.10) by the 
substitution 

where J0(O is a Bessel function, and they have the form 

Here N=N(wo), ~ ( o ~ ) = 1 M l e x p ( i $ ~ ) ,  and cC, =4bs-2@. 
By means of these results, we also obtain the damping 

rate rll of the populations of the quasienergy states and the 
inversion of their steady-state values as the solution of Eq. 
(5.8): 

X(N+;+IM~COS g)}, (5.1 3) 

The transition to the basis of atomic states is made by 
means of the expressions for the mean populations of the 
atomic states Iq,) and Iq2) in the quasienergy state Il), which, 
as is readily seen, have the form 

nl=l (~ l l1) I2=3[1  +~o(5)1 ,  

n2=1(921 l)12=%l-Jo(5)1. (5.15) 

By means of these expressions, we obtain for the steady-state 
populations of the atomic levels 

811,(22)= $[ 1 tJo(5)AsI. (5.16) 

It is readily verified that for the ordinary vacuum the expres- 
sions obtained for the spectral widths and populations go 
over into the well-known results.25 

5.2. Resonance fluorescence spectrum 

The fluorescence spectrum is given by the Fourier trans- 
form of the two-time correlation function of the operators of 
the dipole moment in the Heisenberg picture: 

where T is the integration time. In the steady-state, this is 
proportional to the number of photons with frequency ok 

emitted per unit time. 
The correlation function of the dipole moments can be 

expressed in terms of the variables in the representation of 
the quasienergy states and can be calculated by means of the 
fluctuation regression theorem and Eqs. (5.8) and (5.9). For 
the resonance fluorescence in the bichromatic field in the 
absence of squeezed-vacuum effects, such a method of cal- 
culations was used in Ref. 25. For the case considered here, 
we obtain 

+dL?(t2)dL)(t1)( 1 -As)]. (5.18) 

Using also (5.2) and the corresponding expansions (5.4), 
we arrive at an expression for the fluorescence spectrum in 
the form of the sum of the contributions of the elastic and 
inelastic scattering: 

The elastic part S ,  of the spectrum has peaks at the fre- 
quencies wok??, ~ ~ 2 3 6 ,  ..., i.e., at frequencies of odd order 
relative to the central fluorescence line at the frequency of 
the atomic transition. The inelastic part of the spectrum has 
peaks at all frequencies o, = oo + q 6. The squeezed-vacuum 
effects are manifested in the spectrum through the difference 
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FIG. 2. Inelastic parts of the resonance fluorescence spectra in the bichro- 
matic field in relative units for 5=4, S= 10 for the ordinary vacuum (curve 
1) and the squeezed vacuum for fi =0, N =  1 (curve 2). For the given value 
of the parameter 5, peaks at the frequencies m o t  S are absent. 

of the populations of the quasienergy states and the widths, 
which are given by the phase-dependent expressions (5.12)- 
(5.14). It is readily seen that a phase-dependent decrease of 
the spectral widths occurs for the peaks with odd order. They 
all have the same spectral width TI , ,  which for i,b =O and the 
largest negative value of the Bessel function Jo(20 can reach 
the smallest value 

at <= 1.9. 
It is readily seen that TI I  cannot be less than y/2, i.e., in 

the resonance fluorescence in the bichromatic field a reduc- 
tion of the widths of the emission lines below the spontane- 
ous transition width does not occur. 

The fluorescence spectra for the case of the ordinary 
vacuum and squeezed vacuum for 1 M 1 = N(N + 1 ) are given 
in Fig. 2. 

We note also that the total integrated intensity is ob- 
tained by integrating the spectrum and is 

As one would expect, this quantity is equal to the product of 
the population of the excited atomic level (5.16) and the 
transition probability of the atom from the excited level to 
the ground level. 

5.3. Absorption spectrum of a test field 

We consider the squeezed-vacuum effects in the absorp- 
tion spectrum of a test field in the case of an isolated atom 
excited by a bichromatic field. For the case of an atom in a 
monochromatic field, these effects were investigated in Ref. 
3. 

The time average of the power absorbed by the atom 
from the test field with amplitude eo and frequency v is equal 
in the lowest order in the test field to 

2 v 
P(  v) = Re(eonezln~tz,m( v,t) 1, 

where n and m are vector indices, and the bar denotes aver- 
aging over time. Using the method of calculations given in 
Sec. 5.2, we obtain for the two-time correlation function of 
the dipole moments the expression 

which leads to the following result for the absorption spec- 
trum: 

In this expression, u=4.rrwold.eo12/hy is the coefficient of 
absorption of the test field at the frequency of the atomic 
transition in the absence of the excitation field. 

As follows from this result, for an atom in a strong 
bichromatic field there is absorption of the test field in the 
vicinity of the atomic transition frequency, but there is no 
amplification. Such a situation is specific to the bichromatic 
field in the form (5.1) and can be readily interpreted in the 
language of transitions between quasienergy states (see Ref. 
29, where such an interpretation is given for the coefficients 
of the kinetic equations). We recall that in the case of a 
monochromatic field there is both absorption of the test field 
and amplification of it at frequencies symmetric about the 
frequency of the excitation field.31 

At the parameter values <=2.3, 5.5, 8.7 ,..., equal to the 
roots of the equation Jo(()=O, the population difference of 
the quasienergy states (5.14) vanishes, and there is no ab- 
sorption. This also occurs in the ordinary vacuum. In the 
squeezed vacuum, the values of the parameter < at which 
absorption is absent are the same as in the ordinary vacuum, 
but the peak values of the absorption and the spectral width 
of the absorption region are significantly changed. We note 
that at the indicated values of 5 there is also no contribution 
of the elastic scattering in the fluorescence spectrum (5.19). 

6. THREE-LEVEL ATOM UNDER CONDITIONS OF TWO- 
PHOTON RESONANCE AND IN A SQUEEZED VACUUM 

In this section, we consider a three-level atom in the 
configuration of two-photon excitation through a virtual 
level, as shown in Fig. 3. The matrix element of the two- 
photon transition is 

W(t)= ~ e ~ ' ~ ' + c . c .  W=V23V31/ (~31-  w), (6.1) 

where V23 and VLll are the matrix elements of the single- 
photon transitions, and wij are the frequencies of the atomic 
transitions. The system decays as a result of interaction with 
the squeezed vacuum through the level 13), which is not per- 
turbed by the excitation field. 

The negative-frequency parts of the matrix elements of 
the dipole transitions are (see, for example, Ref. 18) 
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FIG. 3. Scheme of atomic states (a) and of the quasienergy states (b) of the 
atom under conditions of two-photon excitation. The wavy lines in the dia- 
grams correspond to spontaneous transition frequencies. 

where d and d 2  are the matrix elements of the atomic dipole 
112 2 

transitions Ip2)+Iq3) and Iq3)+I q l ) ,  A ( 1  2 61f12) Id , 
6= ql -2o>0  is the two-photon offset from resonance, and 
l(1,=(6~+41 wI2)'l2 is the Rabi frequency. The spectral lines 
of this system are determined by the transitions between the 
quasienergy states (6.2) and have the frequencies 

Our aim is to investigate effects due to the interaction of the 
perturbed atomic system with the squeezed vacuum at ws =o 
in the transition probabilities between quasienergy states of 
this system, in the resonance fluorescence spectrum, and in 
the populations of the atomic energy levels. We note that in 
the ordinary vacuum this system was considered in Ref. 32 
and, for a step configuration, in Ref. 33. 

6.1. Interference effects in the transition probabilities 

The calculations of the transition probabilities per unit 
time between the quasienergy states of the considered system 
in accordance with (3.7) and by means of the expressions 
(6.2) lead to the results 

Here N ,  and N2 are the numbers of photons at the frequen- 
cies q3 and w~~ of the atomic transitions, y,  and y2 are the 
spontaneous partial widths of the atomic transitions 

Iq2)+lq3) and Iq3)+lq0, respectively, and $ = $,s - 2 $L , 
where $[, is the phase of the excitation field; the probabilities 
of the dipole transitions 1 2 ) ~ I l )  are zero. 

In obtaining these results, we have used the symmetry 
property M ( ~ 3 1 )  = M(w23) = I M lexp(i $,) of the correlation 
function, and in the parameters Ni and M the shifts of the 
atomic levels have been omitted. 

The phase-dependent contribution to (6.4) leads to inter- 
ference effects that under certain conditions suppress the 
probabilities of specific transitions. These effects are most 
clearly manifested for squeezing with the minimum of the 
uncertainty relation. In this case, it follows from (2.4) that 
~ M ~ ~ = N , ( N , +  1 )  if N l > N 2  and that I M ~ ~ = N , ( N , +  1 )  if 
N 2 > N , .  In these cases and when fi =O the probabilities of 
the transitions 13)SIl) can be suppressed, namely: 

4 N 1 
W 3 , = 0  for N2>N,  if (Jw+ I ) ~ = - ,  

'7 
(6.5) 

4 N l + l  
W I 3 = 0  for N 1 > N 2 ,  if rl (dm+ 1 ) 2 = -  N? ' 

- 
(6.6) 

where .r7=21W1/6and q = y 2 1 y l .  
For the different relationship fi = 7 ~  between the phases, 

the probabilities of the transitions 12)213)) can be sup- 
pressed: 

4 N , +  1 
W23=0 for N 1 > N 2 ,  if --Z '7 (dm- I ) ~ = - ,  N2 

(6.7) 

4 N I  
W3,=0  for N 2 > N 1 ,  if --T (dm- I ) ~ = ~ .  

'7 
(6.8) 

The transition probabilities determine the radiative widths of 
the quasienergies in accordance with (3.9): 

where the phase-dependent contributions cancel for the 
width r3.  

We note that the resulting phase-dependent effects in the 
transition probabilities between the quasienergy states can be 
investigated in the case of excitation of atoms by short pulses 
(T < y: I ,  yT1) in the regime of adiabatic onset of the interac- 
tion. In addition, they can be investigated through the widths 
I', and I'2 by a measurement of the spectral distributions of 
the light intensity in transitions from the quasienergy state I I )  
or 12) to any other states. In the following subsection, we 
give another consequence of these effects in the steady-state 
populations of the atomic levels. 

6.2. Interference mechanism of population inversion of 
atomic levels 

The equations for the density matrix in the secular ap- 
proximation in the case of nonoverlapping spectral lines with 
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f129 yI(Nl  + I ) ,  y2(N2+ 1 )  have the san~e structure as Eqs. of the atomic states, we obtain after some manipulation the 
(3.1) and (3.2) and for the populations of the quasienergy following results for the steady-state populations of the 
states have the form atomic levels: 

b33(t)=-(W31+W32)u33(~)+W13@11(f)+W23~22(t). 
(6.10) 

1 

P 3 3 = ~ + ~ I + ~ 2 '  
Solving these equations in the steady-state for - 

t 9  y y l , Y ~ l  and then going over in the solutions to the basis where 

W 3 1  R 1 = - = l  + 1 + 9 + ( 9 -  1 ) -  

w13 Jm(1 + N , + ~ N ~ ) + ~ N ~ - N ~ -  1 - 2 7 1 & 1 ~ l ~ ~ ~  (I,' 

w32 R - - = I -  
1 + q - ( q -  1 )  Jm 

2 -  
W23 Jm(1 + N ~ + ~ N ~ ) - ~ N ~ + N , +  1 +27&lMIcos (I,' 

It is readily seen that the quantum effects due to the interac- 
tion of the considered composite system with the squeezed 
vacuum are manifested in the steady-state populations 
through the transition probabilities between the quasienergy 
states. These effects lead to anomalous behavior of the popu- 
lations in the parameter regions in which the probabilities 
(6.4) vanish. 

We consider the case of squeezing with the minimum of 
the uncertainty relation, when N ,  > N2 and (I, =IT, under the 
condition (6.7). In this parameter region, we have W23=0, 
and from (6.11) and (6.12) we obtain 

Thus, in this parameter region the population of the first 
excited level is exactly zero, pll and p2, depend only on 7, 
and for 7 51 we obtain complete inversion of the atomic 
levels ( P ~ ~ = I ,  pl,=O, P33=0). It is readily verified that the 
conditions (6.7) are satisfied when y2>y, .  Such a result is 
explained by the fact that the interference of the phase- 
dependent effects completely suppresses the transition 
12)+13) between the quasienergy states, while the transitions 
1 2 ) ~ ) i )  are forbidden in the dipole approximation. There- 
fore, in the steady-state regime u 1 1 = u 3 3 = 0  and uz2= I ,  and 
this leads to a large population in the second excited atomic 
level. 

We now consider the parameter region determined by 
the conditions (6.5) for I) =O. The conditions (6.5) can hold 
for atomic systems for which y2< y, . In this parameter re- 
gion, W,,  = 0 ,  and, as a consequence, the ground atomic level 
has a very low population, while the populations of both 
excited levels are high. In this case, as follows from (6.1 1 )  
and (6.12), 

where 

Note that S>O for all values of the parameters by virtue 
of the condition (6.5), and therefore there is a population 
inversion between the atomic levels coupled by the two- 
photon excitation: pz2>pll. The maximum of the inversion is 
attained at large offsets from resonance and for Nl + 1 .  In this 
case pll=O, ~ ~ ~ ~ 1 1 2 ,  ~ ~ ~ = 1 / 2 .  In the derivation of these re- 
sults, it was important that interference suppresses the tran- 
sition 13)411) between the quasienergy states, leading, as a 
consequence, to vanishing of the steady-state population: 
al,=O. 

The expressions (6.11) and (6.12) also describe the ordi- 
nary vacuum and for N = N2 = 1 M 1 = 0 are identical to the 
results of Ref. 32 in the present approximation f12S y l ,  y2. 
In this case, we have for all finite values of the parameters q 
the inequalities p11>p22>p33 for y2>yL and pII>pz2, 
p33>pZ2 for y2<yI .  A similar situation also occurs for a 
three-level atom in the step c~nfiguration.~~ 

Figure 4 gives the dependence of the atomic populations 
on the parameter 7 for two regions of their anomalous be- 
havior and, for comparison, for the ordinary vacuum. Note 
also that the anomalous behavior of the populations and the 
inversion of the atomic levels are due to the effects of the 
squeezed vacuum and occur neither in the ordinary vacuum 
nor in a thermal reservoir. 

6.3. Resonance fluorescence 

It is readily seen that for the present system, the contri- 
butions of crossed type to the widths are equal to zero: 
$$=$:A,=O (a$= 1,2,3). This is due to the fact that these 
contributions (3.1 1) and (3.12) are determined by diagonal 
transitions between the quasienergy states, and the latter van- 
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ish due to the fact that the dipole transition Icp 2)41cp1) is 
forbidden. Therefore, the equations for the transition currents 
have the form 

where 

and the transition probabilities are given by (6.4). 
The above results are sufficient to calculate the reso- 

nance fluorescence spectrum in accordance with (5.15) in the 
approximation of nonoverlapping spectral lines. The scheme 
of the calculations is described in Sec. 5.2 and leads to the 
following result for the spectrum:2 

in which the steady-state populations of the quasienergy 
states are 

The spectrum has four peaks at the frequencies of the 
transitions between the quasienergy states (6.3), and is very 
sensitive to the choice of parameters of the squeezed 
vacuum. In particular, it is a consequence of the interference 
effects of the squeezed vacuum that the spectrum becomes a 
single-peak spectrum in the vicinity of the frequency vl 
when 6.6 holds, when W13=0, and, therefore, a22=a33=0, 
a,, = 1, and a single-peak spectrum in the vicinity of v2 when 
(6.7) holds, when W23=0 and, therefore, a l l=u33=0 ,  
a,,= 1. In other parameter regions, the spectrum may have 
three peaks. Thus, if (6.5) holds, yielding W31=0 and there- 
fore all=O, the emission line at v, disappears, and in the 
range of parameter values determined by (6.8), when W3,=0 
and therefore ai2=0, the emission line at v2 vanishes. The 
squeezed-vacuum effects also lead to a change in the spectral 

FIG. 4. Dependence of populations of 
the atomic levels (curves 1 ,  2, 3, respec- 
tively, for p , ,  , p,, , P,,) on the parameter 
7 for the regions of their anonlalous be- 
havior for the following parameter val- 
ues: N , = 9 ,  N2=6, q=10, $=T (a); 
N ,=50 ,  N,=83, q=0.1, $ = 0  (b) and 
for the ordinary vacuum (c). 

widths of the fluorescence lines compared with the ordinary 
vacuum, but they do not decrease below the spontaneous 
widths y,  and y2. 

7. CONCLUSIONS 

The results obtained in this paper show that the transi- 
tions between the quasienergy states of an atomic system in a 
laser field acquire some unusual properties under the influ- 
ence of the field of a squeezed vacuum. A fundamentally new 
circumstance is that the transition probabilities per unit time 
between the quasienergy states contain quantum, phase- 
dependent effects [see the expression (3.7)], by virtue of 
which they can be strongly suppressed compared with the 
ordinary vacuum. These effects have been found for all the 
three nonlinear optical systems considered in the paper [see 
the expressions (4.4), (4.5), (5.11), and (6.4)] and are re- 
flected, in particular, in Fig. 1. They are also manifested in 
the steady-state regime of interaction of the atom in the reso- 
nance fluorescence spectra [expressions (5.19) and (6.17), 
Fig. 41. On the basis of the phase-dependent effects in the 
transition probabilities between the quasienergy states, it is 
easy to understand why the width of the central line of the 
resonance fluorescence spectrum is reduced in a two-level 
atom to a value below the spontaneous width of the atomic 
tran~ition.~ The interference effects in the transition prob- 
abilities [the expressions (6.5)-(6.8)] also lead to anomalous 
behavior of the steady-state populations of the atomic levels 
(Fig. 4). It may be said that we have found a new mechanism 
for occurrence of population inversion of atomic levels based 
on suppression of the probabilities of certain transitions be- 
tween quasienergy states. 
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