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The formation of soliton-like pulses in resonantly absorbing media in the presence of 
nonresonant Kerr nonlinearity is investigated analytically. Under the assumption of coherent 
interaction of the field with two-level atoms, solutions are found in the form of stationary phase- 
modulated pulses. The dependences of the pulse parameters on the form of broadening of 
the resonance line and on the detuning between the carrier frequency and the transition frequency 
are investigated. In contrast to "pure" self-induced transparency, the existence of pulses of a 
stationary shape is possible in a restricted range of powers and durations. A detailed description is 
given of a new mechanism of soliton formation based on mutual compensation of the phase 
self-modulation due to the effect of the Kerr nonlinearity, and the nonlinear resonant dispersion of 
the group velocity due to the interaction of the pulse with resonant atoms. Simultaneous 
interaction of a pulse with resonant and nonresonant nonlinearities can be realized in a single- 
mode optical fiber with resonant ion impurities. To avoid effects due to linear dispersion 
of the group velocity, the pulse carrier frequency must be in the region of zero dispersion of the 
fiber. The results of the theory are applied to a calculation of an experimental scheme of a 
fiber laser for the generation of self-induced transparency solitons proposed by Nakazawa et al., 
for which the conditions listed above are satisfied. It is found that obtaining a stable pulse 
train of solitons is problematic unless there is appreciable modification of the experimental 
arrangement. O 1996 American Institute of Physics. [S 1063-7761(96)00501-41 

1. INTRODUCTION 

The generation of ultrashort light pulses and the study of 
their properties is a rapidly developing field of laser physics. 
We consider the two main mechanisms of formation of opti- 
cal solitons. The attention of scientists is mainly concen- 
trated on investigating solitons of the nonlinear Schrodinger 
equation (NSE solitons) as the main carriers of information 
in fiber-optic communication lines. The soliton formation 
mechanism is based on the mutual compensation of the lin- 
ear dispersion of the group velocity and the nonlinearity of 
the medium due to the nonlinear phase self-modulation of a 
pulse.' 

However, a detailed description of the nonlinear interac- 
tion of optical pulses with matter is severely restricted by the 
requirement that the pulse carrier frequency be far from all 
resonant frequencies of the medium. In the case of strong 
resonant interactions, the response of the medium to an ap- 
plied field is described by Bloch's system of equations.2 In 
the framework of the two-level approximation and for suffi- 
ciently short pulses (pulse duration much shorter than all 
relaxation times), the self-consistent system of Maxwell- 
Bloch equations also has solutions in the form of stable soli- 
tary waves-self-induced transparency  soliton^.',^ The 
mechanism of formation of these solitons differs from the 
NSE mechanism and is associated with coherent absorption 
of photons at the pulse leading edge and their stimulated 
reemission at the trailing edge. A self-induced transparency 
soliton can be obtained in at least two different ways: 

I )  an external source (laser) is used to form an initial 
radiation pulse that, passing through the resonant medium, 

acquires the shape of a self-induced transparency ~ o l i t o n ; ~  
2) a cell with coherent absorber is placed within a laser 

cavity: which for a suitable choice of the conditions can 
itself be a source of self-induced transparency solitons. The 
possibility of using the self-induced transparency effect as a 
mode-locking mechanism in a laser with a coherent absorber 
was established theoretically in Refs. 5-9. A program of ex- 
perimental realization of the generation of self-induced trans- 
parency solitons is described in Ref. 10. 

Undoubted interest attaches to the question of the simul- 
taneous action of both soliton formation mechanisms in a 
field in the form of a short pulse. So far as we know, the 
problem of the propagation of an intense optical pulse in a 
medium with resonant and nonresonant linearities and dis- 
persion of the group velocity was first posed in Ref. 11 and 
then considered in more detail in Ref. 12. In the framework 
of this model, it was found that the existence of soliton so- 
lutions is possible only in the case of exact fulfillment of a 
relationship between the dispersion of the group velocity, the 
coefficient of nonlinearity of the refractive index, and the 
dipole moment of the resonant transition.') This condition is 
too stringent and difficult to implement for the media usually 
employed.'53'6 

A physical situation in which there is simultaneous real- 
ization of the three effects-linear dispersion of the group 
velocity, nonlinearity of the refractive index, and resonant 
nonlinearity--can be modeled by introducing impurities in 
the form of resonant atoms within an optic fiber. In such a 
model, one is justified in considering the possible coexist- 
ence of self-induced transparency solitons and NSE solitons. 
Moreover, the solution of the problem is of interest from two 
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points of view.I2 First, the use of optic fibers as guiding 
system for the self-induced transparency solitons makes it 
possible to avoid the destructive action of diffraction'7918 and 
observe the development of "pure" self-induced transpar- 
ency over appreciable distances: L> 160Lab, where L is the 
length of the medium, and Lab is the absorption length (see 
Ref. 16). Second, some of the pulse energy is irreversibly 
lost during the time of the transition process, going over into 
excitation energy of the medium and then being dissipated in 
the surrounding space by relaxation processes. This makes it 
possible to obtain purer pulses than in the case when the 
mechanism of Schrodinger soliton formation takes place. 

However, we have noted above that the practical realiza- 
tion of the desired NSE solitons and the self-induced trans- 
parency solitons encounters a serious hindrance in the form 
of a stringent condition imposed on the parameters of the 
medium. In order to obtain at least a partial solution to the 
problem and observe the effect of self-induced transparency 
in "pure" form, it was proposed'0916 to suppress Schrijdinger 
soliton formation by shifting the pulse carrier frequency into 
the region of zero dispersion of the waveguide. However, the 
experiments of Refs. 10 and 16 reveal only partial agreement 
with the theory of the effect. In this paper, it will be shown 
that the discrepancies that arise can be attributed to the effect 
of nonresonant nonlinearity on the formation of self-induced 
transparency solitons. That this effect can be important fol- 
lows if only because in the presence of only nonresonant 
nonlinearity stable propagation of pulses of stationary shape 
is impossible. Moreover, we shall show that the competition 
between the resonant and Kerr nonlinearities leads to the 
appearance of critical values of the power and duration of the 
pulse that establish a boundary of the region of existence of 
solutions in the form of solitary waves. 

Thus, we encounter the problem of the simultaneous in- 
teraction of a short pulse of the electromagnetic field with 
two forms of optical nonlinearity of completely different na- 
ture. Such an investigation was undertaken for the first time 
in Refs. 19 and 20 in connection with a study of the proper- 
ties of chirped pulses in the self-induced transparency effect. 
However, the solution of the problem used the assumption 
that the nonresonant nonlinearity was weak, and this strongly 
restricted the applicability of the theory. A theoretical inves- 
tigation free of the assumption that the nonresonant nonlin- 
earity makes a small contribution is presented below. The 
investigation includes the derivation of analytic solutions for 
the envelope of the pulse, its phase, and the components of 
the Bloch vector, which are different from the solutions 
found in Ref. 20. New exact relationships are established 
between the parameters of the soliton-like pulse. The conclu- 
sion of Ref. 20 that pulses of stationary shape can exist even 
in the presence of nonresonant nonlinearity is also modified. 
We show that this is true only for pulses that are not too 
powerful (F '<V i,) and not too short (T >T,,). A conclusion 
of Ref. 20 that remains unchanged is that phase modulation 
of the field is inescapable in the presence of nonlinearity of 
Kerr type. 

In this paper, we not only present new analytic results 
and make a detailed comparison of them with the results of 
Matulic and ~ b e r - 1 ~ ~ '  but also reveal for the first time the 

physical mechanisms of formation of soliton-like pulses in 
the case of simultaneous action of two forms of optical non- 
linearity on the pulse. The stationary pulse shape is main- 
tained by a balance between the phase self-modulation due to 
the action of the Kerr nonlinearity and the nonlinear disper- 
sion of the group velocity induced by the interaction of the 
pulse with the resonant medium. The main difference from 
the NSE mechanism is the nonlinear nature of the dispersion 
of the group velocity and its variability over the region oc- 
cupied by the pulse spectrum. The conclusions of the theory 
are used to explain the results of the experiments of Refs. 10 
and 16. It should be noted in this connection that the param- 
eters of the medium and field in Refs. 10 and 16 were such 
that the perturbation theory of Ref. 20 cannot be applied. We 
show that the experimental scheme for a laser for generating 
self-induced transparency solitons is unsuitable for this pur- 
pose on account of the destructive effect of the Kerr nonlin- 
earity. 

2. STATIONARY PULSES IN A MEDIUM WITH 
HOMOGENEOUS BROADENING 

2.1. Basic equations 

We write down the system of Maxwell-Bloch equations, 
which give a self-consistent description of the interaction of 
a field with resonant atoms. To the right-hand side of the 
wave equation, we add terms that take into account the effect 
of the nonresonant atoms, namely, the dispersion of the 
group velocity and the nonlinearity of the refractive index of 
the medium: 

where u  = ( t -  z / V ) /  7, u = z /LUb,  u=LUh(1/V- l / c ) /  7, 

p=LabIL,, u=LUb/L,,, 6 = A 0 7 ,  and A. is the pulse am- 
plitude. The field and resonant part of the polarization are 
written as 

Here wo is the frequency of the resonant transition; E ( u , v )  
and P ( u , v )  are the complex envelopes of the field and the 
resonant part of the polarization. The functions E ( u , v )  and 
P ( u , v )  contain a phase, and it will be convenient for us to 
avoid writing explicitly the offset between the field fre- 
quency and the frequency of the resonance transition in the 
equation for the polarization, and instead adopt for the phase 
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the initial conditions cp - const, where the constant is 
t+-10 

the offset. In the Bloch equations (2), we have omitted the 
terms responsible for the relaxation of the inversion and the 
polarization, i.e., we consider pulses that are appreciably 
shorter than both relaxation times. The symbol (...) denotes 
averaging over the ensemble of atoms: 

We approximate the line shape by a Gaussian, 

where (T*)-' is the spectral half-width of the inhomoge- 
neously broadened transition. 

In this section, we shall be interested in solutions in the 
form of pulses with spectrum much broader than the non- 
resonantly broadened spectral profile of the absorption (the 
so-called sharp-line limit): <'ST*, i.e., each individual 
atomic transition is accurately tuned to the resonant fre- 
quency oo. Therefore, the characteristic absorption length 
Lab differs from the usual definition by the replacement of 
T* by 7: 

where n is the concentration of the resonant atoms, d is the 
dipole moment, and c is the velocity of the pulse in the 
medium with refractive index ?lo. In writing down (I), we 
have taken into account the dependence of the refractive in- 
dex of the nonresonant medium on the field intensity: 
vnr= vo+ 7 21. The characteristic length over which the Kerr 
nonlinearity develops is determined by the expression 

W f f  
L,, = - 9; 

2 ~ 7 7 2  

where v 2  is the coefficient of nonlinearity of the refractive 
index, Aeff is the effective area of the mode, and 9' is the 
power of the pulse. The dispersion length LD is written as 
follows: 

where k" is the dispersion of the group velocity. 
The existence of conservation laws for the system of 

equations (1)  and (2) greatly simplifies the solution of the 
current problem. In the absence of relaxation of the elements 
of the density matrix, the length of the Bloch vector is con- 
served: 

The exchange of energy between the field and medium takes 
place in accordance with another conservation law: 

Finally, the field and polarization are connected by a third 
conservation law: 

2.2. Solution in the form of a solitary wave 

In what follows, we shall solve the problem under the 
assumption that the dispersion length is large compared with 
La, and L,, and it can be assumed that p-0. Such an ap- 
proximation will be correct if the pulse carrier frequency is 
right at the region of zero dispersion of the optic fiber. When 
dispersion cannot be ignored (p,#O), the problem becomes 
more complicated, and its solution can be found in Refs. 
11-15. We decompose the field and polarization into real 
amplitude and phase parts: 

P(u ,z)  =[p(u)+iq(u)]exp{- i [cp(u) -  Skz]). (12) 

The form of the expressions (11) and (12) means that we 
restrict ourselves to a search for only self-wave solutions of 
Eqs. (1) and (2). Moreover, among these we choose only 
those that vanish at infinity: 

Although solutions in the form of pulses of stationary shape 
are not the only ones among the solitary waves that propa- 
gate without absorption, they can nevertheless be called the 
most fundamental solutions, since in the absolute majority of 
cases the remaining forms of solitary waves evolve to a state 
with conserved shape. (As an exception to this rule, we may 
mention some forms of OT pulses; see Ref. 21.) 

A correction Sk to the propagation constant k arises if 
the pulse carrier frequency is different from the frequency of 
the atomic transition. The value of Sk must be determined 
and expressed in terms of the dispersion relation Sk(Sw), 
where 6w is the offset. Solving Eqs. (1) and (2) and using the 
conservation laws (9) and (lo), we obtain expressions for the 
inversion and components of the polarization as functions of 
the field e(u):  
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In writing down the expressions (13)-(15), we have taken 
into account the fact that the medium is in the unexcited state 
before the arrival of the pulse: 

We use the conservation law (8) and write down a first-order 
differential equation for finding the profile of the envelope 
e(u): 

For very weak fields (e< 1), we obtain exponential growth of 
e(u)  with the rate a .  In accordance with the meaning of the 
self-wave variable u, it is precisely u that determines the 
velocity and duration of the pulse. Therefore, the constant a 
must be set equal to unity. The solution of Eq. (16) can be 
obtained in the form of an explicit function: 

From the field normalization condition max[e(u)]=l,  we 
find a relationship between the parameters b and c: 

Finally, we represent the field envelope in the simplest form 
by shifting the origin u =O to the maximum of the pulse: 

This procedure is valid, since the original system of equa- 
tions possesses translational symmetry with respect to the 
wave coordinate. Thus, we obtain 

In the absence of nonresonant nonlinearity, the parameter c 
is equal to zero. In this case, we are dealing with the self- 
induced transparency effect in a "pure" form, and, as was to 
be expected, the envelope is a hyperbolic secant; see (20). If 
it is assumed that the nonresonant nonlinearity is weak and 
we take into account the parameter v to a power not higher 
than the first?) as was done in Ref. 20 in the framework of 
perturbation theory, then we also obtain an envelope in the 
form e(u)=sech u. The complete identity with the shape of 
the self-induced transparency solitons is explained by the 
fact that the parameter c differs from zero by an amount 2, 
which is ignored in the perturbation theory. 

Because of the nonlinearity of the refractive index, the 
in-phase part of the polarization p (u ) ,  namely, the second 

term in (14), becomes the source of nontrivial phase modu- 
lation (i.e., a modulation that is different from a simple fre- 
quency shift). Substituting the expression (14) and the ex- 
pansion (11) in Eq. (1) for the field, we find 

The first term in (21) does not vanish as u 4 ~  and is the 
frequency offset normalized by the pulse duration. Thus, 
there is a relationship between the correction 6 k  to the wave 
number and the offset 601, i.e., the dispersion relation 

Using (22) and the condition a =  1, we write down for the 
pulse velocity the expression 

It is interesting to note that the pulse velocity is completely 
determined by the mechanism of self-induced transparency 
and is not changed by the presence of nonresonant nonlin- 
earity. The same result was obtained in the framework of 
perturbation theory in Ref. 20. 

Returning to the expression (21), we see that the conclu- 
sion drawn in Ref. 20 of the unavoidability of phase modu- 
lation under the influence of Kerr nonlinearity is correct. 
Phase self-modulation is manifested most radically in the 
relationship between the amplitude and duration of the pulse 
[see (19) and (17)l: 

2.3. The case of exact resonance 

It is readily noted that when the field is tuned to exact 
resonance with the transition (A=O), the relationships be- 
tween the duration of the pulse and its amplitude [see (24)] 
in the theory of "pure" self-induced transparency and in per- 
turbation theory2' are identical, whereas the present theory 
predicts a difference. Figure 1 shows the shape of the pulse 
envelope e(u)  for all three theories for the case A = O  of 
exact resonance. Generally speaking, an expansion in a series 
with respect to the parameter v becomes invalid near reso- 
nance. It can be seen from the expression (24) that for 
v >8lAl / ( l+a2)  the third term exceeds the second, although 
the requirement of internal consistency of perturbation 
theory presupposes the opposite relationship. This contradic- 
tion was not noted in Ref. 20, but it can be eliminated if the 
limits of applicability of perturbation theory are restricted by 
the inequality 

We now make a more detailed investigation of the properties 
of the solution (20) in the case A=O and rewrite Eq. (24) in 
the form 
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FIG. 1. Shape of pulse envelope e ( u ) .  Curve 1 represents the "pure" effect 
of self-induced transparency; the same shape is obtained in perturbation 
theory (for small values of v). Curve 2 gives the exact theory based on the 
combined effect of self-induced transparency and phase self-modulation, 
v=2v9. 

Here and Yo are the normalized power and duration of 
the pulse: 

The physical meaning of FY,, and rcr is explained in Fig. 2. 
In contrast to the self-induced transparency effect in "pure" 
form, a stationary solution in a medium with two types of 
nonlinearity does not exist for all values of the power and 
duration. The critical values 9 i, and rcr are the maximum 
values of the power and the minimum duration for which a 
stationary propagation regime can still be achieved. Analysis 
of the transient processes of establishment of stationary form 
of the field when a pulse enters a medium with arbitrary 
parameters is beyond the scope of the problem considered 
here, although there is undoubted interest in an estimate of 
the extent to which nonresonant nonlinearity affects the 
threshold conditions for the occurrence of a solitary wave 
and the processes of breakup of pulses with area >37r. The 
dashed curve in Fig. 2 is the branch corresponding to the 
unstable solution. This solution does not satisfy the obvious 
asymptotic behavior-in the absence of nonresonant nonlin- 
earity, v-+O, it does not go over into a classical 2 7 ~  pulse. It 
can also be seen from Fig. 2 that for the same value of the 
power the Kerr nonlinearity leads to pulses of shorter dura- 
tion than for the case of "pure" self-induced transparency. In 

FIG. 2. Graph of dependence of the power of a pulse on its duration. Curve 
1 corresponds to the effect of "pure" self-induced transparency: v=0. Curve 
2 takes into account the existence of nonresonant nonlinearity: v f O .  The 
dashed curve is the branch corresponding to the unstable solution. The 
power and duration are normalized in accordance with (26). 

Fig. 1, we show for comparison the shape of the classical 
self-induced transparency solitons and the envelope of the 
soliton-like pulse in the form (20) with the shortest possible 
duration r = rcr at a given level of the power. 

2.4. The case of arbitrary offset 

We now analyze the parameters of the stationary solu- 
tion, taking into account the offset between the pulse carrier 
frequency and the center of the absorption line. We rewrite 
Eq. (24), using the notation introduced in (26): 

The dependence of the power of the pulse on its duration is 
qualitatively the same as for the case of exact resonance. As 
the offset is changed, only the position of the maximum of 
the curve is shifted. The coordinates of the maximum as a 
function of the offset, V imax(A) and .97mi,1(A), can be found 
from the graphs in Fig. 3. If the carrier frequency of the field 
is shifted to the red relative to the resonance, A<0, the maxi- 
mum power of the stationary solution rapidly decreases: 

w 1/A2. 
A+-ca  

and simultaneously there is an increase in the value of the 
minimum duration: 

If the shift of the carrier frequency is toward the violet, A>0, 
then with increasing offset the maximum power increases, 
reaching asymptotically the limiting value 

9''; - 313fi= 1.890; at the same time, the minimum 
A i + m  

duration increases as .Tnl i ,mA.  The asymmetry of the curves 
with respect to the sign of the offset is explained by the 
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difference in the dispersion properties of the nonlinear reso- 
nant medium to the right and left of the transition frequency. 
This will be a subject of discussion in Sec. 4. 

The dependences shown in Fig. 3 confirm the obvious 
conclusion that a stationary solution cannot exist in the pres- 
ence of only nonlinearity of Kerr type. With increasing dis- 
tance from resonance, the effect of the self-induced transpar- 
ency disappears, and the region of existence of solutions in 
the form of solitary waves becomes narrower and narrower. 
However, it should be noted here that as we displace the 
pulse carrier frequency we move away from the point of zero 
dispersion of the fiber, and allowance for the dispersion 
properties of the medium becomes important. Sufficiently far 
from resonance, the soliton formation mechanism acquires a 
different nature and is described by the nonlinear Schro- 
dinger equation. 

To compare the results of the exact theory and perturba- 
tion theory when there is offset between the carrier fre- 
quency and the transition frequency, we examine Fig. 4. It 
shows the dependence of the power of the pulse on the du- 
ration for A= - 1 and A= + 1 for the three theories consid- 
ered. For negative values of the offset, perturbation theory 
gives qualitatively and quantitatively correct results. Large 
discrepancies are observed at positive offsets: perturbation 
theory predicts infinite growth of the power at finite values 
of the duration. This contradiction is eliminated in the exact 
theory. Quite generally, near the singular point 

perturbation theory is invalid, as we noted above. 
Besides the concepts of critical power and critical dura- 

tion (26), it is helpful to introduce the concept of the maxi- 
mum dimensionless parameter v,,,, which, if exceeded, 
would signify breakdown of the stationary propagation re- 
gime. Introducing the quantity 

for the case of exact resonance, we can write down an ex- 
pression for v,,,,, as a function of the offset: 

In the case of exact resonance, vlll,= vc,=2,/2. 
Figure 5 shows the dependence vll,,,(A). It explains the 

proximity of the curves for the exact theory and perturbation 

FIG. 3 .  Maximum power (a) 'and minimum 
duration ( b )  o f  the stationary solution (in the 
presence o f  Kerr nonlinearity) as a function 
o f  the offset. For positive values o f  the o f f -  
set, the 97 i , , (A)  tends asymptotically to the 
value 1.89. 

theory when A= - 1 and their strong difference when A= + 1 
(see Fig. 4). We see that for the same absolute magnitude of 
the offset, the greatest possible value of the parameter v dif- 
fers strongly depending on the sign of the offset: for positive 
values of the offset, v can take values so large than they are 
outside the limit of applicability of perturbation theory; in 
the case of negative offset, the maximum possible values of 
v are much less, and perturbation theory gives satisfactory 
results. 

It should be noted that the condition v <v,, is neces- 
sary but not sufficient for the existence of self-induced trans- 
parency solitons. Sufficiency is ensured by the simultaneous 
fulfillment of two inequalities: r >Tmi,, , %"<%'Lax. 

All the comparisons and discussions presented above 
were basically concerned with pulses having a power close 
to the maximum value, when the Kerr nonlinearity has a 
strong effect on the pulse dynamics. If the pulse is weak, the 

FIG. 4. Dependence o f  pulse power on duration for two values o f  the offset: 
A=? I .  Curve I gives the effect o f  the "pure" self-induced transparency, 
v=0. Curves 2 and 3 correspond to perturbation theory for A=+ I and 
A=-  I ,  respectively. Curves 4 and 5 give the result o f  the exact theory for 
A= + I and A= - I ,  respectively. The vertical line passes through the singu- 
lar point .To- 1.78 and is an asymptote for curve 2. The power and duration 
are normalized in accordance with (26). 
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FIG. 5 .  Dependence o f  the dimensionless parameter v,,, on the dimension- 
less offset A. 

effect of the Kerr nonlinearity is slight, and the results of all 
three theories-the exact theory, perturbation theory, and the 
theory of self-induced transparency-agree. This corre- 
sponds to the asymptotic merging of the curves in Figs. 2  and 
4  in the limit Y o p m .  

3. PULSES IN A MEDIUM WITH INHOMOGENEOUS 
BROADENING 

We consider the different limiting case in which the in- 
homogeneously broadened line of the resonance transition is 
appreciably broader than the pulse spectrum: (T*) - la? ' .  
At the same time, the definition of the absorption length is 
changed: 

It is no longer possible to find a solution of the system 
(1)-(2)  for v f  0  in analytic form. In the limit v+O, we are 
dealing with the "pure" effect of self-induced transparency, 
and the solution of this problem is a pulse without phase 
modulation with envelope in the form sech u  (Ref. 4) ,  and 
the solution can be found by representing the polarization in 
factorized form: q ( A f l , u ) = F ( A O ) q ( u ) .  However, the 
presence of nonresonant nonlinearity leads to the occurrence 
of phase modulation, and polarization expressed in factor- 
ized form is no longer a solution of the problem. In such a 
situation, it is sensible to seek an approximate solution by 
representing the population difference as a power series in 
the field amplitude. This method was developed in Ref. 22 in 
an application to the problem of the propagation of ultrashort 
pulses in an absorber without the use of the approximation of 
slowly varying phases and amplitudes, and it was general- 

ized to the case of arbitrary offsets in Ref. 23. To simplify 
the exposition, we shall assume that the field is tuned to 
exact resonance with the medium, i.e., 

Solving Eqs. (1) and (2 ) ,  we can readily obtain an ex- 
pression for the phase of the field: 

It can be seen from Eq. (30) that if we know the func- 
tional dependence N = N ( A 0  , e ) ,  we can determine + ( e )  
and reduce the problem to the solution of a second-order 
nonlinear differential equation for the field e ( u ) .  We repre- 
sent N ( A 0 , e )  as an expansion in powers of the field inten- 
sity: 

From Eqs. (2 )  there follows an analogous expansion for the 
absorption part of the polarization q ( A f l , e ) :  

For the purposes of this paper, it is sufficient to consider 
the first two terms of the series n=0,1, .... Substituting (31) 
into (30),  we obtain the required expression for the phase 
+ ( e )  of the field as a function of the amplitude: 

3 v  I 
( e )  [ - - - + - ( A f l r f 2 ( A f l ) ) ] e 2 .  4 0  4  

The expansion (32) and Eq. ( 1 )  for the field are compat- 
ible only under the condition that all the spectral response 
functions beginning with n = 1 are odd: 

Substituting (33) and (11) into (1) and using the condition 
(34),  we find 

Similarly, we obtain an expression for ( A R r p ( A i R , u ) ) :  

(anrpp(an,~))=~a[((anr~2fo(an))e 
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Using (31)-(36), we write down the final equation for the 
field amplitude: 

l v l  
2 =  - 16 [-- u - 3 ( a n T f 2 ( a n ) ) )  

9(AOrf2(AO))I5+ v l u  
X 

(fo(AO)) 

It is remarkable that in the derivation of Eq. (37) we have not 
made any additional approximations besides (31), and in the 
limit T <T* Eq. (37) goes over exactly into Eq. (16) with the 
same coefficients: 

a = & ,  b=$ ,  c = ?  for T GT*. 

It should also be mentioned that retention of the following 
terns in the expansion (31) leads merely to an increase in the 
degree of the polynomial on the right-hand side of (37), and 
the solution can again be found, at least by quadratures. 

To obtain a solution in closed form, it is necessary to 
know the values of the spectral response functions fo(AO) 
and f2(A0) averaged with a weight over the inhomoge- 
neously broadened profile. The detailed procedure for finding 
these quantities is described in the Appendix. We use the 
results obtained in the Appendix, having calculated all the 
necessary integrals in the limit of a broad absorption line, 
7 S-T*: 

Then the expressions for a^,$,? simplify to 

Using the normalization condition (19) and making the 
substitutions b l $  and c+E, we write down an equation 
that relates the power and duration of the pulse: 

We have here introduced the dimensionless parameter . T i n  
accordance with 

The time ?,, is the minimum pulse duration, below which the 
stationary propagation regime is impossible. An upper limit 
of the pulse power can be determined similarly: 

FIG. 6. Dependence of the power of a pulse on its duration for a medium 
with inhomogeneously broadened absorption line. Curve I corresponds to 
the effect of "pure" self-induced transparency. Curve 2 takes into account 
the presence of nonresonant nonlinearity: v f O .  Instead of the power, the 
ordinate gives the dimensionless parameter v, which is proportional to the 
power. 

The nature of the dependence of the power of the pulse on its 
duration is illustrated by Fig. 6, where for convenience of 
subsequent analysis we have plotted along the ordinate not 
the pulse power 933; but the dimensionless parameter v pro- 
portional to it; in fact v= ~ w / & ~ ,  and, therefore, max 
v= fi. The qualitative nature of the dependence in Fig. 6 is 
the same as in the case of a homogeneously broadened ab- 
sorption line-the curve has a discontinuity. However, 
whereas for a homogeneously broadened line allowance for 
phase self-modulation leads to pulses of a shorter duration 
than for the "pure" effect of self-induced transparency at the 
same pulse power, for the inhomogeneously broadened line 
the situation is reversed-the phase self-modulation leads to 
an increase in the duration. 

4. MECHANISMS OF FORMATION OF SOLITON-LIKE 
PULSES 

In the above, we have considered in detail the problem 
that takes into account the joint effect of phase self- 
modulation and self-induced transparency on the process of 
pulse formation. The very possibility of stationary pulses 
presupposes the existence of a mechanism that compensates 
the effect of the phase self-modulation. We show that for a 
medium with a homogeneously broadened line, compensa- 
tion is achieved by the nonlinear resonant dispersion of the 
group velocity that arises under the influence of self-induced 
transparency. For an inhomogeneously broadened line, com- 
pensation is achieved by the dispersion of the group velocity 
induced by the pulse in the resonant medium by means of the 
Ken- nonlinearity. In this section, on the basis of an analysis 
of the competition between phase self-modulation, self- 

53 JETP 82 (I), January 1996 V. V. Kozlov and E. E. Fradkin 53 



k", rel. units 

and, using (21), we find 

FIG. 7. Nonlinear resonant dispersion of the group velocity for a homoge- 
neously broadened absorption line (curve I) and for an inhomogeneously 
broadened absorption line (curve 2) as a function of the normalized offset A. 
The letters A and B indicate the positions of local minima of the dispersion. 
The scale of the ordinate is arbitrary. 

induced transparency, and nonlinear dispersion of the group 
velocity, we explain the main features detected: the nature of 
the phase modulation of the pulse, the reasons for the exist- 
ence of critical values of the power and pulse duration, the 
asymmetric dependence of the pulse parameters on the sign 
of the offset, etc. 

We consider a medium with a homogeneously broadened 
line, making the assumption that the pulse carrier frequency 
is near resonance. The dependence of the refractive index on 
the intensity for v2>0  (the inequality is valid for the major- 
ity of media employed) leads to a displacement of the "red" 
frequencies in the spectrum of the field to the leading edge of 
the pulse and to a corresponding displacement of the "blue" 
frequencies to its trailing edge. The resulting asymmetry can 
be compensated by the anomalous dispersion of the group 
velocity, $kldw2<0, which forces the "blue" components to 
move faster than the "red" ones, and, thus makes the pulse 
narrower with time. The graph of the resonant dispersion of 
the group velocity obtained for pure self-induced transpar- 
ency is shown in Fig. 7 (curve I). It completely mimics the 
dependence of the linear dispersion of the group velocity on 
the frequency for a homogeneously broadened absorption 
line, except that the homogeneous lifetime T2 is replaced 
here by the pulse duration 7. It can be seen from Fig. 7 that 
the best conditions for pulse propagation, i.e., min(d 2kldw2), 
are created to the left of the resonance in the immediate 
vicinity of the center of the line, A=-0.4 (point A in Fig. 7). 
At the same time, it may appear that the dependence in Fig. 
5 contradicts the assertion we have made, since the "trans- 
mission maximum" (i.e., max v, see Fig. 5) is at a "blue" 
shift, A=+0.7, i.e., it lies in the region of large values of the 
normal dispersion of the group velocity. In fact, there is no 
contradiction: the true pulse carrier frequency is determined 
by the expression 

In the expression (45), we have identified two components of 
the offset-the components that depend and do not depend 
on the magnitude of the Kerr nonlinearity; w is the pulse 
carrier frequency in the absence of the Kerr nonlinearity. 
Substituting the values of v,,,,, and A(v,,,,) into (45), we find 
that in reality a "transmission maximum" is found for pulses 
with mean carrier frequency w, that is shifted to the "red" 
and is in immediate proximity to the maximum of the 
anomalous dispersion (point A in Fig. 7). The fact that w,, 
and the coordinate of the point A do not exactly coincide is 
explained by the asymmetry of the dispersion curve near the 
point A and incomplete allowance for the dispersion proper- 
ties of the medium, since phase self-modulation makes an 
additional contribution to the in-phase nonlinear (in the field) 
part of the polarization p (u ) ,  which we have ignored in our 
simplified interpretation. 

It can be asserted that by virtue of the effective compres- 
sion of the pulse due to the dispersion of the group velocity, 
it has a shorter duration than a 27r pulse in "pure" self- 
induced transparency (see Fig. 1). Perfect compensation of 
the phase self-modulation by the resonant dispersion of the 
group velocity for a pulse of stationary shape is confirmed by 
the absence of a linear chirp in the expression for the phase 
q(u)  [see (21)] when it is expanded in powers of u near the 
maximum of the field: 

and from (21) we find d2q ld~21 ,=o=0 .  The lack of a linear 
chirp in the phase-modulated pulse has the consequence that 
it cannot be compressed in time when transmitted through an 
ordinary dispersion delay line-a fiber with quadratic disper- 
sion or a diffraction grating. On the other hand, the noncon- 
stancy of the resonant dispersion of the group velocity is the 
reason for the occurrence of time aberrations, i.e., the exist- 
ence of superlinear chirps in the expansion (46). 

Partial compensation of the aberrations, for example, 
quenching of the quadratic chirp, is possible if a combined 
grating-prism compressor is used24 (see also Refs. 25 and 
26). Simultaneously, an appreciable shortening of the pulse 
duration can be achieved. 

Far from resonance (IAI% I),  the behavior of the disper- 
sion curve differs qualitatively depending on the sign of the 
offset. Thus, a pulse with carrier frequency shifted to the 
"red" ( A e -  1) enters the region of normal dispersion, and 
compensation of the phase self-modulation becomes very 
problematic. Figure 3 illustrates the rapid narrowing of the 
region of stability of stationary pulses: the critical power 
decreases as the square of the offset, and the critical duration 
increases linearly with increasing offset. Substituting 
v = v,,,,,(A) for A<. - 1 in the expression (45), we obtain 
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It can be seen from (47) that there is a tendency for the 
frequency to be pushed into the region of minimum values of 
the normal dispersion, i.e., to the "red." Simultaneously, the 
phase modulation is "quenched," and this leads to a narrow- 
ing of the pulse spectrum, and thus to a decrease in the 
efficiency of the dispersion spreading in the region of normal 
dispersion. 

If the pulse carrier frequency is shifted far to the "blue" 
(A*l), the form of the solution is radically changed. With 
increasing offset, the critical power increases, reaching as- 
ymptotically the maximum value (see Fig. 3); the critical 
duration increases as in the case of a "red" shift, but at a rate 
that is lower by a factor 3fi. The fact that the domain of 
existence of solutions is appreciably broader than in the left- 
hand wing of the absorption line is explained by the reversal 
of the sign of the dispersion (see Fig. 7). Substituting 
v=v,,,,(A) for A S  I in the expression (45), we obtain 

i.e., there is again a tendency for the pulse carrier frequency 
to be pushed into the region of min(J2kldw2), in the given 
case to the point B in Fig. 7. In addition, in the case of 
motion in the direction of higher frequencies the phase 
modulation increases, this being explained by the need for a 
broadening of the pulse spectrum in order to increase the 
efficiency of dispersive compression. 

The mechanism of pulse formation described above can 
be compared with the NSE mechanism. In both, the region of 
normal dispersion is unsuitable for the existence of solutions 
in the form of pulses, whereas in the region of anomalous 
dispersion the process of soliton formation is maintained. 
However, a qualitative difference of the resonance mecha- 
nism is associated with the nonlinear origin of the dispersion 
of the group velocity and with the strongly nonmonotonic 
variation of its magnitude through the region occupied by the 
pulse spectrum, whereas in the NSE model the dispersion of 
the group velocity is assumed to be constant. This difference 
is manifested in the phase modulation of the pulse and in the 
tendency for the frequency to be pulled in the direction of 
min(d 2kldw2). 

We note one further difference of the resonance mecha- 
nism of soliton formation from the NSE mechanism-the 
critical values of the power and pulse duration. In the first 
place, this difference is due to the slow growth of the non- 
linear resonant dispersion of the group velocity with decreas- 
ing duration (~7 ' ) .  At the same time, the phase self- 
modulation increases in proportion to the instantaneous 
intensity, and this, by virtue of the relation ( ~ ~ 7 - ) ~ = 4 ,  which 
holds for a classical 2rr pulse, corresponds to a growth x f 2  

of the phase self-modulation. Thus, the existence of the criti- 
cal values of the power and duration of the pulse is associ- 
ated with the dominant role of the regime of self-induced 
transparency, which requires conservation of the area under 
the envelope near a value equal to 2rr. 

If the absorption line is inhomogeneously broadened, the 
mechanism of soliton formation is different from the one 
described above-the nonlinear dispersion of the group ve- 
locity is due in a resonant medium to the nonlinearity of the 
refractive index and not to self-induced transparency. In the 
limit of a broad line (7 -9T*)  in the regime of self-induced 
transparency, each atom separately is the source of the in- 
phase part of the polarization p(Afl), but since the vibrations 
of the atoms on opposite sides of the central frequency are 
added out of phase, the total contribution from all atoms of 
the medium, (p(Afl)), is zero. Therefore, the refractive index 
under the absorption profile does not change, and therefore 
the magnitude of the nonlinear resonant dispersion of the 
group velocity due to self-induced transparency is constant 
and numerically equal to zero. From this, we conclude that 
self-induced transparency and the dispersion associated with 
it cannot lead to compensation of phase self-modulation in 
the case of an inhomogeneously broadened line. 

Inclusion of nonlinearity of the refractive index leads to 
the appearance of phase self-modulation. Phase self- 
modulation can be compensated by anomalous dispersion of 
the group velocity, which in the given case can also be inter- 
preted as nonlinearity of the refractive index. 

To show this, we use (33) for the phase and Eq. (39) to 
obtain the dispersion relation 

v 2 
Ak(t,z)= - -= - - e ( u ) ,  

dz V7- 

which takes the usual form of the dependence Ak(w) after a 
Fourier transformation: 

The behavior of Ak(w) is shown in Fig. 7. Maxima of the 
anomalous dispersion are situated symmetrically on both 
sides of the pulse carrier frequency wo. It is readily seen that 
with increasing pulse power, the depth of the maximum of 
the anomalous dispersion and its position relative to the cen- 
tral frequency increase approximately linearly. The mean 
carrier frequency w,, is determined in accordance with the 
expression [see (44)] 

for w = wo , 

from which it can be seen that there is a quadratic growth of 
the offset with increasing pulse power. Thus, the velocity of 
the pulse carrier frequency appreciably exceeds the velocity 
of the maxima of the anomalous dispersion of the group 
velocity, and this leads to the impossibility of mutual com- 
pensation of the phase self-modulation and the dispersion of 
the group velocity at high power. This mechanism is respon- 
sible for the existence of critical values of the power and 
duration of a stationary pulse propagating in a medium with 
an inhomogeneously broadened line. 

We have restricted ourselves to the approximation of a 
maximally broad line, and therefore the pulse parameters are 
insensitive to the offset of the carrier frequency of the field 
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from the line center. However, as soon as the pulse spectrum 
reaches the edge of the inhomogeneously broadened absorp- 
tion profile, the nonlinear dispersion induced by the self- 
induced transparency becomes nonvanishing and leads to a 
change in the critical values of the pulse power and duration. 
At even larger offsets, the nature of the broadening becomes 
unimportant, and then the results of the theory for a homo- 
geneously broadened line are valid. 

We emphasize once more that the nature of the disper- 
sion of the group velocity is different for the two considered 
forms of broadening. In the case of a homogeneously broad- 
ened line, nonlinear dispersion is induced by a pulse in the 
resonant medium and does not depend on the existence of 
nonresonant impurities; its maximum value is determined by 
the concentration of the absorbing atoms. For a maximally 
broad inhomogeneously broadened line, dispersion also 
arises through the nonlinear interaction of a pulse with the 
resonant atoms, but now its value is directly proportional to 
the magnitude of the Kerr nonlinearity and is equal to zero in 
a purely resonant medium. 

5. COMPARISON OF THEORY AND EXPERIMENT 

We now consider in more detail an analysis of experi- 
mental data on the propagation of self-induced transparency 
solitons in optical fibersI6 and experiments on the generation 
of self-induced transparency  soliton^.'^ Using realistic values 
of the physical parameters, we show that the effect of Kerr 
nonlinearity on the formation of a self-induced transparency 
soliton in fibers doped with ions of rare-earth elements may 
lead to an appreciable modification in the shape of the pulse, 
and even to its destruction. 

5.1. Experiments on the propagation of pulses of self- 
induced transparency 

In experiments on the propagation of self-induced trans- 
parency so~i tons , '~  the pulse source was an erbium glass la- 
ser giving pulses of duration T -200-300 ps. A Pockels cell 
was used to isolate a single pulse. The wavelength 1.534 p m  
coincided with the point of zero dispersion of the erbium 
fiber, into which the initial pulse from the laser was directed. 
A special cryogenic system was used to cool the fiber to 4.2 
K in order to increase the homogeneous lifetime T2 from I 
ps to 10 ns. Thus, coherence of the interaction of the input 
pulse with the erbium fiber was ensured. For the precise 
details of the experiment, a description of the detection sys- 
tem, etc., we refer to the study itself.16 We merely mention 
that the authors investigated the propagation of pulses in 
lines satisfying a,,,L=41.2, 82.4, 165 (a,,, is the linear ab- 
sorption coefficient:) and L= 1.5, 3, 6 m are the lengths of 
the fiber sections) and reliably observed the breakup of 
pulses of area 371<B <571 into a pair of 271 pulses. A four- 
fold narrowing of the pulses was observed, and in a number 
of cases this was accompanied by a simultaneous increase in 
the intensity. The authors of Ref. 16 analyzed the delay of 
the pulses at the output and showed that there was agreement 
with the predictions of the theory of self-induced transpar- 
ency. 

Following the aims of the present paper, we shift the 
emphasis of the experiments of Ref. 16 to the detection of 

nonresonance effects. The experimental conditions, 
T*=0.073 p s e r  -300 ps4T2= 10 ns, do not correspond to 
the theoretical model of propagation of pulses in an inhomo- 
geneously broadened absorber. Using the expressions (42) 
and (43), we calculate the critical values of the power and 
duration: 

@"j',,=63.6 kW, <,= 16.4 ps. (49) 

We have here used data of the experiment of Ref. 16: 
d = 1 . 6 . 1 0 - ~ ~  C.m, I =  1.53. lop6 m, v2=3.2.  m2/w, 
aab=27.5 m-I, and D = m is the diameter of the core. In 
Ref. 16, the power of a 271 pulse of duration rsit=280 ps was 
calculated: 5V it= 107 W. Both of these values, rsit and 9 i i t ,  
are far from the critical values, and the stationary regime of 
propagation can be treated from the point of view of pure 
self-induced transparency. The nonlinear length in this case 
is L,,=5.6 m, and the parameter v is small: v=6.5. lop3. 

In the experiment, a narrowing of the pulses by almost 
four times was observed during the nonstationary transfor- 
mations. Under these conditions, one must expect an appre- 
ciable increase in intensity (by a factor of about 16, but be- 
cause of the loss in the fiber this number is somewhat less). 
Nevertheless, these values remain an order of magnitude less 
than the critical values, and nonresonance effects do not play 
a significant role. However, it was specially noted in Ref. 16 
that for input power 300 W, a pulse of indefinite shape was 
detected at the output of a 6-m segment of waveguide (see 
Fig. 3f in Ref. 16). Estimating the nonlinear length for this 
value of the power as L,, = 1.99 m, we see that over a length 
of 6 m appreciable nonresonance effects can accumulate. 
More detailed conclusions cannot be presented, since the 
theory we have developed describes only the stationary re- 
gime of propagation. 

5.2 Experiments on the generation of self-induced 
transparency pulses 

The results of the theory can be applied with a high 
degree of certainty and accuracy to the description of the 
experiments on the generation of self-induced transparency 
solitons in Ref. 10. The point is that obtaining stable self- 
induced transparency pulses by means of mode locking pre- 
supposes the reproduction of a pulse of stationary shape in 
each passage through the cavity, and we can argue in terms 
of a stationary propagation regime. The conclusions obtained 
in the present paper for the propagation regime are valid for 
generalization to the regime of pulse generation within a 
cavity if a unidirectional ring laser with small transmission 
losses is used, and if the pulse length is much shorter than 
the cavity length. This last condition is satisfied when a large 
number of modes participate in the generation. These condi- 
tions were satisfied in the experiments of Ref. 10. 

We briefly describe the design of the experiment. The 
unidirectional ring laser consists of two main parts: a 100-m 
segment of erbium fiber is pumped at room temperature by a 
titanium-sapphire laser (0.98 pm) and serves as an amplify- 
ing medium; a 3-m segment of erbium fiber, cooled to 4.2 K, 
is used as a coherent intracavity absorber. In order to obtain 
lasing at the resonant wavelength 1.53 pm,  an optical filter 
of 1 nm bandwidth is placed within the cavity. The homoge- 

56 JETP 82 (I), January 1996 V. V. Kozlov and E. E. Fradkin 56 



neous lifetimes of the amplifier (T,,q=l ps) and absorber 
(T2,>=10 ns) make it possible to ensure coherent interaction 
of the pulse with the absorber if the pump power is suffi- 
ciently high for the pulse to have a duration shorter than T2,,. 
Under such conditions, one can expect the formation of a 2rr 
pulse of self-induced transparency within the cavity. How- 
ever, as theoretical calculations this does not al- 
ways occur. We consider the main points. 

To obtain stable mode locking, it is necessary to create 
conditions that suppress amplification of weak fluctuations of 
the field in the part of the cavity in which there is no pulse at 
the given time, i.e., the laser must actually be below the 
threshold for the occurrence of cw lasing. At the same time, 
generation of pulses with duration less than T2p can be real- 
ized under these conditions, since they are subject to weak 
absorption and for them the total gain in the cavity is posi- 
tive. We conclude that the concentration of absorbing atoms 
must be above a certain minimum value Nmi, for the weak- 
field gain of the cavity to be less than zero. On the other 
hand, no matter how small the losses of the pulse due to the 
finite value of T2,, they impose an upper limit on the con- 
centration of the absorber, above which stable mode locking 
is disrupted, because losses predominate over the gain for a 
field in the form of a 2rr pulse. Thus, stable generation of 
pulses of self-induced transparency is possible at absorber 
concentrations in the range N,,< N< N,, . Omitting the de- 
tails (which can be found in Ref. 9), we note that the ab- 
sorber concentration in the experiments of Ref. 10 lies in this 
range, and therefore the condition of stability is satisfied. 

Preliminary estimates show the possibility of achieving 
stable generation of self-induced transparency pulses. To ob- 
tain pulses of duration 280 ps, the peak power is 107 W, and 
for a laser of length 135 m (pulse repetition rate 1.53 MHz) 
the mean power level is accordingly 80 mW, see Ref. 10. As 
the authors of Ref. 10 varied the pump power from 70 mW 
to 170 mW, they observed a transition from a Q-switched 
regime to a mode-locking regime. The achieved minimum 
pulse width of 12-17 ns was still greater than T2p, corre- 
sponding to a predominance of saturated absorption and not 
coherent effects during pulse formation. No experiments 
were carried out at higher pump powers, and the regime of 
generation of 2rr pulses was not reached. Using the results of 
the present theory, we now assess the possibility of obtaining 
self-induced transparency solitons in the experimental 
scheme proposed in Ref. 10. 

Above all, we note that the amplifier line is much 
broader than the pulse spectrum, and the role of the active 
medium reduces to compensation of the linear losses in the 
cavity and the incoherent losses in the absorber.' The main 
role in the formation of the field profile is played by the 
coherent absorber. The validity of such a model of the role of 
the amplifying and absorbing media is proved in Refs. 7 and 
8. Thus, assuming that the density of the intracavity field is 
entirely sufficient to maintain the regime of stationary gen- 
eration of 2rr pulses, we can reduce the problem of genera- 
tion of self-induced transparency solitons in a fiber laser to 
the problem of pulse propagation in a lossless, coherent reso- 
nant nonlinear waveguide. The role of the phase self- 
modulation that arises because of the dependence of the re- 

fractive index of the optical fiber on the intensity in the 
formation of a self-induced transparency soliton can be elu- 
cidated by comparing the nonlinear length L,, and the ab- 
sorption length Luh.  The procedure for calculating them is 
different from the one given above in the discussion of the 
experiments of Ref. 16. During a round trip through the cav- 
ity, the pulse passes through two segments of the waveguide 
doped with erbium ions of total length 103 m. At the same 
time, for the given range of durations, the Kerr nonlinearity 
is instantaneous, and during the time of a round trip of 660 
ns is restored to its original value. For rsit=280 ps and 
9' iit= 107 W, we calculate the nonlinear length divided by 
unit length of the cavity: 

The segment of the 3-m erbium waveguide cooled to 4.2 K 
and used as absorber is characterized by a non-instantaneous 
response. The spontaneous relaxation time of the absorber 
(T,=IO ms) is long compared with the round trip time 
through the cavity (TR=660 ns). Under these conditions, the 
difference between the absorber occupancies that arises from 
the energy deposited by the passing pulse does not have suf- 
ficient time to relax to its equilibrium value before the arrival 
of the next pulse. Thus, the absorption coefficient of a weak 
field within the cavity will decrease until it reaches a new 
value (aoh),,, . In the stationary regime, the pulse encounters 
the same steady value of the absorption coefficient ((Y,~),~,  
after each round trip through the cavity. The value of (aob),,, 
must be determined, and depends on the incoherent losses of 
the pulse during one trip and the number of pulses that pass 
through the absorber during time T I .  In the absence of the 
field, the equilibrium value of the absorption coefficient is 
established in accordance with 

where a,, is the unsaturated absorption coefficient, and 
aUb(t  '0) is the absorption coefficient immediately after a 
pulse has passed. Therefore, having made a round trip 
through the cavity, the pulse encounters an absorption coef- 
ficient (auh)sat determined by 

The equation for aab(t = TR) is 

where AN is the change in the population difference (which 
is assumed normalized to unity) produced by the energy de- 
posited by the pulse in the medium. Assuming steady-state 
generation a u b ( t  = 0)  = aub(r  = TR), we find the required 
value of the saturated absorption coefficient: 

("b)sat="b 1 + exp(Tn/TI)-  1 ,35 m. I A N  I-' = (53) 
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The value of the saturated absorption coefficient is calculated 
for unit length of the cavity; for this reason, the correction 
factor on the right-hand side is introduced. 

Despite the fact that the pulse duration is much shorter 
than the phase memory time T,, of the medium, the ratio 
r/T2,, remains finite. Therefore, the propagation of the pulse 
in the absorber is accompanied by irreversible transfer of 
field energy to the medium, and the absorber remains in the 
excited state after the pulse has passed. Knowing the absorp- 
tion coefficient of the pulse energy, we can calculate the 
population difference  AN.^) 

In Ref. 4, a law of damping of the energy of a pulse of 
duration T <T2,, is derived; under the assumption T2,<T, , 
it has the form 

For an absorber with a broad inhomogeneously broadened 
line (T %T*), (54) simplifies to 

Thus, we have found the relative change in the difference of 
the absorber populations that results from the energy depos- 
ited by the pulse after it has passed: 

No matter how low the excitation level of the medium, it 
plays an important role in the dynamics of generation in 
lasers with solid-state absorber, since the absorbing medium 
is saturated after TlITR passes through the cavity, and the 
total energy of saturation may be appreciable. 

We obtain the final expression for the absorption length 
in the cavity by substituting the derived value of AN into 
(53): 

In addition to the derivation given above, we note that in the 
regime of self-induced transparency, the pulse may be appre- 
ciably delayed in the absorber. In the calculations, we have 
not taken into account the increase in the time of passage 
through the cavity that arises from this, since for the experi- 
mental scheme considered, this correction is small (less than 
1% of T,). 

By means of (57), we calculate the intracavity absorp- 
tion length, (L,,,,),,,=472 m. For a laser with coherent ab- 
sorber, the parameter v has the value v=64.3, which is ap- 
preciably greater than the critical value v=4 for an absorber 
with an inhomogeneously broadened line. We arrive at an 
important conclusion: it is necessary to change the experi- 
mental design used in Ref. 10 in order to generate a train of 
self-induced transparency solitons. We do not give specific 

prescriptions for the modification, believing that all the nec- 
essary information regarding this can be extracted from the 
computational scheme presented above. 

6. CONCLUSIONS 

In this paper, we have obtained analytically a steady so- 
lution in the form of a stationary phase-modulated pulse 
propagating in a medium with resonant and nonresonant 
nonlinearities. We have found the conditions for the exist- 
ence of such a solution and have investigated in detail the 
dependences of the pulse parameters on the properties of the 
propagation medium: the form of broadening of the resonant 
transition, the offset between the pulse carrier frequency and 
the transition frequency, and the relative importance of the 
resonant and nonresonant nonlinearities. As one of the main 
conclusions of the paper, we can identify the calculation of 
the critical values of the pulse power and duration that bound 
the region of existence of soliton-like pulses. This is a fea- 
ture that has no analog in pure self-induced transparency. In 
a real physics experiment, the present model corresponds to 
propagation of an ultrashort optical pulse in a single-mode 
fiber doped with resonant impurities under the condition that 
the pulse carrier frequency is in the neighborhood of the 
point of zero dispersion of the fiber. The results of the theory 
are applied to the discussion of experiments on the propaga- 
tion and generation of self-induced transparency  soliton^,^^,'^ 
and we have shown that in a laser the effect of absorber 
saturation due to incoherent losses of the field and the non- 
instantaneous nature of the spontaneous relaxation processes 
may lead to an appreciable growth in importance of the non- 
resonant nonlinearity and, as a consequence, to termination 
of the soliton generation regime. In particular, the theory 
predicts the impossibility of generating self-induced trans- 
parency solitons if the geometry of the experiments of Ref. 
10 is used. 

Immediately before this paper was sent to the editors, the 
authors found the abstract of the paper of Chi and Barone in 
Bull. Phys. Soc. Amer. 16, 71 (1971). Unfortunately, we 
were not able to find published results of the investigation. 
Judging from the text of the abstract, the report contained a 
solution to a problem similar to the one that we have consid- 
ered in Sec. 2 of the present paper. Being unable to compare 
the results of the two theories, we have presented in Sec. 2 
the complete solution of the problem and we apologize in 
advance to Chi and Barone for a possible duplication of 
some details. 
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APPENDIX. SPECTRAL RESPONSE FUNCTION f2(ACk) 

Using (31), (32), and (33), we find the expression for the 
dispersive part of the polarization: 

We substitute (Al), (31), (32), and (33) into the equation for 
the polarization (2) and obtain a nonlinear second-order dif- 
ferential equation for the field e(u): 

In the expansions (31) and (32), we have restricted ourselves 
to the first two terms of the series, and therefore in the 
adopted approximation it will be correct to seek an expres- 
sion for the spectral response function under the assumption 
that the field has the shape of a 27r pulse: 

e=sech u ,  6 = 2 .  (A3) 

Substituting (A3) in (A2) and equating the coefficients of e ,  
we obtain for the spectral response function fo(Afl) the ex- 
pression 

In deriving (A4), we have used the normalization condition 

max[ fo(Afl)] = 1. 

Similarly, we equate the coefficients of e3: 

('45) 
Finally, we find an expression for the spectral response func- 
tion f2(Afl): 

Note that the form of the expression (A6) agrees with the 
requirement that the function f2(Afl) must be odd with re- 
spect to Afl. 

')The more detailed investigations of Refs. 13 and 14 showed that there is an 
entire set of conditions for the three listed parameters of the medium for 
which the existence of stable solutions in the form of 2-hump, 3-hump, 
etc., pulses is possible. 

')ln this section, when speaking of perturbation theo~y, we mean precisely 
this condition. 

3)The relationship between the absorption coefficient and the absorption 
length is given by a,,= IIL,,; by Lob we mean the absorption length 
introduced in accordance with (29). 

4 ) ~ o  take the damping of the field into account, a term (-  PTIT,,) has been 
introduced phenomenologically on the right-hand side of Eq. (2) for the 
polarization to describe the damping of the macroscopic polarization in 
time T,,  (see Ref. 2). 
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